• Tidak ada hasil yang ditemukan

Cutting constants in turning process by radial tool

N/A
N/A
Protected

Academic year: 2024

Membagikan "Cutting constants in turning process by radial tool"

Copied!
5
0
0

Teks penuh

(1)

mme.modares.ac.ir

: Please cite this article using:

1

* 2

2 3

1 -

2 -

3 -

* 8731751167

[email protected]

.

.

3

.

Ktc

Kfc

. -

:

Cutting constants in turning process by radial tool

Saeed Amini

*

Mohammad Baraheni, Farshad Nazari

,

Amir Hosein Ghasemi

Department of Manufacturing, Faculty of Mechanic, University of Kashan, Kashan, Iran P.O.B. 8731751167 kashan, Iran, [email protected]

A BSTRACT

Turning is one of the most popular and widely used machining processes in the industry. Since turning forces have great impact on the quality and final surface precision, researchers have tried to predict the machining forces to simulate the process and achieve the cutting conditions. Turning forces can be predicted in two parts including radial edge and cutting edge of tool and cutting constants may be extracted by assuming machining input parameters and conditions of workpiece and tool. In this study, two forces (perpendicular to workpiece axis and tangent to the workpiece surface) have been investigated in levels of engagements with tool radial edge, tool cutting edge and simultaneous radial and cutting edge. Incorporating the calculated forces, the cutting constants are obtained. Purpose of this research is to calculate cutting constants (Ktc, Kfc) through the obtained forces from experimental tests and compare with values achieved from numerical modeling. The results of numerical modeling and experimental results have good agreement, so the cutting constants in turning process could be analytically modelled.

Keywords:

Cutting Constants, Machining Force, Tool, Turning

1 -

] 1 .[

] 2 .[

. -

] 3 [ . .

] 4 .[

] 5 [ ]

6 [ .

] 7 [ .

] 8 - 10 .[

] 11 [

] 12

. [

. ]

13 14 .[

] 1 [ -

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(2)

1394 15

13 CAMMT

517

-

. -

] 15 .[

4 - T

6082

] 16 .[

] 17 .[

] 18 .[

.

X Y Z

2 -

4140 /1 ) ( Mo40

1 .

4140 /1

:

17 ]

. [

TN50

K20-S DCMW 111308

) 1 ( .

44 / 54 4/

8

77 /0 93

/4 -

1

. ) ( VMM

-

. .

2

.

9257B

.

X Y Z

355 4

05 /0 08 /0 11 /0 14 /0

. .

3 77

/0 1

1 4140

/1 ) (

MO40

19

] [

42 /0 25 /0 75 /0 10 /1 22 /0 035 /0 22 / 97

1 Visual measurement machine

1

2

VMM

77 /1 .

3

77 /0 .

1 .

1 20 ]

[

[ DOR: 20.1001.1.10275940.1394.15.13.13.3 ] [ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

2 / 5

(3)

77 /1 .

3 -

) 1 ) ( 2 ( 20 ]

[

= (cos + tan tani)

[cos( ) cos + tan sin ]sin

) 1 (

= sin

[cos( ) cos + tan sin ]cosi sin

) 2 (

K

tc

K

fc

) ( )

( 4 i

.

) 3 ) ( 7 ( 20 ] [

sin = sin sin ( 3 ) tan( ) = tan cos ( 4 ) sin = 2 sin ( 5 )

cos( ) = tan tan ( 6 ) tan =

( )

( 7 )

) 8 (

F

f

F

t

20 ]

. [

+ tan ( 8 ) 5

[ 20 ] 2

3

4 -

. . Mahr

-

.

1 .

)

( 1 .

1 (

. 1

. 6

4

) 1 ( ) 2 (

K

tc

K

fc

) 3 ( ) 8 (

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(4)

1394 15

13 CAMMT

519

)

K

tc

) (

K

fc

(

K

te

) (

K

fe

( 20 ]

: [

) 9 (

) 10 (

b

.

h

. .

1

5 -

2 .

1 (

2 ( )

8 (

.

2

= )

77 /0

Fx(Ff)

Fz(Ft)

(mm/rev)

64 / 64 4/

153 05

/0

6/

110 8/

222 08

/0

8/

148 2/

302 11

/0

5/

181 6/

376 14

/0

97 / 93 8/

174 05

/0

1/

143 1/

265 08

/0

3/

191 4/

347 11

/0

3/

241 6/

442 14

/0

195 8/

435 05

/0

312 4/

608 08

/0

2/

446 5/

802 11

/0

7/

395 8/

979 14

/0

1. Minitab

) 11 (

20 ]

. [

) ( 11 ) )

( )

11 (

) ( )

9 ) ( 10 ( -

2

7 .

) 9 ) ( 10 ( 3

3

)

F

t

(

. . 4

[ DOR: 20.1001.1.10275940.1394.15.13.13.3 ] [ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

4 / 5

(5)

(

Ff

) (

Ft

) 5

: : :

-

3

Ktc

Kfc

Kte

Kfe

86

/ 3242 09 / 1709 54 / 34 13 /1

2952

1634 27 2/

12

98 / 3438 1386 32 / 72 76 / 58

4

Ktc

94 / 3132 98 / 3438 9/

8

Kfc

94 / 1494 1386

8/

7

6 -

. .

K

te

(

K

fe

(

7 -

[1] O. Gonzalo, J. Beristain, H. Jauregi, C. Sanz, method for the identification of the specific force coefficients for mechanistic milling simulation, International Journal of Machine Tools Manufacture,Vol. 50,

pp 765–774, 2010.

[2] K. Mao, M. Zhu, W. Xiao, B. Li, method of using turning process excitation to determine dynamic cutting coefficients,International Journal of Machine Tools Manufacture, Vol. 87, pp 49-60 2014.

[3] M. Wang, L.Gao, Y. Zhen, An examination of the fundamental mechanics of cutting force coefficients, International Journal of Machine Tools Manufacture,Vol. 78,pp 1-7, 2014.

[4] D. Smolenicki, J. Boos, F. Kuster,H. Roelofs, F. Wyenc,In-process measurement of friction coefficient in orthogonal cutting, CIRP Annals Manufacturing Technology, Vol. 63, pp 97–100, 2014.

[5] A.J. Sabberwal, Chip section and cutting force during the milling operation, Annals. CIRP, Vol. 10, No 3, pp 197–203, 1961.

[6] F.Koenigserger, A.J.Sabberwal, An investigation into the cutting force pulsations during milling operations, International Mechanical and Tool Design Res, Vol. 1, pp 15–33, 1961.

[7] Y.C.Shin,A.J.Waters,Anewproceduretodetermineinstantaneouscutting force coefficients formachiningforceprediction,International Journal of Machine Tools and Manufacture,Vol. 37, pp1337–1351, 1997.

[8] Y. Altintas,Manufacturing Automation: Metal Cutting Mechanics Machine Tool Vibrations and CNC Design Cambridge University Press, United Kingdom, 2000.

[9] A.Lamikiz, L.N. Lo´ pez de Lacalle, J.A. Sa´ nchez, M.A. Salgado, Cutting force estimation in sculptured surface milling, International Journal of Machine Tools and Manufacture,Vol. 44, pp. 1511–1526, 2004.

[10] A.J.P. Sabberwal, Chip section and cutting force during milling operation, Annals of the CIRP,Vol. 10, No. 1, pp 197–203, 1961.

[11] E.J.A. Armarego, R.H. Brown, in: The Machining of Metals, Prentice-Hall, New Jersey, 1969.

[12] O. Kienzle, H. Victor, Spezifischeschnittkraftebei der metalbearbeitung, Werkstoffteechnik und Machinenbau, Vol. 47, No. 5, pp224–225, 1957.

[13] A.Lamikiz, L.N.Lo´pezdeLacalle, J.A. Sa´nchez, U.Bravo, Calculation of thespecificcuttingcoefficientsandgeometricalaspectsinsculptured

surface machining, Machining Science and Technology,Vol. 9, pp 411–436, 2005.

[14] A.Azeem, H. Feng, L.Wang, Simplified and efficient calibration of mechanistic cutting force model for ball-end milling, International Journal of Machine Tools and Manufacture,Vol. 44, pp291–298, 2004.

[15] G. Ge, W.Baohai, Z.Dinghua, L. Ming,Mechanistic identification of cutting force coefficients in bull-nose milling process, Chinese Journal of Aeronautics,Vol 26, No. 3, pp 823–830, 2013.

[16] G. Campatellia, A. Scippa,Prediction of milling cutting force coefficients for Aluminum 6082-T4,Procedia CIRP 1,pp 563 568, 2012.

[17] JJJ. Wang, CM. Zheng, Identification of shearing and ploughing and cutting constants from average forces in ball-end milling. International Journal of Machining Tools and Manufacturing, Vol. 42, No.6, pp 695–705, 2002.

[18] Y. Altintas, M. Eynian, Identification of dynamic cutting force coefficients and chatter stability with process damping, CIRP Annual Manufacturing Technology Vol. 57, No. 1, pp 371-374, 2008.

[19] A.A. Akrami, M. Seyyedreyhani, Structure, Properties and Application of Engineering Alloys,Tehran: Sharif University, 2008.(In Persian)

[20] S. Amini, A.R. Barani, H. Paktinat, Machining and Cutting Tools, pp 25-44, Kashan: Kashan University, 2013. (In Persian)

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

Referensi

Dokumen terkait

To study the surface roughness of AISI D2 tool steel in dry drilling condition by using various type of cutting tools. To investigate the optimum parameter in dry drilling of AISI

This study discusses the application of taguchi method in the optimization of cutting parameter for surface roughness in turning process of mild steel.. The test

In this research the writer conducts an action research of Silent Way method in Teaching- Learning Process of English for the Elementary School students.. The writer hopes that

The Surface Response Method (SRM) employed for optimization and analysis of production and purification of eugenol from clove oil by using neutralization

The teacher has to motivate the students to learn English in the class, and create the method of teaching On the identification of the problems above, for developing the speaking

Tool wear rate optimization in PMEDM using titanium powder by Taguchi method for die steels  Banh Tien Long 1  Nguyen Huu Phan 2  Ngo Cuong 2 1 Hanoi University of Science and

While it traditionally involved enzymes, fermentation and bioprocess engineering, modern biotechnology is more of an application of molecular techniques as tools for new or improved