• Tidak ada hasil yang ditemukan

ʇ|ÀÆ» ®Ì¿Z°»

N/A
N/A
Protected

Academic year: 2024

Membagikan "ʇ|ÀÆ» ®Ì¿Z°»"

Copied!
11
0
0

Teks penuh

(1)

mme.modares.ac.ir

*1

2

- 1

- 2

* 3618785545

[email protected]

31 :

1395 : 12 1395

15 : 1395

. .

. .

I

. .

. .

. .

I

.

Extended Finite Element analysis of a stationary crack in hygrothermal isotropic media subjected to thermal shock

Mohammad Bagher Nazari

*

, Hamid Rajaei

School of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran

* P.O.B. 3618785545, Shahrood, Iran. [email protected]

A RTICLE I NFORMATION A BSTRACT

Original Research Paper Received 21 August 2016 Accepted 02 November 2016 Available Online 04 January 2017

In this paper, the extended Finite Element Method (XFEM) is implemented to compute the Stress Intensity Factors (SIFs) for rectangular media subjected to a hygrothermal loading. In governing hygrothermoelasticity equations, the cross coupling of temperature and moisture fields and temperature- dependent diffusion in some cases are considered. Furthermore, an interaction integral for hygrothermal loading is developed to compute the stress intensity factors. The non uniform mesh of isoparametric eight-nod rectangular element is used in XFEM to decrease the absolute error in SIFs computations. In order to validate numerical results, the SIF of mode I is obtained analytically. The coupled governing equations are firstly decoupled in terms of new variables and then solved by the separation of variable method. According to the results, the moisture concentration gradient has a significant effect on the SIFs so should be considered in the model. Until temperature reaches its steady state, the cross coupling of temperature and moisture synchronizes their time variation which affects on the time variation of SIF. At the beginning of thermal shock, the SIF for shorter cracks is not necessarily less than the longer ones. Also, the mode I SIF for longer and inclined cracks is smaller. On the other hand, considering the moisture concentration as a temperature function increases the time required to reach the moisture steady state.

Keywords:

Extended Finite Element Method (XFEM) Isotropic Materials

Stress Intensity Factors (SIFs) Hygrothermal Loading

-1 .

- -

-

] .[ 1

[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]

(2)

- -

-

- . .

- .

.

) ( )

. (

] .[ 2

. 20

% 80

] .[ 3 ]

.[ 4

-

.

-

] .[ 5 -

] .[ 6

-

] .[ 7

] .[ 8 ]

.[ 9

] .[ 10 -

] .[ 11

. J

k

] 13,12 .[

- [14]

. . [15]

. [16]

.

[17]

. [18]

[19]

. [20]

. [21]

- .

[22]

- .

- .

[23]

- [24]

[25]

- .

.

. -

.

MATLAB

-2

. .

) .( 1

) ( 1

. .

( )

. .

) ( 1 ( ) = ( ) + ( ) ( )

+ ( ) ( )

) 1

( )

"

" 1

(

. ( ) )

( 2

] [. 26

[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]

(3)

) ( 2 { ( , )} = sin 2, cos2 ,

sin sin 2, sin cos2 -3

. .

] [ 27

) ( 3

) - 3 ( ( ) = 0

( ) = 0 ( - 3 )

) ( 3 .

) ( 4 ]

[ 3 .

) ( 4

= exp( )

.

(4)

) ( 5 ]

.[ 3

) - 5 ( . ( ) ( ) = 0

( ) = 0 ( - 5 )

"

" 2

. _

1 .

i f

. )

( 6

.

) - 6 ( . = 0

) - 6 ( . = 0

) - 6 ( . = 0

Fig. 1 Enrichment nodes in XFEM. Square: crack tip enrichment.

Circle: Heaviside enrichment.

:

1

: .

( ) )

) ( )

( 7

=

) - 7 (

=

) - 7 (

= :

) ( 8

) - 8 (

=

) - 8 (

=

) - 8 (

= 0

) - 8 (

= 0

) - 8 (

= (1 + ) 0

) - 8 (

= (1 + ) 0

.

( ) .

) ( 9

) ( 10

) ( 9 C = 1

1 0

1 0

0 0 (1 ) 2

) ( 10 C = (1 + )(1 2 )

(1 ) 0

(1 ) 0

0 0 (1 2 )

. 2

) ( 1 )

( 11

) - 11 (

=

) - 11 (

_

+

_

=

Fig. 2 Long enough substance with internal borders

and crack under hygrothermal loading

2

_

[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]

(4)

( )

) .

- 11

) ( 12

= + +

. _ .

.

) ( 13

) ( 13

2

_

+

_

= +

+ 2

_ _

-4 .

( )

- .

1 )

( 14 ]

.[ 28

) ( 14

=

, ,

+

, ,

) .( 3

) ] ( 15 ..[ 28

) ( 15

= + +

) ( 16

] .[ 28

) ( 16

= (

,

+

,

)

,

+ (

,

+

,

)

,

) ( 17 ]

.[ 28

) ( 17

= 1

2 ( + )

)

. ( 17

,

= 0

1

Table 1 Initial and boundary conditions for temperature and humidity

( , 0) = ( , 0) = (0, ) =

(0, ) = ( , ) =

( , ) =

) ( 18 ]

.[ 28

) ( 18

=

,

+

, ,

+

,

+

, ,

) ( 19 ]

.[ 28

) ( 19

=

,

+

,

+

)

) ( 19

( 20

) ( 20

= ( ) ( )

+ ( ) ( ) ( ) T)

C)

) ( 21

= = + + 2 =

(C + C + 2C )

+(C + C + 2C )

+2(C + C + 2C )

(C + C + C )

(C + C + C )

2(C + C + C )

(C + C + C )

(C + C + C )

2(C + C + C )

( 21 )

) ( 22 ( ) = (C + C + C )

(C + C + C )

2(C + C + C )

) ( 23

( ) = (C + C + C )

(C + C + C )

2(C + C + C )

) ) ( 22 ( 23

) ( 24 ( ) =

Fig. 3 Conversion of the contour integral into an equivalent domain integral (EDI)

3

= + +

Crack

[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]

(5)

) ( 25 ( ) =

) ( 18

- )

( 26

) ( 26

=

,

+

, ,

+ ( ) + )

+ ( ) + ( )

] [ 29 .

) - 27 (

= 2

( + )

) - 27 (

= 1

) - 27 (

=

) (

) ( 28 .

) ) ( 29 ( 30

] [ 26 .

) - 28 (

( = 1, = 0) = 2

( )

( = 0, = 1) = 2

( )

( - 28 ) ) ( 29 ( , ) = 2 2 cos(2) 1 + 2 sin (2) +

2 2 sin(2) + 1 + 2 cos (2)

) ( 30 ( , ) = 2 2 sin(2) + 1 2cos (2)

2 2 cos(2) 1 2 sin (2) ) ( 31

) - 31 (

= 2(1 + )

) - 31 (

= 3 4

) - 31 (

= 3

1 +

-5 ) . .( 2

= 4 = 1

) = 1 (

. .

( )

.

( )

. .

. .

) ( 32

) ( 32 t =

-6 .

.

- 6 - 1

"

" 2

.

) - 33 ( ( , )

( ( , ) ( , )) = 0

) - 33 ( ( , )

( ( , ) ( , )) = 0 ) ( 33

) ( 35

) - 34 ( T ( , ) = ( , )

) - 34 ( C ( , ) = ( , )

( )

T ( , ) C ( , )

) - 35 ( C ( , )

= (C ( , ) T ( , ))

) - 35 ( T ( , )

= (T ( , ) C ( , ))

. )

( 36

.

) - 36 ( T ( , ) = 0

T (0, ) = 1

) - 36 ( C (0, ) = 0

C ( , ) = 0

) - 36 ( C ( , ) = 0

T ( , ) = 0

) ( 35

C T T + C

. .

) ( 37

T ( , ) + C ( , ) =

) ( 37 [(1 )T ( , ) + (1 )C ( , )]

T + C )

. ( 38

) ( 38 1

= 1

=

)

) ( 37

( 39

) ( 39 ( , )

= ( , )

[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]

(6)

) ( 38

) ( 40

= ( ) ± ( ) + 4 2 ( 39 )

) ( 41

( - 41) (0, ) =

( - 41) ( , ) = 0

( - 41) ( , 0) = 0

) ( 42

( T ( , ) + C ( , )) =

) ( 42 [(1 + )T ( , ) + (1 + )C ( , )]

T ( , ) + C ( , ) )

( 43

) ( 43 + 1

= 1 +

=

)

) ( 42

( 44

) ( 44 ( , )

= ( , )

) ( 43

) ( 45

= ( ) ± ( ) + 4 2 ( 44 )

) ( 46

( - 46) (0, ) =

( - 46) ( , ) = 0

( - 46) ( , 0) = 0

) ( 33

) ) ( 39 ( 44 .

( , )

( , ) )

( 47

) - 47 ( , ) =

+ 2

sin( )

( )

) - 47

( , ) = +

+ 2

sin( )

( )

( , ) ( , )

) ( 48

1

( , ) =

1

T ( , ) + C ( , )

2

( , ) =

2

T ( , ) + C ( , ) )

( 49

) ( 49 T ( , ) =

1

( , )

2

( , )

(

1

+

2

) C ( , ) =

2 1

( , ) +

1 2

( , )

(

1

+

2

) - 6

- 2

) - 50 ( , ) = 0

) - 50 ( , ) = 0

) - 50 ( , ) = 0 , ( , = , )

) ( 51 ( , )

= 0

)

( 52

) ( 52 ( , ) = ( ) + ( )

) ( 53

) ( 53 ( , ) = [ ( ) + ( ) ( , ) ( , )]

( ) ) ( )

( 54

) - 54 ( , ) = 0

) - 54 ( , ) = 0

( ) = 6

( ) T ( , ) +

C ( , ) + 2

T ( , )

+ C ( , )

) ( 55 ( ) = ( )

T ( , )

+ C ( , ) 3 ( )

- 6 - 3

.

"

" 2

) ( 56 ]

.[ 30

) ( 56

= 2 1 ( , ) ( , )

( , )

-7 - 7 - 1

[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]

(7)

] [ 31

= 0.3

= 7.78×10

-7

cm /hr

= 7.78×10

-6

cm /hr

= 2.68 × 10 cm/cm %H o

= 31.3×10

-6

cm/cm °C

= 0.5 g / cm °C

= 64.3 GPa

= 0.5 cm °C/g

60 ×240

"

" 4

. .

.

. I .

.

"

" 5

. 42 (MPa m) 1.67

. .

= 0 .1

= 0 .2

= 0 .3

"

6 7

" 8 .

-

. t = 0.02

t = 0.26

= 0.2

"

9 10

" 11 .

t=0.02 .

= 0.2 2.6%

4.7%

= 0.3×b 3.16%

. 8%

= 0.2 0.001

) 1%

5

.

. .

.

"

" 11 .

.

= 0.2

Fig. 4 Eight-node network elements with edge crack and enriched nods

4

t*

Fig. 5 Coupled and uncoupled maximum SIF in an isotropic plate with an edge crack under hygrothermal loading

5

t*

Fig. 6 time variation of SIF for a crack with length of 0.1 × 0.1 × 6

0.01 0.02 0.03 0.04 0.05

10-1 100 101 102 103 104 105 106 107

Uncoupled Coupled

0 0.2 0.4 0.6 0.8 1

-9E+07 -6E+07 -3E+07 0 3E+07

Analytical a = 0.1× b XFEM a = 0.1× b

(Pam)(Pam)

[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]

(8)

t*

Fig. 7 time variation of SIF for a crack with length of 0.2 × b 0.2 × b 7

t = 0.02 .

t = 0.26

.

.

"

" 9 T < 0 .

t = 0.26

) - 3 .

t = 0.26

T = 0

. .

.

) ( 56 .

. t = 0.02

( C < 0) ( C > 0)

.

. .

T > 0 )

- 3

. -

) ( - 56 .

. - C

) (- 8 -

) (- 26

t*

Fig. 8 time variation of SIF for a crack with length of . × 0.3 × b 8

b (cm)

Fig. 9 Dimensionless moisture in an isotropic plate with an edge crack under hygrothermal loading

9

b (cm)

Fig. 10 Dimensionless temperature in an isotropic plate with an edge crack under hygrothermal loading

10

= 0.2 60×240

0 0.2 0.4 0.6 0.8 1

-6E+07 -4E+07 -2E+07 0 2E+07 4E+07

Analytical a = 0.2× b XFEM a = 0.2× b

0 0.2 0.4 0.6 0.8 1

-6E+07 -4E+07 -2E+07 0 2E+07 4E+07

Analytical a = 0.3 × b XFEM a = 0.3 × b

0 0.2 0.4 0.6 0.8 1

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

t* = 0.02 t* = 0.26

0 0.2 0.4 0.6 0.8 1

-1 -0.8 -0.6 -0.4 -0.2 0

t* = 0.02 t* = 0.26

(Pam)

(Pam)C*T*

[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]

(9)

Fig. 11 Stress in an isotropic plate with an edge crack under hygrothermal loading

11

75×290

"

12

"

.

- 7 - 2

) ( 13

.

= 21 ° C

= 0 °C .

.

= 0.1 .

-

] .

[ 10

.

= 64.3 GPa

= 0.33

= 1.53×10

3

cm /hr

= 31.3×10

-6

cm/cm ° C

= 1.25×10

4

cal/gr mol

= 2.68 × 10

3

cm/cm %H

2

O

= 0.5 cm ° C/g

= 0.5 g / cm ° C .

) ( 32

t*

Fig. 12 The first mode SIF for different meshes

12

60×240

)

( 14

= 0.2×b 30

45 60

"

" 15 .

"

" 16 .

) ( 4

) ( 4

)

"

" 17 . .

"

" 15 .

Fig. 13 Long enough substance with internal bordersand angled crack under hygrothermal loading

13

_

Fig. 14 Eight-node elements with edge crack and enriched nods

14

0 0.2 0.4 0.6 0.8 1

-1.5E+08 -1E+08 -5E+07 0 5E+07

1E+08 t* = 0.02

t* = 0.26

0 0.2 0.4 0.6 0.8 1

-6E+07 -4E+07 -2E+07 0 2E+07 4E+07

75 × 290 60 × 240 b (cm)

(Pa)(Pam)

[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]

(10)

t*

Fig. 15 The first mode SIF, in an isotropic plate with an edge crack under hygrothermal loadingwith different crack angles

15

t*

Fig. 16 The second mode SIF, in an isotropic plate with an edge crack under hygrothermal loading with different crack angles

16

. I 2

.

"

" 16

-8

. .

-

Temperature (K)

Fig. 17 Moisture diffusion coefficient changes according to temperature

17

2

Table 2 Time and amount of maximum stress intensity factors for different angles

(Pa m)

0° 0.033

1.4277 × 10

30° 0.025

1.2251 × 10

45° 0.02

1.1854 × 10

60° 0.0181

6.5134 × 10

.

-

- I

. II

: -9

( , ) = + + + ( )

= 0.46 + 3.06 + 0.84(1 ) + 0.66 (1 )

= 3.52

= 6.17 28.22 + 34.54 14.39

(1 )

.

5.88(1 ) 2.64 (1 )

= 6.63 + 25.16 31.04 + 14.41 + 2(1 )

.

+ 5.04(1 ) + 1.98 (1 )

=

-10

[1] A. Szekeres, Cross-coupled heat and moisture transport: part 1—theory, Journal of Thermal Stresses, Vol. 35, No. 1, pp. 248–268, 2012.

[2] A. Szekeres, Analogy between heat and moisture: Thermo-hygro-mechanical tailoring of composites by taking into account the second sound phenomenon, Computers & Structures, Vol. 76, No. 1, pp. 145–152, 2000.

[3] G. C. Sih, M. T. Shih, S. C. Chou, Transient hygrothermal stresses in composites: coupling of moisture and heat with temperature varying

0 0.4 0.8 1.2 1.6 2

-2E+08 -1E+08 0

1E+08 Crack angle = 0

Crack angle = 30 Crack angle = 45 Crack angle = 60

0 0.4 0.8 1.2 1.6 2

-1.5E+08 -1E+08 -5E+07 0 5E+07 1E+08

Crack angle = 0 Crack angle = 30 Crack angle = 45 Crack angle = 60

270 275 280 285 290 295

2E-07 4E-07 6E-07 8E-07

D(cm2 /hr) (Pam)(Pam)

[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]

(11)

diffusivity, International Journal of Engineering Science, Vol. 18, No. 1, pp.

19–42, 1980.

[4] Y. Tambour, On local temperature overshoots due to transport coupling of heat and moisture in composite materials, Journal of composite materials, Vol. 18, No. 5, pp. 478–494, 1984.

[5] B. P. Patel, M. Ganapathi, D. P. Makhecha, Hygrothermal effects on the structural behaviour of thick composite laminates using higher-order theory, Composite Structures, Vol. 56, No. 1, pp. 25–34, 2002.

[6] A. Bahrami, A. Nosier, Interlaminar hygrothermal stresses in laminated plates, International Journal of Solids and Structures, Vol. 44, No. 25, pp.

8119–8142, 2007.

[7] A. Benkhedda, A. Tounsi, Effect of temperature and humidity on transient hygrothermal stresses during moisture desorption in laminated composite plates, Composite Structures, Vol. 82, No. 4, pp. 629–635, 2008.

[8] R. J. Hartranft, G. C. Sih, The influence of coupled diffusion of heat and moisture on the state of stress in a plate, Mechanics of Composite Materials, Vol. 16, No. 1, pp. 44–56, 1980.

[9] K. Khalili, M. Heydari, The effect of thickness on the possibility of cracks in the drying process, Modares Mechanical Engineering, Vol. 12, No. 3, pp.

103–116, 2012. (in Persian )

[10] G. C. Sih, M. T. Shih, Hygrothermal stress in a plate subjected to antisymmetric time-dependent moisture and temperature boundary conditions, Journal of Thermal Stresses, Vol. 3, No. 3, pp. 321–340, 1980.

[11] S. Topal, S. Dag, Mixed-mode hygrothermal fracture analysis of orthotropic functionally graded materials using J-Integral, proceedingsof the twelfth Biennial Conference on Engineering Systems Design and Analysis, ASME 2014, Copenhagen, Denmark, 2014.

[12] S. Dag, E. E. Arman, B. Yildirim, Computation of thermal fracture parameters for orthotropic functionally graded materials using J k-integral, International Journal of Solids and Structures, Vol. 47, No. 25, pp. 3480–

3488, 2010.

[13] S. Dag, B. Yildirim, O. Arslan, E. E. Arman, Hygrothermal fracture analysis of orthotropic materials using J k-Integral, Journal of Thermal Stresses, Vol.

35, No. 7, pp. 596–613, 2012.

[14] M. Beneš, R. Štefan, Hygro-thermo-mechanical analysis of spalling in concrete walls at high temperatures as a moving boundary problem, International Journal of Heat and Mass Transfer, Vol. 85, No. 1, pp. 110–

134, 2015.

[15] M. Koniorczyk, D. Gawin, B. A. Schrefler, Modeling evolution of frost damage in fully saturated porous materials exposed to variable hygro-thermal conditions, Computer Methods in Applied Mechanics and Engineering, Vol.

297, No. 1, pp. 38–61, 2015.

[16] F. Ahmad, J.-W. Hong, H. S. Choi, M. K. Park, Hygro effects on the low- velocity impact behavior of unidirectional CFRP composite plates for aircraft applications, Composite Structures, Vol. 135, No. 1, pp. 276–285, 2016.

[17] S. M. Hosseini, J. Sladek, V. Sladek, Two dimensional transient analysis of coupled non-Fick diffusion–thermoelasticity based on Green–Naghdi theory using the meshless local Petrov–Galerkin (MLPG) method, International

Journal of Mechanical Sciences, Vol. 82, No. 1, pp. 74–80, 2014.

[18] S. M. Hosseini, J. Sladek, and V. Sladek, Two Dimensional Analysis of Coupled Non-Fick Diffusion-elastodynamics Problems in Functionally Graded Materials Using Meshless Local Petrov–Galerkin (MLPG) Method, Applied Mathematics and Computation., Vol. 268, No. 1, pp. 937–946, 2015.

[19] S. M. Hosseini, M. H. Ghadiri Rad, Application of meshless local integral equations for two-dimensional transient coupled hygrothermoelasticity analysis: Moisture and thermoelastic wave propagations under shock loading, Journal of Thermal Stresses, Vol. 39, No. 1, pp. 1–15, 2016.

[20] F. Ebrahimi, M. R. Barati, Hygrothermal buckling analysis of magnetically actuated embedded higher order functionally graded nanoscale beams considering the neutral surface position, Journal of Thermal Stresses, Vol. 39, No. 10, pp. 1210–1229, 2016.

[21] C.-Y. Lee and J.-H. Kim, Hygrothermal postbuckling behavior of functionally graded plates, Composite Structures, Vol. 95, No. 1, pp. 278–

282, 2013.

[22] A. H. Akbarzadeh, Z. T. Chen, Hygrothermal stresses in one-dimensional functionally graded piezoelectric media in constant magnetic field,Composite Sructures, Vol. 97, No. 1, pp. 317–331, 2013.

[23] D. S. Mashat, A. M. Zenkour, Hygrothermal bending analysis of a sector- shaped annular plate with variable radial thickness, Composite Structures, Vol. 113, No. 1, pp. 446–458, 2014.

[24] A. Zenkour, Hygrothermal Analysis of Exponentially Graded Rectangular Plates, Journal of Mechanics of Materials and Structures, Vol. 7, No. 7, pp.

687–700, 2013.

[25] S. A. Al Khateeb, A. M. Zenkour, A refined four-unknown plate theory for advanced plates resting on elastic foundations in hygrothermal environment, Composite Structures, Vol. 111, No. 1, pp. 240–248, 2014.

[26] T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing, International journal for numerical methods in engineering, Vol. 45, No. 5, pp. 601–620, 1999.

[27] R. J. Hartranft, G. C. Sih, The influence of the soret and dufour effects on the diffusion of heat and moisture in solids, International Journal of Engineering Science, Vol. 18, No. 12, pp. 1375–1383, Jan. 1980.

[28] J.-H. Kim, G. H. Paulino, T-stress, mixed-mode stress intensity factors, and crack initiation angles in functionally graded materials: a unified approach using the interaction integral method, Computer Methods in Applied Mechanics and Engineering, Vol. 192, No. 11, pp. 1463–1494, 2003.

[29] J. F. Yau, S. S. Wang, H. T. Corten, A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity, Journal of Applied Mechanics, Vol. 47, No. 2, pp. 335–341, 1980.

[30] B. L. Wang, J. E. Li, Thermal shock resistance of solids associated with hyperbolic heat conduction theory, In Proceedings of the Royal Society of London A, Vol. 469, No. 2153, p. 20120754, 2013.

[31] W.-J. Chang, T.-C. Chen, C.-I. Weng, Transient hygrothermal stresses in an infinitely long annular cylinder: coupling of heat and moisture, Journal of Thermal Stresses, Vol. 14, No. 4, pp. 439–454, 1991.

[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]

Referensi

Dokumen terkait

The study of the flow pattern visualization, velocity values and vorticity shows, at first, the flow separation shear layer forms and the clockwise vortex generate at the rear edge of

167651719 Tehran, Iran, [email protected] ARTICLEINFORMATION ABSTRACT Original Research Paper Received 04 January 2016 Accepted 12 March 2016 Available Online 30 April 2016 In

: Mathematical and Numerical Modeling along with the Stability Analysis of Liquid Propellant Rocket Engine Cut-off Valve Mohammad Shafiey Dehaj1 Reza Ebrahimi2,Hassan

Ramakrishnan, Comparison of Morphing Wing Strategies Based Upon Aircraft Performance Impacts, 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics Materials Conference, 19 22

AZ31C The effect of pass numbers over microstructure and mechanical properties of magnesium alloy of AZ31C in the tubular channel angular pressing TCAP at temperature of 300°C

8 / 10 % The Effect of Cutting Parameters and Vibration Amplitude on Cutting Forces in Vibration-Assisted Side Milling Process of Al7022 Aluminum Alloy Mohammad Mahdi