53 1
1401 ) 237 - 225
( Vol 53, No 1, Spring 2022 (225-237)
DOI:10.22059/ijhs.2021.315126.1881
* Corresponding author E-mail: [email protected]
:
! " # $ % & '
(Rubus ulmifolius subsp. sanctus)
$ " $ () # *
# * , " 1 2
/ 0* *
3
" 2 3 4
1 2 4 .
3 . ! ! " #$% & '(
:*+ , !)
9 / 10 / 1399 - :2 3% , ! 24
/ 3 / 1400 (
2 )5
25!
6 2 7 + 8 9 :;
< = " >? 8 <@ AB *# 8 C% < D E F G 7 $ 9 6
"
*H'? I E J K6 L% . M ) 7 !5 N' O 6
001 / 0 01 / 0 1 / 0
"' P " 8 Q R! > R( K $+ 8 ( @
.*+ M C% 6
5 T ? U P V
8 1 4± 9 ">W *8 T X W' 95
- 90 = < 8 9
$ 7 !@ 8 Y . # pH
Z 6 # R ! TSS R ! TA
001 / 0
"' # 6 & @
[ U 8 8 8 \ ! ! 8 6 63
/ 3 62 / 0
"' Q & M 100
"' ^[ _ 31
/ 16 `G+ $ 7 8 . 8 C 8 9
U 8 \ ! ! 8 ` a 5+
37 / 25
"' Q _ M & M 100
"' *;'? ^[ _ 001
/ 0 7 !5 @ "' 60
/ 9
"' & M
7 a 100
H'? ^[ _ "' *
1 / 0 ` ( 8 $ ! Y 7 GcR6 . # 6 & 7 !5 @ "' $ 6
` ( 8 7 )PC1
64
= ( )PC2 8 / 14
= KU 7 8 (
# 6 R ! G8 7 Y "' T 8 .
R ! K6 L%
001 / 0
"' @
" 7 !5
\ ! Q G( 8 !
"D >T M 8 e B
*W W 7RE fgJ 2
3h!
Q R!
*# 8
# 8 K $+
R(
>
K6 [ < D E QR
. G
6 : 2 8 0 Z HG! ` ( 8 $ !
.`G+ a 5+ " W>R6 \ E # GG
Evaluation of melatonin efficacy in maintaining qualitative, phytochemical properties and increasing storage life of raspberry fruit (Rubus ulmifolius subsp. Sanctus)
Shirin Rahmanzadeh Ishkeh1, Habib Shirzad2*, Zahra Tofighi3 and Mohammad Fattahi4 1, 2, 4. Ph. D. Candidate, Assistant Professor and Associate Professor, Faculty of Agriculture, Urmia University, Urmia, Iran
3. Assistant Professor, Faculty of Pharmacy, Tehran University, Tehran, Iran (Received: Dec. 29, 2020- Accepted: June 14, 2021)
ABSTRACT
Nowadays, many efforts are being in the worldwide to find alternative methods for controlling postharvest horticultural waste. In the present study, the effect of different concentrations of melatonin (000.001, 0.01 and 0.1 mM) on increasing the storage life of raspberries was investigated. After 5 min immersion, the fruits were maintained in a cold storage with a 4±1°C 90-95%RH for 9 days. The results showed that the highest level of pH and TSS were observed in the control treatment on the ninth day and TA in the treatment of 0.001 mmol on the third days of storage with mean 3.64 and 0.62 mg citric acid/100 ml fruit Juice and 16.31 ̊brix, respectively. The highest levels of total phenol and flavonoids content were observed with 25.37 mg GAE/ 100 ml juice and 9.60 mg QE/ 100 ml juice on the third day storage, respectively. The results of data factor analysis also confirmed that the two factors PC1 (64%) and PC2 (14.8%) had the most role in the classification of treatments. In general, the results of this study showed that treatment with 0.001 mM melatonin, as a natural compound compatible with the environment and humans, in addition to the maintaining the nutritional values of the harvested raspberry it,s can increased storage life and reduced waste of fruits.
Keywords: Correlation coefficient, factor degradation, flavonoid, growth regulator, phenol.
( 2/
=+
"=>!?@;
A! @;
(3B C C
D E 1 3
>1 3 ( FG
&!
H@./*1 B$9D
%/ 3 A0
,# I
= 96 9 . , 3 , J2
# ( %
+K $ L *6
&+ %;
7=>>I=3:9D
"931
&1
=>>I
%! M1 N O
& C9D
#
! LK9PQ1
%'
*;
& +
#
!
&7 9:?
N O%3G R%P1
&1
=+9
)
Rahemi, 2008
.(
& ! S D
#
"931 , T#
LK9PQ1 3
&G
&1
= J>C S D )
Rubus L.
( U.B/1
"%3D
Rosaceae
) 36%*.7 (
N / 1
% +97
&!
V%
,
&/ 97
= ? 4
"=3)*V
&1
= .
A>I %2
!
" 37 NW>C ,
&:
9 I
>1 ,
& 9>C
#%):
X%G 9 I
&1
= )
Yousefi et al.,
.(2014
S D (.Y
%$
9
# S!5K =3$
S3: 7=3$
3 D I Z %[1 I
S3.3*3: $=3$
#
(3: B;
&/+?
&+ =3*I
&!K 96%
($
&1
=+ 9D
#
\3$?
, /$ 96 + , G
&:9.$
%W!
/6 $
= ,%379.C ) =>I
Zia-Ul-Haq et al., 2014
(.
"931
=B/*1 K X? / !# (; ]: N3: S D 96% & D9I , )+ % Y # " 9 &V O N1 9Y ) ($
Rahmanzadeh Ishkeh et al., 2018
.(
J+ $ 3D & 82 L )3I%D ^[ _ 9 3:
S D "931 &! 3 3 9/3;
(Rubus ulmifolius subsp.
sanctus)
"931 &7=3$92 @31 ()*+ "= 3D ,
) A I =
Ishkeh et al., 2019
.(
91 9 43`>D
"=>>I ,
=
& 37 AM+
,%3W V A! @;
% Y J2
# ( % LK9PQ1
,# I =+
(Reid & Jiang, 2012 )
3+9Da1 .
) -N
N3/$
5 -
&*I9/1 31 /b!%D
( # & !
"=>>I 43`>D !%D=!=C &! $ > & 37 = ,
I ($ "=
, % 3:
#
"=G
& V9I
@c1
d96 )
"=G
>32 Z?
( - I e %0/$
= )
Marino et
al., 2013
.(
!
= "=>>I 43`>D f6
H=M1 . M1
A>D 93D =3*I
&;%B1
"=
($
%! $
&/+?
=3*I L 9g
)3/ 2
=B
# ?
N Y
&1
=+9 .
%W! ,9$ # N3:
(B3)h + 7
) (3g 6
&/$ = ?
& %V
&/$
(
&+ $?
# i%Y G
9)Y
" %I Z9.$
&1 9 )
Tan et al.,
.(2013
+9Da1 3 V O L %' #
&
=> # , 96%
1 I ($ "= j0 1 ($
&
=+ 9D 7=+ 1 ,
1 3
"9 79.C 3
% , # N1 9Y (3: B; =
, 3
# +K9h
&
%D .=>I
& 82 # " [/$
+9Da1 3
"9 O ,
$ " PY = 3
\ A I
: B;
3 ( 1 =_
3 + 7 % 3
*
&
A! @;
"
7=+ 1 ,
$ X?
3
\ +K9h
&
%D I
% )
Zhang et al.,
2018a
.(
>k 3 +9Da1 3 1
&
=+ 9D : B;
3 (
@I9.7 -
6 - L [*;
3
# +5 = )
Glucose-6-phosphate
dehydrogenase
( 3 L 3
# +5 = )
Shikimate
dehydrogenase
(
>;
3 N +K?
3 +91?
3 3:
#
)
Phenylalanine ammonialyase
(
@;
! A "
=
!
$ 3 . lY A! @;
N>;
, NI . 9
3+9Da1 3>k :
3 N AM+
4 &! @;
$ 3
=
*: $ 3.
3 S
#
$92 1 3
7=
&
, V O
&
[1 3
= +K9h \C91 " 9
&
# J2 % Y =
1 9. ( %
&
9 )
Gao et al., 2018
.(
3+9Da1
37 9>Y
S!
d%Q1
&/*!#
&! $ >
"=
($
I
\C91 A! @;
N QD A>D
,
&/*!#
&/*!#%3G 9)
= B$9D
" 37
&1 -
%7 .
= 9
%W+ 3 ? ($
I A>D ,
&]3Q1
@31 3+9Da1
# A! @;
&1
=>
)
Tan et
al., 2007; Li et al., 2012
.(
3+9Da1
# m Q:
, /6 $ 3)
3*I
&1
= I
%
@C
L M/ 1 Z =>!
31?
=>/*
&1
=+ 9D
# U!%h
"=+%!F2 ,
3*I
%' 96 Z Y
=>>I )
Zhang
et al., 2015
.(
% I
&C 6 3+9Da1 LK9PQ1
& 37
\)$
A! @;
3+9Da1
&+
&1 9 I +
>D , %
&/1a$
%n1 d +%]6 . (*3+
&1 -
=+ 9D
=>1 9$
4
= )
Janas & Posmyk 2013
.(
9>B 3+9Da1 3>k S!
&/+?
=3*I
%PQ>1
%;
"=>>I 1 ,
Z ! ,
#?
# U!%h
43M/*1
%3G 43M/*1 A! @; ) 3
5 (3: B;
4!@+?
,
&/+?
37 # (&+ =3*I N M1
A>D (`; Q1
&1
=! + )
Kim et al., 2007
.(
5 3 3+9Da1 I ($ "= T @7 o9 %1 ,
4!@+?
=>+ 1 =3p9+ 2 %2 N3>; %3*1 ,
PAL
(Phenylalanine ammonia-lyase) CHS1
(Chalcone synthase 1) CHS2 (Chalcone
synthase 2) F3H (Flavanone-3-hydroxylase)
&1 43`>D
=>I )
Sun et al., 2016
"# %1 .(
"9Q+
%3'ED 43`>D
"=>>I , -./01 & 37 = 9;
LK9PQ1 ,# I
91 B: ]1 A 82
%O
/;%7
! % > .($
&$ %
%3'ED
!%D=!=C
43`>D
"=>>I
= ,
&! $ >
"=
% ,
LK9PQ1
&+ )G , %_
%`+
&1
=$
. 9h
R= &.I
# , %C
! A 82
%' &$ % (`.G
-
, -./01 3+9Da1
% Y %
, )+
L 3g9P6
&! 3 3 9/3;
"931 S D
&1
= .
9 #
0
"931 M]>1 # A! 1#? ! " [/$ 91 ,
6
"
&$
) &! 3; %cC Z9h
"
09 07´ 45° (
&! 3; %cC i%Y )
"
16 19´ 37° ( 1392
%/1 r [D
! s]$ # 25
= 3 D 31 % ,%/19.3I .
"931 = =C &/ "931 t+ ( % j6 k/6 O $ # S D 9
"931 . ( % # J2
" W ! 1#?
,# I "= + &+ )G H9.Y " %7
.=>/; ! Z M/+ 31 " W +
! "
(`.G ) , 001 / 0 01 / 0 1 / 0
&.31 3+9Da1 K91
"931 3 D (v! =:? W3$) L=1
5 M3O
h9G "= " 1? Z9.Q1 ) =+=
Liu et al., 2018
.(
=M1 60
"931 H%7 & 3/$a2 R %w S D ,
/* R%P1 ) ! & ! 1#? = % , % ,=>
+9 + . %1 % %`+ , %
Jb$ .= /;%7
"931 + 6 %$
, 1 , 1
4± x93*.$ C
&)*+ ( 9h 95
- 90 =g
"# =+ .=+= NM/>1 ,%37
=>+ 1 &! 3 3 L [g
TA TSS
L [g pH
# A I (NI =3p9+ a; N>;) &! 3 3 9/3;
j6 4Bh %]Y &7=3$92 H9$ , #
)+ # J2 4 + 4 .= H y+ ,
! #
! $ % & '
"# =+ , %
"931 # A I @31 ,%37 , # %D #
) &: /3y!
CANDGL300
( ! , % .= " [/$
"931 # L [D 9`>1 3
6 9 # J2 #
# A I @31 /;%7 %O )$ Q1 91 , = W+
"931 ) =1? ($=
Khademi & Ershadi, 2013
( .
100
× !9+ ' # ) -
( 3: #
# A I =g =
3: #
! # '# " '
"# =+
L 9g &7=3$92 @31 ,%37
"= 1 , f$9D
10
? L %`+ 3W+ 31 = H y+ X !#
&$ % 91
"% + .(;%7 %O 1
+9 + &7=3$92 !%/ I , ,
"% + 5 +9 + &7=3$92 !%/ 3 , ,
= "
) 0 - 20
=g "% + : 1 20 - 40
=g "% + : 2 40 - 60
=g "% + : 3 60 - 80
=g "% + : 4 80 - 100
=g :
"% + 5 ( )
Khademi & Ershadi, 2013
.(
! # ( ) ' pH
, %
"# =+
,%37 X? pH
"931
#
" W/$
%/1pH
&: /3y!
(pH-Meter CG 824)
= " [/$
.
! # ) " + , - + # " ' (TA
9$ 93$ %/3D T NI /!=3$
1 / 0 D Z 1%+
=3$
3 pH
/ 8
"# =+
\* % ,%37
&.31 H%7
S!%/3$ =3$
&.31 %/3:
X?
= )$ Q1 "931
)
Ayala-Zavala et al., 2007
(
.
! # ' ) / 0 # 1
(TSS
@31 ) Z9.Q1 =1 C 91
"931 X? (TSS
# " [/$
Z=1 &/$ %/19/I %; " W/$
ATAGO
2 5
%I "%)3: I , % = ,%37 "# =+ " W ! 1#? , 1
=! %7 " [/$ %]M1 X? # @3+ " W/$ ! )
Ayala-
Zavala et al., 2007
( .
! # '
&
,23 ,% # 4 3
"# =+
&.>; 91 ,%37 S D "931 X?
# " [/$
= H y+ 93/: I93$ 3:9; R%B1 )
Ebrahimzadeh et
al., 2008
.(
# @3+ =+ /$ &>Q>1 4$ ( C
=3$
S3: 7 " [/$
"=
NI N>; @31
"931 X?
%
\*
&.31 Z B1 H%7
=3$
S3: 7 %
100
&.31 %/3:
X?
= T @7 "931 .
NI =3p9+ a; @31 Ay>$ , % T #
Chang
et al.
) .= " [/$ (2002
&>Q>1 4$ , %
" [/$ 3/3$%p9I # @3+ =+ /$
= @31 .
% NI =3p9+ a;
\*
&.31 3/3$%p9I Z B1 H%7
% 100
&.31 %/3:
X?
T @7 "931
! %7
= .
! # 567 8 '
# " [/$ 4Bh Ay>$
91#?
N>2
= H y+
, %
# I ! H y+
10 3W+ 31 = & 96%`+ X !#
? L %`+
! (;%7 %O N3.QD !@yD 91
"% + =>!?%;
1 +9 + "% + %/ 4Bh , , 5
+9 + j6 , ,
%D= &* , .= "
,%37 "# =+
# , % 9h 4 + 4 H9$ ,
L 9g 96 o9 %1 # H =I % + 7 =C (;%7 )
Khademi & Ershadi, 2013
( .
9 , 0 &:
A! 1#?
L 9g (`.G N1 Y ) N! 9/I ; ,
}%h \: O (, )+ 1# 3+9Da1 -./01
&; PD N1 I
" = H y+ % D V ,
"=1? ($=
H%+ # " [/$
@;
: +?SAS
@3
=
=+
# .
91#?
>1 =>V ,
@3+ +
% , M1
*!
1 3W+ 3
"
@; H%+ #
Excel
9 + 4$ , %
" [/$
N1 Y !@yD o9 %1 , @3: +? H y+ .=
/$ @3+ La2 , @; H%+ # " [
Minitab
L 9g
.(;%7 :3' ;
! $ % #;9
" J+ ! !@yD ~! /+ C9D 1# %'
(`.G , = W+
N M/1 %' 3+9Da1 -./01 ,
? 3 S D "931 # A I ([g 91
&>B1 =g S! Z / s]$
Z =C) =+ 9 1
.(
! 2 # A I =g !%/ 3 , )+ "
3W+ 31 99
/ 0 +9 + o9 %1 =g = ,
3W+ 31 ? =M1 !%/ I 12
/ 0 +9 + # =g ,
(`.G "= 3D 1
/ 0
&.31 K91 =1? ($
N ) 1
# .(
"931 , 3B1 # 4 1
(3[3I
"931
($
I
%1 1#
C9D
% f!
, = W+
A I
&1
= ! .
"
J2
# ( % N1 Y
4 1
lY
# ($
X?
A I
# Z9PQ1
&1 9 .
& !
•]O
= ]
& ?
"931
" 37 , 1
H A! @;
€%BD s]$
"931 ! ,@)$
I S!
=>!?%;
& !@3;
($
%y>1
# ($
( 9h
Z9PQ1
&1 ) 9
Trevino-Garza et al., 2015
.(
A I
#
"931 9h
"= Y
# ($
X?
&W/*
.
@31 J[>D R%P1
=>O f$9D Z9.$
lY
# ($
X?
%/ 3
&1 9 I S!
N1 Y
4 1 Z # LK9PQ1 ( %
"=
) ($
Babalar
et al., 2007
.(
L=
J[>D K
N3:
•!%*D
, =>!?%;
&7=3$
,%32
\)$
R%P1 91
&! FG
"931
&1 9
! 96
\)$
A I
#
"931
&h
, )+
&1 9 )
Gao et al., 2013
.(
# J2 % I
"931 3+9Da1 ( %
&>B1 9h 9. , ,
A I = *! M1 "931 # A I )
Gao et al., 2016
I ( /; ! "=1? ($= ,
. (M ]1 A 82 !
Z =C
1 . ~! /+
3+9Da1 %' J+ ! !@yD &+ 1 )+ 1#
% S D "931 L [g &6%
.
Table 1. Results of variance analysis effect of melatonin and storage time on some traits of raspberry fruit.
Source of variation df Mean of squares
Weight loss percentage decay index pH TA TSS
Melatonin 3 0.019** 2.178** 0.056** 0.028** 3.814**
Storage time 2 1.182** 15.189** 0.038** 0.018** 7.934**
Melatonin × storage time 6 0.002* 0.450** 0.010** 0.002** 5.634**
Error 24 0.0008 0.039 0.002 0.0002 0.235
Coefficient variation (CV%) 5.856 9.164 1.370 3.020 3.363
* **
:ns
\3D%D L [D
&>B1 Z / s]$
1 5 =g L [D 9)+
&>B1 .
**, *, ns: Significantly difference at 1% and 5% of probability level, and not significantly difference, respectively.
N 1 %' 3W+ 31 *! M1 . N M/1
3+9Da1 &+ 1 )+ 1#
S D "931 # A I =g % .
Figure 1. Mean comparison interaction effect of melatonin and storage time on weight loss percentage of raspberry fruit.
'# "
" J+ ! !@yD
"931 &7=3$92 91 ,
&>B1 # &I S D
? , Z / s]$
Z =C) 9 =g S!
1 *! M1 x $ % 3>k (
" 3W+ 31 N )
2 @31 !%/ I ( &7=3$92
+9 + U.B/1 (`.G "= 3D ,
1 / 0
&.31 9 , )+ # J2 H9$ # K91
&:
4 + # &7=3$92 @31 !%/ 3 I
"931 (3[3I .= "= 1 = " %7 ,
"931
&78!
&!
9V N
"# =+
t+
@3+
, Y 9
(;
#
% +97
&7=!%
&7=3$92 -!%BD
&1 9
C9D
! I (3B_
,% w 4 1
!%D j6
& !#
,=>*2 # Z9PQ1
($
9C
% +97
4!aY
&7 9:?
&7=3$92 H%+
=
"931 lY
A I ,=>*2 #
Z9PQ1
&1 9 , % ! % >
Z9PQ1 ,=>*2 # ,% w (3B_ ^[
&/*!
Z Y Z )+
9 &! 3D I
(Y%$
,%32
A I
"
#
= 4!aY
&7=3$92 ,%379.C
=>I
)
Asghari & Khalily, 2014
.(
.pH
" J+ ! !@yD ~! /+ x $ %
"931
= ,
(`.G "= 3D Ra/6 3+9Da1 -./01 ,
&>B1 =>/ =g S! Z / s]$ ,
Z =C) 1
=M1 .(
"931 pH
3 2 / 3 +9 + ,
(( % # ) %[g # = 6
/ 3 +9 + ,
3W+ 31 *! M1 . 9 %3c/1 4 + # = o9 %1 o9 %1
"931 pH
+9 + N %1 , %
(`.G I + 01
/ 0
&.31 !%/ 3+9Da1 K91
A! @; # (B+ 1 % . Y
"931 pH
/
"931 NI 1 .($
(`.G "= 3D , ,
"931 *! M1 3+9Da1 -./01 # = " %7 ,
3! 2 pH
N ) =+ 9 96% ,%D 3
.(
# . C
&78!
, 4 1 33BD (3[3I
"931
" PY pH
"931
&1
= I N3:
L %33cD
&! 3 3 93
"931
=>+ 1
@yD
!
&:? , =3$
=>O (I%
6%V
&1 %33cD V J[>D ! % " aY . 9
L %33cD =+ 9D &1 "931 " PY pH
/*
L =3 9 %I 91
&>3/ 2
@3: =3 3‚D %2
!@yD
=! I $9 3.7
= , SV9I
%D
&h
J[>D =>!?%;
= f)D%1 )
Akhtar et al., 2010
.(
) " + , - + # "
(TA
" J+ ! !@yD ~! /+
o9 %1 , =+ + TA
+9 + I +9 + ()*+ "= 3D ,
= ,
&>B1 =g S! Z / s]$
Z =C) =>/*
1 .(
" 3W+ 31 *! M1 3>k %! M1 +
TA
+9 + " =Q1 63
/ 0 + +9 o9 %1 ,
%[g # = 39
/ 0
"
= o9 %1 ,
N ) 9 %3c/1 4 + # 4
! ~! /+ x $ % .(
+9 + A 82 (`.G "= 3D ,
001 / 0
&.31 , )+ # J2 H9$ # 3+9Da1 K91
!%/ 3 =M1
&: =>/ TA
, # I
J2 4 + 4 (`.G , )+ #
1 / 0
&.31 K91
0.00
e
c
a
e
d
a
e
d
b
e
d
b
0.00 0.20 0.40 0.60 0.80 1.00 1.20
at harvest Day 3 Day 6 Day 9
Weight loss (%)
Melatonin x Storage time Control M 0.001 M 0.01 M 0.1
/!=3$ . P/6 96 =M1 !%/ 3 & !
# %W!
, %/1 2 4 1
^[
(3[3I
"931
&1
=
I (`.G , =3$
&:?
9C91
"931 ] 43M/*1
)
Shokrollah et al., 2012
.(
ƒK9 B1
@31
=3$
"931
&h 1#
, = W+
"8!
, )+
, 1
A I K
&1
= ! I
&1
=+ 9D N3:
/*
=
=3$
=>O
=>!?%; &h J[>D
"931
= . /):
&6%
L B: ]1
@3+
(3: B;
& !@+?
&h , = W+
931
"
"
"=
($
I
\)$
A I /!=3$
"931
&1 9 )
Vargas et al., 2006
.(
I + %_ B: ]1 ~! /+
(`.G 001 / 0 1 3.
&
K91 &! =/ , # 3+9Da1
@31 ^[ % ,%/ 3 %3'ED (H9$ # ) , )+
1# ( F7 I &: ( &:? , =3$
# (`.G (4 + 4 , # ) , )+ &+ ! 2 ,
01 / 0
&.31 ^[ ,%/ 3 &:? , =3$ @31 K91
B: ]1 ~! /+ =+ ! I =+ %I
Liu et al.
) (2018
=M1 % 3+9Da1 %3'ED ] L9D "931TA
&h &W+%;
. 9 1 ƒa1 I , )+ L=1
N 2 . +9Da1 N M/1 %' 3W+ 31 *! M1 3
&+ 1 )+ 1#
S D "931 &7=3$92 @31 % .
Figure 2. Mean comparison interaction effect of melatonin and storage time on decay index of raspberry fruit.
.S D "931pH @31 % &+ 1 )+ 1# 3+9Da1 N M/1 %' 3W+ 31 *! M1 .3 N
Figure 3. Mean comparison interaction effect of melatonin and storage time on pH of raspberry fruit.
N 4 . 3+9Da1 N M/1 %' 3W+ 31 *! M1 &+ 1 )+ 1#
S D "931 &:? , =3$ @31 % .
Figure 4. Mean comparison interaction effect of melatonin and storage time on total acidity of raspberry fruit.
0.00
de
b
a
e
cd
b
e
c
b
e
dc
b
0.00 0.70 1.40 2.10 2.80 3.50 4.20 4.90
at harvest Day 3 Day 6 Day 9
Decay index
Time
Control M 0.001 M 0.01 M 0.1
3.2
ed
ab a
ed c-e b-d
e c-e e ed
a-c
c-e
2.8 3 3.2 3.4 3.6 3.8
at harvest Day 3 Day 6 Day 9
pH
Time
Control M 0.001 M 0.01 M 0.1
0.63
de ef f
a
cd c
a b
b b c bc
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
at harvest Day 3 Day 6 Day 9
TA (mg /100 ml juice)
Time
Control M 0.001 M 0.01 M 0.1
) / 0 # 1 (TSS
"931 @3+ %/1 2 ! Ra/6 # = "= 3D ,
&>B1 =+ 9 96% =g S! Z / s]$ ,
Z =C) 1 3W+ 31 *! M1 ~! /+ x $ % 3>k .(
"
N ) 5 Z9.Q1 =1 C 91 @31 !%/ 3 (
"931 o9 %1 , )+ # J2 4 + # = ,
&: 9
"931 ? @31 !%/ I I 3D ,
(`.G "=
01 / 0
&.31 .=! %7 "= 1 3+9Da1 K91
91
=1 C Z9.Q1
& !
# L [g &$ % , % 4 1
"931 (3[3I X9*Q1
&1 9
%33cD 91
=1 C Z9.Q1
&h
=3$
"931
"
J2
# ( %
@3: =3
&.2
=! I $
^3.G
=
" PY
"931 3>k
A I X?
"931 f)D%1
&1
= )
Vargas et al., 2008
.(
H W>
=3$
"931 J[>D
=3:9D .3D A! @;
=32
" %I (3: B;
4!@+?
,
!@yD
"=>>I
" 9!
&:9.$
%/ 3
&1 9 I
%y>1 /*
=
L =3 9 %I ,
,% 3.2
" 9!
&:9.$
%33cD
"@1
(;
Z9PQ1
&1
%7 3
N3:
" %
=3$
"931 91
=1 C Z9.Q1
@3+
A! @;
=32
&1
=>I
)
Rahemi, 2005
.(
,% ,23 +0
" J+ ! !@yD ,
@3+ NI N>; , 9/Q1 o9 %1
&>B1 %W+ + 3+9Da1 (`.G , = W+ 1# %' ,
? 3 N M/1 %' 9 =g S! Z / s]$
Z =C) 2 U ]1 .(
9 + N>; o9 %1 3W+ 31 *! M1
N ) 6 NI N>; o9 %1 %! M1 !%/ I !%/ 3 (
+9 + \3D%D "= 3D ,
(`.G 001 / 0
&.31 , )+ # J2 H9$ # 3+9Da1 K91
3W+ 31 37 / 25
&.31 % H%7 100
&.31 X? %/3:
"931
+9 +
# = ,
=M1 88 / 15
&.31 % H%7
100
&.31 X? %/3:
I 9]+ .= "= 1 "931
9 + ) 3+9Da1 (`.G !%DK ($ j0 1 1
/ 0
&.31 %/ , )+ # J2 4 + 4 , # ( K91
"931 NI N>; , 9/Q1 ^[ \)$ 3D %! $ # .=
=3p9+ a;
# . C
&.>; L )3I%D X9*Q1
&1
=+9 .
@/>$93 , 3*
# L )3I%D
&.>;
>31? , =3$
S3D 1 ? N3>;
3+K?
!# %3D
;9/b!%D
# G?
&1 9
)
Edwards et al., 2012
L )3I%D .(
&.>;
S D
#
93$ =3*I H #9b3:
= ,%379.C
&1
=>>I .
!
L )3I%D 3>k
L 9g N O
` a1 , (3;%w
&!K
# 3
% 83*I ,
&! / ! ) Z !
#?
( +
"
=+
! 9>Y
"=>
5 =3 , [!
AM+
&1
=>>I )
Dai et al., 2009
.(
3+9Da1 3D
5 3 43`>D =>+ 1 =3p9+ 2 %2 N3>; %3*1 ,
PAL
&1 &.>; L )3I%D A! @; lY ) 9
Zhang et al.,
I ($ "= 9>Y @3+ &.)O L B: ]1 .(2015
(`.G 3+9Da1 3D # " [/$
1 / 0
&.31 \)$ K91
&.>; L )3I%D A! @;
"931 (3[3I A! @; y3/+
&1 &W+%; L9D ) 9
Liu et al., 2018
.(
Zhang et al.
)
"931 I =+ %I T @7 (2018
"= 3D &k3: ,
,=3p9+ a; &.>; L )3I%D =M1 3+9Da1 &>3+ 3$9/+?
&>B1 9h
? (; ! A! @; ,
=M/B1
=+ 9 I 3+9Da1
&1
=+ 9D 93$ =3*I & !@+?
\3I%D
&.>; , 1
" %I
"9 O ,
= ( 97
"931 &k3:
%36ED . # =+
N 5 . 3+9Da1 N M/1 %' 3W+ 31 *! M1 &+ 1 )+ 1#
S D "931 Z9.Q1 =1 C 91 @31 % .
Figure 5. Mean comparison interaction effect of melatonin and storage time on total soluble solids of raspberry fruit.
12.3
cd a ab a
de cd
ab
ed e
ab bc
de
0 3 6 9 12 15 18
at harvest Day 3 Day 6 Day 9
TSS (ºBrix)
Time
Control M 0.001 M 0.01 M 0.1
Z =C 2 . 3+9Da1 %' J+ ! !@yD ~! /+
&+ 1 )+ 1#
6% %
&
1 3
"9 S D .
Table 2. Results of variance analysis effect of melatonin and storage time on some traits of raspberry fruit.
Source of variation df Mean of squares
TPC TFC Flavor
Melatonin 3 89.135** 0.014** 3.177**
Storage time 2 18.189** 0.026** 7.536**
Melatonin × storage time 6 6.175** 0.001* 0.295**
Error 24 0.716 0.0005 0.059
Coefficient variation (CV%) 3.864 2.734 11.106
* **
:ns
&>B1 L [D \3D%D Z / s]$
1 5
&>B1 L [D 9)+ =g .
**, *, ns: Significantly difference at 1% and 5% of probability level, and not significantly difference, respectively.
N 6 . 3+9Da1 N M/1 %' 3W+ 31 *! M1 &+ 1 )+ 1#
S D "931 NI N>; , 9/Q1 %
.
Figure 6. Mean comparison interaction effect of melatonin and storage time on total phenolic of raspberry fruit.
,% # 4 3 +0
"
!@yD x $ % @3+ NI =3p9+ a; o9 %1 ,
" J+ !
=g S! Z / s]$
&>B1
Z =C) =+ 9 2
" =Q1 NI =3p9+ a; %! M1 .(
60 / 9
D 10 / 8
&.31 % 3/$%p9I H%7 100
&.31 X? %/3:
"931
o9 %1 NI =3p9+ a; !%/ 3 . 9 %3c/1
"931 ,
(`.G "= 3D 1
/ 0
&.31 H9$ # 3+9Da1 K91
&: 9
"931 o9 %1 ? =M1 !%/ I I ,
N ) 9 4 + # = 7
43`>D 3+9Da1 3D .(
5 3 4!@+? @/>$ N36 ,
%3*1 ,=3.I ,
N3>; =>+ 1 =3p9+ 2 %2 N3>;
3+91? 3+K?
9 : V # 3:
# />$
1 2 L )3I%D • yD lY y3/+ AM+
) 9 &1 =3p9+ a; &.>;
Zang et al., 2016
.(
567 8
" J+ ! !@yD @3+ 4Bh %]Y 9/I ; 91
&>B1 "=> + 9 =g S! Z / s]$ ,
Z =C) 2 % 4Bh %]Y @31 !%D= >! _ (
x $ 9 + N ) 3W+ 31 *! M1 8
o9 %1 (
+9 + &D 9g 9 , )+ # J2 4 + # = ,
+9 + 4Bh %]Y !%/ I (.G "= 3D ,
1 / 0
&.31 , )+ # J2 H9$ # 3+9Da1 K91
P/6 96 1# # V % I ($ s_ %2 .=+
"931 9 /;%7 .g ; , )+ 3:
&7=3$92 V
=> 96 ($ # 96 3: 4Bh %]Y "= ,%/ 3 (B+ 1 N3: 3+9Da1 =>+ 1 &! 3D Z Y 1
"931 =+ ! &7=3$92 # ()*+ "= 3D ,
"931 , = 96 A I = )
Zhang et al.,
2018a
.(
3+9Da1 # " [/$ I ($ "= T @7 \3$ , 7=+ 1 & *3+ 7 % 31 =_ (3: B; N3:
A! @;
)
Zhang et al., 2018a
(.
, &:
!@yD N1 Y
T ,%'91 , % 33BD N1 9Y
23.83
f
de ef
a
a-c c
a a-c
d
ab ab
bc
0 5 10 15 20 25 30
at harvest Day 3 Day 6 Day 9
Total phenol content mg GAE/ 100 ml juice
Time
Control M 0.001 M 0.01 M 0.1
43M/*1 43M/*1%3G
I
&W/*) (I%
=+
&1
=!?
(3
&)*+
% S!
#
N1 9Y
@3+
4 %;
&1
=>I .
!@yD
&W/*)
NI L %'
43M/*1
%3G 43M/*1
&1
=+ 9D
, %C 1 +%
,
%'91 A>!@7
=> #
= )
Masiha et al., 2002
.(
Z =C 3
~! /+
!@yD
N1 Y +
&1
= .
@31 J+ !
&)*+
%
N1 Y +
"=>
(3 ? N1 Y J+ !
NI
L [g
&$ % 91 ($
L 9g
=g 3
"=
($
.
N 7 . 3+9Da1 N M/1 %' 3W+ 31 *! M1 &+ 1 )+ 1#
S D "931 NI =3p9+ a; , 9/Q1 @31 % .
Figure 7. Mean comparison interaction effect of melatonin and storage time on total flavonoid of raspberry fruit.
N 8 . 3+9Da1 N M/1 %' 3W+ 31 *! M1 &+ 1 )+ 1#
S D "931 4Bh %]Y @31 % .
Figure 8. Mean comparison interaction effect of melatonin and storage time on flavor score of raspberry fruit.
Z =C 3 N1 Y !@yD . S D "931 ([g % o9 %1 J+ ! =g "8! %! M1 &! 3 3 9/3; &[3I L [g o9 %1 ,
.
Table 3. Principal components analysis related to qualitative and phytochemical traits and specific values percentage of variance related to each trait of raspberry fruit.
Row Factor Principal components
First Second Third Fourth Fifth Six Seventh Eighth Ninth
1 pH -0.29 -0.43 -0.28 0.37 -0.56 0.36 0.14 -0.16 -0.05
2 TA 0.35 0.15 -0.31 -0.45 -0.07 0.14 0.60 -0.37 -0.11
3 TSS 0.04 -0.78 -0.29 -0.33 0.24 -0.32 -0.06 0.12 -0.06
4 weight loss -0.36 0.31 -0.29 -0.12 -0.23 -0.35 0.05 0.35 -0.59
5 percent weight loss -0.39 0.16 -0.28 -0.09 -0.07 -0.31 0.22 0.06 0.75
6 Decay -0.39 0.11 -0.22 0.02 0.34 -0.08 -0.31 -0.72 -0.14
7 Flavor 0.39 -0.00 0.07 0.08 -0.54 -0.59 -0.24 -0.33 0.04
8 Phenol 0.31 0.20 -0.61 -0.09 -0.07 0.31 -0.55 0.19 0.14
9 Flavonoid 0.29 0.05 -0.35 0.70 0.36 -0.23 0.28 0.06 -0.05
Eigenvalues 5.75 1.33 0.94 0.68 0.19 0.04 0.03 0.00 0.00
Percentage of variance 0.64 0.14 0.10 0.07 0.02 0.00 0.00 0.00 0.00
Cumulative variance percentage 0.64 0.78 0.89 0.96 0.99 0.99 0.99 1.00 1.00
9.180
cd
bc
d cd
ab
cd
ab a
cd
a a
cd
7.0 7.5 8.0 8.5 9.0 9.5 10.0
at harvest Day 3 Day 6 Day 9
Total flavonoid content mg QE /100ml juice
Time
Control M 0.001 M 0.01 M 0.1
1.00
cd
ab
a
de
b-d
ab
e
bc
ab
e
de
b-d
0.00 0.70 1.40 2.10 2.80 3.50 4.20 4.90
at harvest Day 3 Day 6 Day 9
Flavor index
Time
Control M 0.001 M 0.01 M 0.1
o9 %1 ~! /+
# A3 I + PCA
99
[:91 ~>2 f$9D S D , )+ % Y A! @; # =g o9 %1 "=+ 3O =g S! ($ " /; € [D Z
N1 Y
&1 4 + D 4 , !@yD ! .=
5 N1 Y
r9 y1 =>/*+ 9D NM/*1 &.g 1
/ 99 # =g
.=>>I 3C9D J+ ! NI
=1 C 91 &:? , =3$ L [g Z N1 Y ) ()„1 \! %_ =3p9+ a; N>; 4Bh %]Y Z9.Q1
\3D%D 35 / 0 04 / 0 39 / 0 31 / 0 29 / 0 L [g (
/!=3$
# A I =g
# A I =M1
\3D%D ) &[>1 \! %_ &7=3$92 29
/ 0 - 36 / 0 -
39 / 0 - 39 / 0 -
%O 3M # %DK ( r9 y1 /;%7
64 .=+ N3 D J+ ! NI # =g
H N1 Y L [g
&:? , =3$
A I =g
#
# A I =M1 N>;
\! %_ =3p9+ a;
\3D%D ) ()„1 15
/ 0 31 / 0 16 / 0 11 / 0 20 / 0
05 / 0 (
pH
\3D%D ) &[>1 \! %_ TSS
43 / 0 -
78 / 0 -
# %DK ( r9 y1 =>/;%7 %O 3M
14 / 0
.=+= N1 NI J+ ! # =g
'#2% 9 =
I %3c/1 3 o )D A! + , % &7=>I%2 9 +
&1 Y9 y1 &7=>I %2 9 + . x $ % o M+ # ,
&1 %O 9 + %3c/1 %! M1 &.I " W+ .=+%37
N
&1 &7=>I%2 9 + H=Y ! ] 9C 9D
[:91 I y+? # . % &2 %3c/1 3 9C Z ,
) H
PC1
NI J+ ! =g # , !# 4 $ (PC2
"# =+ 91 L [g N3 D 3D 31 ,%37
&1 @; H%+ [:91 ! # " [/$ =>
Minitab
&1 9D I y+? # %I 4$ &7=>I%2 9 +
[:91 N3.QD !@yD , % &.g N1 9Y >D &.g ,
M)h
&1 " [/$ ,=>
N3.QD !@yD # r9+ ! 9
&1 x $ % . 9 " [/$ 3D ] /; ! , % =+ 9D
"# =+ 91 L [g I H Z , [:91 ,%37
r9 y1 78
&1 N1 NI J+ ! # =g ! .=+9
N3.QD !@yD r9+
12 3D 4
I %O " %7
" %7 N1 1
)
M 0.001 Day 9 M 0.01 Day 9
M
0.1 Day
" %7 ( 2 )
M 0.01 Day 6 M 0.001 Day 6
(
" %7 3 )
Control Day 6 Control Day 9
" %7 ( 4
)
M 0.1 Day 3 M 0.01 Day 3
M 0.001 Day 3 M
0.1 Day 6 Control Day 3
&1 ( N ) = 9 .(
>+? = @ A
! 3 &W/*) @31 A 82 -./01 L [g
"# =+
"= ,%37
"931 , S D 91 "= 3D
&$ %
%O Z =C) (;%7 4
(.
N 9 . , !@yD La2 N1 Y %'91 L [g x $ % S D "931 , % 3+9Da1 -./01 , 3D A>I %2 ) Z ,
64
=g
PC1 =
) H ( 8 / 14
=g
PC2 =
(
Figure 9. Transmittal of different melatonin treatments on raspberry fruit based on effective traits in the first (principalcomparisions = 64%) and second (principalcomparisions = 14.8%) factors by Biplot analysis.
Z =C 4 , )+ L=1 &h S D &! 3 3 9/3; &[3I L [g 3 &W/*) . .
Table 4. Correlation between qualitative and phytochemical traits of raspberries during storage.
WLP DI pH TA TSS TPC TFC Flavor
WLP 1.000
DI 0.916** 1.000
pH 0.508ns 0.638* 1.000
TA -0.551ns -0.734** -0.710** 1.000
TSS -0.317ns -0.144ns 0.332ns 0.122ns 1.000
TPC -0.390ns -0.555ns -0.501nc 0.881** 0.058ns 1.000
TFC -0.564ns -0.554ns -0.299ns 0.496ns -0.020ns 0.695* 1.000
Flavor -0.827** -0.952** -0.622* 0.763** 0.052ns 0.674* 0.657* 1.000 * **
:ns
&>B1 L [D \3D%D Z / s]$
1 5
&>B1 L [D 9)+ =g .
**, *, ns: Significantly difference at 1% and 5% of probability level, and not significantly difference, respectively.
\!%_
&W/*)
" $ 3 L [g + I
&6%
# L [g
"# =+
,%37
"=
&W/*) ()„1 !
&[>1 4
=+
.
~! /+
&$ %
&W/*)
" $ 3
L [g
"# =+
"= ,%37 +
&/)„1 &W/*) I
Z / s]$
1 =g &7=3$92 @31 3 =g
+9 + V% &D )Y 9C # A I ,
A I =g = ! A! @; &7=3$92 =M1 A! 1#? 91 &7=3$92 31 I &D 9g . 9 = 96 %/ 3 @3+ #
"931
&[>1 &W/*) 4Bh %]Y @31 s]$
Z / 1 V % I ($ s_ %2 ( 9C =g
" %/*7 &7=3$92 @31 +9 + = %D
4Bh %]Y #
&.>; L )3I%D . 9 => 96 96% ,%/ I
&>B1 ()„1 &W/*) @3+ ,=3p9+ a;
%W!= ! ,
&I%/ 1 @/>$ %3*1 # \3I%D ! I %!# =>/
>/* 96%
) =
Pérez-Balibrea et al., 2011
3 .(
&W/*) @3+ &:? , =3$ =M1 /!=3$ @31
&>B1 &[>1 , =Y =M1 V% ( 9C ,
,%/ 3 =M1 # &:? , =3$ = %/ I /!=3$
.=+ 96%
: +
% '
43`>D I + %_ A 82 ~! /+ r9 y1 1 = "=>>I % Y A! @; , % & 96 N3*+ /2 # 3+9Da
*[O .3$ S D "931 , L )3I%D ^[ ,
"931 ()*+ ,%/ 3 1# L=1 &! 3 3 9/3;
,
! ~! /+ x $ % ! % > .($ 96% 3D =
&1 A! 1#?
S! 9>Y 3+9Da1 I %I 9>Y 9D
h \3I%D = "=>>I 43]>D &)+ C i 9Y = &B3)
"=+ = W+
&1 &! 3 3 , ^[ ,%'91 AM+ =+ 9D
.= / ( % # J2 " S D "931 (3[3I
REFERENCES
1. Akhtar, A., Abbasi, N. A., & Hussain, A. (2010). Effect of calcium chloride treatments on quality characteristics of loquat fruit during storage. Pakistan Journal of Botany, 42(1), 181-188.
2. Asghari, M. R., & Khalily, H. (2014). Effect of Aloe vera gel on polyphenol oxidase enzyme activity, quality attributes and storage life of sweet cherry fruit (Prunus avium cv. Siahe Mashhad). Journal of Horticulture Science, 28(3), 399-406. (In Farsi).
3. Ayala-Zavala, J. F., Wang, S. Y., & Gonzalez-Aguilar, G. A. (2007). High oxygen treatment increases antioxidant capacity and postharvest life of strawberry fruit. Food Technology and Biotechnology, 45, 166-173.
4. Babalar, M., Asghari, M., Talaie, A., & Khosroshahi, A. (2007). Effect of pre and post-harvest salicylic acid treatment on ethylene production, fungal decay and overall quality of Selva strawberry fruit. Food Chemistry, 105, 449-453.
5. Chang, Q., Zuo, Z., Harrison, F., & Chow, M. S. S. (2002). Hawthorn, International Journal of Clinical Pharmacology and Therapeutics, 42(6), 605-612.
6. Dai, J., Gupte, A., Gates, L., & Mumper, R. J. (2009). A comprehensive study of anthocyanin containing extracts from selected blackberry cultivars: extraction methods, stability, anticancer properties and mechanisms. Journal of Food and Chemical Toxicology, 47(4), 837-847.
7. Ebrahimzadeh, M. A., Hosseinimehr, S. J., Hamidinia, A., & Jafari, M. (2008). Antioxidant and free radical scavenging activity of Feijoa sallowiana fruits peel and leaves. Journal of Pharmacol-online, 1, 7-14.
8. Edwards, J. E., Brown, P. N., Talent, N., Dickinson, T. A., & Shipley, P. R. (2012). A review of the chemistry of the genus Crataegus. Phytochemistry,79, 5-26.
9. Gao, H., Lu, Z., Yang, Y., Wang, D., Yang, T., Cao, M., & Cao, W. (2018 a). Melatonin treatment reduces chilling injury in peach fruit through its regulation of membrane fatty acid contents and phenolic metabolism. Food Chemistry, 245, 659-666.
10. Gao, H., Zhang, Z. K., Chai, H. K., Cheng, N., Yang, Y., Wang, D. N., & Cao, W. (2016). Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit. Postharvest Biology and Technology, 118, 103-110.
11. Gao, P., Zhu, Z., & Zhang, P. (2013). Effects of chitosan–glucose complex coating on postharvest quality and shelf life of table grapes. Carbohydrate Polymers, 95, 371-378.
12. Ishkeh, S.R., Asghari, M., Shirzad, H., Alirezalu, A., & Ghasemi, G. (2019). Lemon verbena (Lippia citrodora) essential oil effects on antioxidant capacity and phytochemical content of raspberry (Rubus ulmifolius subsp. sanctus). Scientia Horticulturae, 248, 297-304.
13. Jalili Marandi, R. (2012). Post-harvest physiology (Handling and storage of fruit, vegetable, ornamental and medicinal plants). Publications (SID), p. 593. (In Farsi).
14. Janas, K. M., & Posmyk, M. M. (2013). Melatonin, an underestimated natural substance with great potential for agricultural application. Acta Physiologiae Plantarum, 35, 3285-3292.
15. Khademi, Z., & Ershadi, A. (2013). Postharvest application of salicylic acid improves mesophyll cells. Canadian Journal of Botany, 79, 438-443.
16. Kim, T. D., Woo, K. C., Cho, S., Ha, D. C., Jang, S. K., & Kim, K. T. (2007). Rhythmic control of AANAT translation by hnRNPQ in circadian melatonin production. Genes and Development, 21, 797-810.
17. Li, C., Wang, P., Wei, Z., Liang, D., Liu, C., Yin, L., & Ma, F. (2012). The mitigation effects of exogenous melatonin on salinity‐induced stress in Malus hupehensis. Journal of Pineal Research, 53, 298-306.
18. Liu, C., Zheng, H., Sheng, K., Liu, W., & Zheng, L. (2018). Effects of melatonin treatment on the postharvest quality of strawberry fruit. Postharvest Biology and Technology, 139, 47-55.
19. Marino, B., & Hernandez, A. (2013). Growth conditions determine different melatonin levels in lupines albus. Journal of Pineal Research, 55, 149-155.
20. Masiha, S., Moghadam, M., & Motallebi Azar, A. (2002). Vegetables breeding (translate). No. 1.
University of Tabriz Press. 492 pp. (In Farsi).
21. Pérez-Balibrea, S., Moreno, D. A., & García-Viguera, C. (2011). Improving the phytochemical composition of broccoli sprouts by elicitation. Food Chemistry, 129(1), 35-44.
22. Rahemi, M. (2005). Physiology of postharvest (An introduction to the physiology and handling of fruit, vegetables and ornamental plants). Fourth Edition, Press Shiraz University, Iran. (In Farsi).
23. Rahemi, M. (2008). Physiology of postharvest. Publication of Shiraz University. pp. 437. (In Farsi).
24. Rahmanzadeh Ishkeh, S., Asghari, M.R., Shirzad, H., & Alirezalu, A. (2018). Combination effects of lemon essential oil and chitosan nano-emulsion on enzyme activity, antioxidant capacity and phytochemical content of raspberry fruit. Food Scienec and Technology, 80(15), 1-15. (In Farsi).
25. Reid, M., & Jiang, C. (2012). Postharvest biology and technology of cut flowers andpotted plants.
Horticultural Reviews, Volume 40, First Edition.54 p.
26. Shokrollah, F. S., Hajilou, J., Zare, F., Tabatabaei, S., & Naghshiband, H. R. (2012). Effects of calcium chloride and salicylic acid on quality traits and storage life of plum cultivar. Journal of Food Research (Agricultural Science), 29(1), 75-85. (In Farsi).
27. Sun, Q., Zhang, N., Wang, J., Cao, Y., Li, X., Zhang, H., Zhang, L., Tan, D. X., & Guo, Y. D. (2016). A label-free differential proteomics analysis reveals the effect of melatonin on promoting fruit ripening and anthocyanin accumulation upon postharvest in tomato. Journal of Pineal Research, 61, 138-153.
28. Tan, D. X., Manchester, L. C., Helton, P., & Reiter, R. J. (2007). Phytoremediative capacity of plants enriched with melatonin. Plant Signaling and Behavior, 2, 514-516.
29. Tan, D. X., Manchester, L. C., Liu, X. Y., Rosales-Corral, S. A., & Reiter, R. J. (2013). Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. Journal of Pineal Research, 54, 127-138.
30. Trevino- Garza, M. Z., Garcia, S., Del Socorro Flores-Gonzalez, M., & Arevalo-Nino, K. (2015).
Edible active coating based on pectin, Pollutant, and chitosan increase quality and shelf life of strawberries (fragaria ananassa). Journal of Food Science, 80, 1823-1830.
31. Vargas, M., Albors, A., Chiralt, A., & Gonzalez-Martinez, C. (2006). Quality of cold-stored strawberries as affected by chitosan-oleic acid edible coatings. Postharvest Biology and Technology, 41, 164-171.
32. Vargas, M., Pastor, C., Chiralt, A., Mc Clements, D. J., & Gonzalez-Martinez, C. (2008). Recent advances in edible coatings for fresh and minimally processed fruits. Critical Reviews in Food Science and Nutrition, 48(6), 496-511.
33. Yousefi, G., Sadeghi, S., Karami, Z., Emam, D. Z., & Jooki, M. (2014). Evaluation of the Effect of Modified Atmospheric Packaging on the Shelf Life and Keeping Quality of Raspberry Using RSM.
Journal of Food Technology and Nutrition, 11(44), 45-56. (In Farsi)
34. Zhang, H., Liu, X., Chen, T., Ji, Y., Shi, K., Wang, L., Zheng, X., & Kong, J. (2018). Melatonin in apples and juice: Inhibition of browning and microorganism growth in apple juice. Molecules, 23(3), p.521.
35. Zhang, N., Sun, Q., Li, H., Li, X., Cao, Y., Zhang, H., Li, S., Zhang, L., Qi, Y., Ren, S., & Zhao, B.
(2016). Melatonin improved anthocyanin accumulation by regulating gene expressions and resulted in high reactive oxygen species scavenging capacity in cabbage. Frontiers in plant science, 7, p.197.
36. Zhang, N., Sun, Q., Zhang, H., Cao, Y., Weeda, S., Ren, S., & Guo, Y. D. (2015). Roles of melatonin in abiotic stress resistance in plants. Journal of Experimental Botany, 66, 647-656.
37. Zia-Ul-Haq, M., Riaz, M., De Feo, V., Jaafar, H. Z., & Moga, M. (2014). Rubus fruticosus L.:
constituents, biological activities and health related uses. Molecules, 19(8), 10998-11029.