• Tidak ada hasil yang ditemukan

Electric Power Systems Research

N/A
N/A
Protected

Academic year: 2023

Membagikan "Electric Power Systems Research"

Copied!
10
0
0

Teks penuh

(1)

ContentslistsavailableatScienceDirect

Electric Power Systems Research

jou rn al h om e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / e p s r

Modeling power networks using dynamic phasors in the dq0 reference frame

Yoash Levron

a,∗

, Juri Belikov

b

aTheAndrewandErnaViterbiFacultyofElectricalEngineering,Technion—IsraelInstituteofTechnology,Haifa3200003,Israel

bFacultyofMechanicalEngineering,Technion—IsraelInstituteofTechnology,Haifa3200003,Israel

a r t i c l e i n f o

Articlehistory:

Received26July2016 Receivedinrevisedform 20November2016 Accepted28November2016

Keywords:

Quasistatic Averagesignals Dynamicphasors Inter-areaoscillations Multi-machine Stability

a b s t r a c t

Thedynamicbehavioroflargepowersystemshasbeentraditionallystudiedbymeansoftime-varying phasors,undertheassumptionthatthesystemisquasi-static.However,withincreasingintegrationoffast renewableanddistributedsourcesintopowergrids,thisassumptionisbecomingincreasinglyinaccurate.

Inthispaper,wepresentadynamicmodelofgeneraltransmissionanddistributionnetworksthatuses dynamicphasorsinthedq0referenceframe.Themodelisformulatedinthefrequencydomain,andis basedonthenetworkfrequencydependentadmittancematrix.Wealsopresentasimplifiedversionof thismodelthatisobtainedbyafirst-orderTaylorapproximationofthedynamicequations.Theproposed modelsextendthequasi-staticmodeltohigherfrequencies,whileemployingdq0signalsthatarestatic atsteady-state,andthereforecombinetheadvantagesofhighbandwidthandawell-definedoperating point.Themodelsareverifiednumericallyusingthe9-,30-,and118-bustest-casenetworks.Simulations showthatfrequencyresponsesofallmodelscoincideatlowfrequenciesanddivergeathighfrequencies.

Inaddition,responsesofthedq0modelinthetimedomainandintheabcreferenceframeareveryclose tothoseofthetransientmodel.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Dynamicprocessesoccurringinlargeelectricpowersystemsaremodeledatvaryinglevelsofabstraction[1,2].Insimplestaticmodels, voltagesandcurrentsareassumedtobesinusoidal,andarerepresentedbyphasors.Thenetworkistypicallydescribedinthiscaseby thepowerflowequations.Ontheotherextreme,transientmodelsdescribethesystemusingnonlineardifferentialequations,whichare solvednumericallyinthetimedomain[3–8].Athirdtypeofmodel,basedontime-varyingphasors,iscalledtheaverage-value,dynamic orquasi-staticmodel[2].Thismodelissufficientlyaccurateaslongasphasorsareslowlychangingincomparisontothesystemfrequency [9,10].Akeyadvantageofthequasi-staticmodelisthatitenableslongnumericsteptimes,andhencecanacceleratethesimulationprocess.

Inaddition,sincethequasi-staticmodelemploysphasorsinsteadofsinusoidalACsignals,thesystemoperatingpointiswell-defined,a propertywhichconsiderablysimplifiesstabilitystudies.Duetotheseproperties,quasi-staticmodelshavebeenusedextensivelyinthe analysisofdynamicinteractionsthatoccurintimeframesofsecondstominutes,andhavehistoricallyenabledstudiesofmachinesstability, inter-areaoscillation,andslowdynamicphenomena[1–3,11].

Inrecentyears,withtheemergenceofsmalldistributedgeneratorsandfastpowerelectronicsbaseddevices,theassumptionofquasi- staticphasorsisbecomingincreasinglyinaccurate.Duetotheseemergingtechnologies,voltageandcurrentsignalscancontainhigh harmoniccomponents,andcanexhibitfastamplitudeandphasevariations[9].Thesedevelopmentshaveledtoanewclassofmodels basedondynamicphasors.Theconceptofdynamicphasorshasemergedfromaveragingtechniquesemployedinpowerelectronics,and hasbeenextendedtothree-phasesystems[12].Dynamicphasorsgeneralizetheideaofquasi-staticphasors,andrepresentvoltageand currentsignalsbyFourierseriesexpansionsinwhichtheharmoniccomponentsareevaluatedoveramovingtimewindow[13].This approachoffersthebenefitsofaphasorbasedanalysis,highaccuracy,andfastsimulations[14,15].

Duetotheseproperties,dynamicphasorshavebeenusedintheanalysisofsynchronousandinductionmachines[12,16],HVDCsys- tems[14,17,18],FACTSdevices[10],sub-synchronousresonance[19,20],asymmetricsystems[12,21],andasymmetricfaults[16,22].For

Correspondingauthor.

E-mailaddresses:yoashl@ee.technion.ac.il(Y.Levron),juri.belikov@ttu.ee(J.Belikov).

http://dx.doi.org/10.1016/j.epsr.2016.11.024 0378-7796/©2016ElsevierB.V.Allrightsreserved.

(2)

Fig.1.Aunitinthenetwork,showingsignalsintheabcreferenceframe.

instance,adynamicphasormodelofalinecommutatedHVDCconverterispresentedin[14].Themodelrepresentsthelow-frequency dynamicsoftheconverter,andhaslowercomputationalrequirementsthanaconventionaltransientmodel.Adynamicphasorrepresen- tationofanunbalancedradialdistributionsystemispresentedin[21],wherevariouscomponentsincludingaphotovoltaicsourceandan inductionmachinearemodeled,anddynamicinteractionofthesecomponentsisshown.Asimulatorbasedondynamicphasorshasbeen developedin[15,23],whichusesdifferentialswitched-algebraicstate-resetequationstodescribethesystemcomponents.Thesimulation toolcombinesadvantagesoftransientstabilityandelectro-magneticsimulationprograms,andisdemonstratedontheIEEE39bustest- casenetwork.Work[24]extendsthedynamicphasorconcepttomulti-generator,multi-frequencysystems.Thetheorypresentedin[24]

enablesstudyofelectricpowersystemswithoutassumingasinglefrequency.Theproposedapproachisvalidatedonatwin-generator system,andcanbeextendedtolargernetworks.Inaddition,dynamicphasorsareutilizedinstateestimation[25–29],insystemswith varyingfrequencies[30],andalsoinmicrogrids[31].

Theserecentworksaremainlyfocusedonmodelingspecificgeneratorsand loads,and donotprovidea completemodeloflarge transmissionnetworks.Tobridgethisgap,thispaperpresentsadynamicmodelofgeneraltransmissionanddistributionnetworksusing dynamicphasorsinthedq0referenceframe,andshowshowthismodelcanbeimplementedinpracticeusingtime-domainstateequations.

Thefirstmodelpresentedinthisworkisformulatedinthefrequencydomain,andisbasedonthenetworkfrequencydependentadmittance matrix.Sinceadirectnumericimplementationofthismodelischallengingingeneral,wepresentasimplifiedversionofitcalledthefirst- orderdq0model,whichisobtainedbyafirst-orderTaylorapproximationofthedynamicequations.Theproposedfrequency-domainmodel extendsthequasi-staticmodeltohigherfrequencies,whileemployingdq0signalsthatarestaticatsteady-state,andthereforecombines theadvantagesofhighbandwidthandawell-definedoperatingpoint.Thestandardquasi-staticmodelfollowsasaspecialcasefromthe modelatlowfrequencies.

Thepapercontinuesasfollows.Section2recallsbasicconceptsofdynamicphasorsandexplainshowtoformulatequasi-staticmodelsin termsofdq0quantities.Section3presentstheproposeddq0model.Thefirst-orderdq0modelispresentedinSection4.Section5provides simpleillustrativeexamples,followedbyvariousnumericalresultsprovidedinSection6.ConcludingremarksaredrawninSection7.

2. Dynamicphasorsinthedq0referenceframe

Forsystemsinsteady-state,thedq0transformationmapssinusoidalsignalstoconstantquantities.Thistransformationiscompatible withstandardelectricmachinemodels,andwithemergingmodelsofrenewableanddistributedgenerators[10,15,32,33].

AssumeageneralpowernetworkcontainingNthree-phaseunits,withvoltagesandcurrentsaspresentedinFig.1.

Thedq0transformation(asdefinedin[26])isgivenby

⎢ ⎣

xd(t) xq(t) x0(t)

⎥ ⎦

=23

⎢ ⎢

⎢ ⎢

⎢ ⎣

cos(ωst) cos

ωst−2

3 cos

ωst+2 3

−sin(ωst) −sin

ωst−2

3 −sin

ωst+2 3 1

2

1 2

1 2

⎥ ⎥

⎥ ⎥

⎥ ⎦

⎢ ⎣

xa(t) xb(t) xc(t)

⎥ ⎦

, (1)

whereωsisthenominalsystemfrequency,andxisreplacedwitheitheravoltage(vn)oracurrent(in)signal.Aprominentfeatureof thedq0transformationisthatforbalancedandstaticsystems,thedirectandquadraturecomponentsxd,xqareconstants,andx0=0.Ina quasi-staticsystemxa,xb,xcarenearlysinusoidal,withslowlyvaryingamplitudesandphases.Inthiscase,thesystemcanbemodeledin termsoftime-varyingphasors,whicharedefinedintermsofthedq0componentsas

Vn(t)= 1

√2

vdn(t)+jvqn(t)

, In(t)= 1

√2

idn(t)+jiqn(t)

. (2)

Underthequasi-staticapproximationthesedqcomponentsareidenticaltothexycomponents,asdescribedin[34].Thefollowinganalysis definesthestandardquasi-staticmodelandpowerflowequationsintermsofdq0signals.Quasi-staticnetworksareusuallydescribedby theadmittancematrixYbus.Definethevectors:

Vd(t)=

vd1(t),...,vdN(t)

T

, Id(t)=

id1(t),...,idN(t)

T

, Vq(t)=

vq1(t),...,vqN(t)

T

, Iq(t)=

iq1(t),...,iqN(t)

T

, V0(t)=

v01(t),...,v0N(t)

T

, I0(t)=

i01(t),...,i0N(t)

T

. (3)

Thenthecomplexvoltageandcurrentphasorsrelateby Id(t)+jIq(t)=Ybus

Vd(t)+jVq(t)

(4)

(3)

andtherealandimaginarypartsofthisequationsare Id(t)=Re

Ybus

Vd(t)−Im

Ybus

Vq(t), Iq(t)=Im

Ybus

Vd(t)+Re

Ybus

Vq(t). (5)

Theseequationsconstituteaquasi-staticmodel.Equivalently,quasi-staticnetworksarealsodescribedbythepowerflowequations[33]

Pn(t)=|Vn(t)|

N k=1

|ynk||Vk(t)|cos

∠ynkk−ın

, Qn(t)=−|Vn(t)|

N k=1

|ynk||Vk(t)|sin

∠ynkk−ın

. (6)

InwhichtheconstantsynkareelementsofthenetworkadmittancematrixYbus,andpowers,amplitudesandphasesareformulatedin termsofdq0signalsas

Pn(t)=Re

Vn(t)In(t)

= 1 2

vdn(t)idn(t)+vqn(t)iqn(t)

, Qn(t)=Im

Vn(t)In(t)

= 1 2

vqn(t)idn(t)−vdn(t)iqn(t)

,

Vn(t)

=1

2

vdn(t)

2

+

vqn(t)

2

, ın(t)=∠Vn(t)=atan2

vqn(t),vdn(t)

. (7)

Ifthesystemisnotquasi-static,thephasorsabovecanbegeneralizedbydynamicphasors.ThesecanbedefinedbyaFourierseries expansion,asin[16].However,tosimplifynotations,wehavechoseninthispapertodefinedynamicphasorswithrespecttotheFourier transformas

⎢ ⎣

Vnd(ω) Vnq(ω) Vn0(ω)

⎥ ⎦

=

−∞

⎢ ⎣

vdn(t) vqn(t) v0n(t)

⎥ ⎦

ejωtdt,

⎢ ⎣

Ind(ω) Inq(ω) In0(ω)

⎥ ⎦

=

−∞

⎢ ⎣

idn(t) iqn(t) i0n(t)

⎥ ⎦

ejωtdt. (8)

3. Largenetworkdynamicsinthedq0referenceframe

Thepowerflowequationsandtheequivalentdq0modelin(5),(6)areonlyvalidunderthequasi-staticapproximation,assumingslow variationsinamplitudesandphases[34].Thefollowingtheoremextendsthequasi-staticmodeltohigherfrequencies,anddescribesthe systemdynamicsforgeneraldq0signals.

Theorem1. Insymmetricpowernetworks,adynamicmodelbasedondq0dynamicphasorscanbedescribedas

⎢ ⎣

Id(ω) Iq(ω) I0(ω)

⎥ ⎦

=

U(ω)jR(ω) jR(ω)U(ω) 00

0 0 Ybus(ω)

⎢ ⎣

Vd(ω) Vq(ω) V0(ω)

⎥ ⎦

. (9)

Thefollowingdefinitionsareusedin(9):

U(ω):=1 2

Ybus(ω+ωs)+Ybus(ω−ωs)

, R(ω):=1 2

Ybus(ω+ωs)−Ybus(ω−ωs)

, (10)

and

Vd(ω)=

V1d(ω),...,VNd(ω)

T

,Id(ω)=

Id1(ω),...,INd(ω)

T

, Vq(ω)=

V1q(ω),...,VNq(ω)

T

,Iq(ω)=

Iq1(ω),...,INq(ω)

T

, V0(ω)=

V10(ω),...,VN0(ω)

T

,I0(ω)=

I10(ω),...,I0N(ω)

T

. (11)

Proof. Followingthedefinitionofthedq0transformationin(1),voltagesandcurrentscanbeexpressedassumsofthreeelements Va(t)=Vd(t)cos(ωst)−Vq(t)sin(ωst)+V0(t), Ia(t)=Id(t)cos(ωst)−Iq(t)sin(ωst)+I0(t). (12) Similarexpressionsapplytophasesb,cwithaproperphase-shiftof±2/3.Transformationtothefrequencydomainusingthemodulation propertyyields

Va(ω)= 1 2

Vd(ω−ωs)+Vd(ω+ωs)+jVq(ω−ωs)−jVq(ω+ωs)

+V0(ω),

Ia(ω)=1 2

Id(ω−ωs)+Id(ω+ωs)+jIq(ω−ωs)−jIq(ω+ωs)

+I0(ω). (13)

Accordingtodefinition

I1a(ω) ··· IaN(ω)

T

=Ybus(ω)

V1a(ω) ··· VNa(ω)

T

. (14)

Substituting(14)in(13)yields

Id(ω−ωs)+Id(ω+ωs)+jIq(ω−ωs)−jIq(ω+ωs)+2I0(ω)

=Ybus(ω)

Vd(ω−ωs)+Vd(ω+ωs)+jVq(ω−ωs)−jVq(ω+ωs)+2V0(ω)

. (15)

(4)

Usingrelation(10),equation(15)canberewrittenas

Id(ω−ωs)+Id(ω+ωs)+jIq(ω−ωs)−jIq(ω+ωs)+2I0(ω)=2Ybus(ω)V0(ω)+U(ω−ωs)Vd(ω−ωs)+jR(ω−ωs)Vq(ω−ωs) +U(ω+ωs)Vd(ω+ωs)+jR(ω+ωs)Vq(ω+ωs)+j(−jR(ω−ωs)Vd(ω−ωs)+U(ω−ωs)Vq(ω−ωs))−j(−jR(ω+ωs)Vd(ω+ωs)

+U(ω+ωs)Vq(ω+ωs)), (16)

whichaftercomparisonofcoefficientsresultsin(9).䊐

NotethatTheorem1holdsforsymmetricnetworks,inwhichthematrixYbus(ω)equallyappliestoeachofthethreephases.However, thegeneratorsandloadsconnectedtothenetworkarenotnecessarilylinearorsymmetric.

Thefollowingcorollaryrelatestheproposeddq0modeltothestandardquasi-staticmodel.

Corollary1. WhenYbus(ω+ωs)=YbusandYbus(ω−ωs)=(Ybus),equation(9)reducestothequasi-staticexpressionsin(5).

ThiscorollarystatesthatifthegeneralYbus(ω+ωs)canbeapproximatedbyaconstantmatrixwhenω→0,thenthedynamicmodelis quasi-static.

4. Thefirst-orderdq0model

Sincethefulldq0modelin(9)is,ingeneral,hardtoimplementnumerically,thissectionpresentsasimplifiedversionofitcalledthe first-orderdq0model,whichisobtainedbyafirst-orderTaylorapproximationofthedynamicequations.Inthiscaseitisassumedthatthe dq0signalsarebandlimited,andhavesignificantenergyonlyatlowfrequencies.Thisenablesrepresentationoftheadmittancematrixby aTaylorseriesaroundω=0as

Ybus(ω+ωs) ≈

M k=0

ωk k!

∂Ybus(ω+ωs)

∂ωk |ω=0, Ybus(ω−ωs) ≈

M k=0

ωk k!

∂Ybus(ω−ωs)

∂ωk |ω=0,=

M k=0

(jω)kjk k!

∂Ybus(ω+ωs)

∂ωk

|ω=0,

Ybus(ω) ≈

M k=0

ωk k!

∂Ybus(ω)

∂ωk |ω=0,

(17)

whereintheexpressionforYbus(ω−ωs)wehaveutilizedYbus(ω)=(Ybus(−ω))andemployednestedfunctionsderivatives.Thestandard quasi-staticapproximationisobtainedbyazero-orderTaylorserieswithM=0suchthat

Ybus(ω+ωs)≈Ybuss), Ybus(ω−ωs)≈

Ybuss)

. (18)

Iftheseexpressionsaresubstitutedintotheoriginalmodel(9),thenthemodelreducestothequasi-staticequationsin(5).Amoreaccurate dynamicmodelisobtainedbythefirst-orderTaylorseriesapproximation(M=1)as

Ybus(ω+ωs)≈Ybuss)+jωF, Ybus(ω−ωs)≈(Ybuss))+jωF, Ybus(ω)≈Ybus(0)+jωF0, F=−j∂Ybus(ω+ωs)

∂ω |ω=0, F0=−j∂Ybus(ω)

∂ω |ω=0. (19)

Substitutionoftheseexpressionsin(9)yields

⎢ ⎣

Id(ω) Iq(ω) I0(ω)

⎥ ⎦

=(M2+M1jω)

⎢ ⎣

Vd(ω) Vq(ω) V0(ω)

⎥ ⎦

(20)

with

M1=

ReIm{{FF}} ReIm{F{F}} 00

0 0 F0

, M2=

⎢ ⎣

Re

Ybuss)

−Im

Ybuss)

0 Im

Ybuss)

Re

Ybuss)

0

0 0 Ybus(0)

⎥ ⎦

. (21)

Thismodelcanbeimplementedinpracticeusingalinearstate-spacemodel dx

dt =Ax+Bu y =Cx+Du,

(22)

(5)

Fig.2.Example1:anetworkwithasingleinductor.

Fig.3. Example2:longtransmissionlinefeedingamatchedload.

whereu=(Vd(t),Vq(t),V0(t))T,y=(Id(t),Iq(t),I0(t))T.Thematrices A,B,C,Darechosensuchthatatlowfrequenciesthefrequency responseofthestate-spacemodel(22)isequalto(20).Thegeneralfrequencyresponseisgivenbyy(ω)=(C(jωI−A)−1B+D)u(ω),andis approximatedatω→0by

y(ω)≈

C

−A1

I+jωA1

B+D

u(ω)

=

−CA1B+D−jωCA2B

u(ω).

(23)

Comparisonof(23)and(20)provides

−CA2B=M1, −CA1B+D=M2. (24)

From(24),C,Dcanbecomputedforanyfull-rankmatricesA,Bas

C=−M1B1A2, D=M2−M1B1AB. (25)

ThematricesA,Bcanbearbitrarilychosen.ItistypicallybeneficialtoselectA,BsuchthatD=0,toobtainzerogainatω→∞.Thiscriterion resultsin

D=M2−M1B1AB⇒A=BM−11 M2B1. (26)

Ingeneral,ifthematrixM1isnotfull-rank,thenAcanbecomputedbysolvingastandardleast-squaresminimizationproblem A=BPB−1, P=argmin

X M1X−M222. (27)

ThematrixBcanbearbitrarilychosen,forinstanceB=I.

5. Dynamicdq0models:simpleexamples

ThesimplenetworkinFig.2demonstratesthedifferencebetweenthequasi-staticmodelandthefulldq0model.

Inthisexample,thequasi-staticmodel(5)provides

Vd(ω)=−ωsLIq(ω), Vq(ω)=ωsLId(ω). (28)

Incomparison,thedq0modelcanbecomputedby(9),andresultsin

Vd(ω)=jωLId(ω)−ωsLIq(ω), Vq(ω)=ωsLId(ω)+jωLIq(ω), V0(ω)=jωLI0(ω). (29) Notethatwhenω→0thequasi-staticandthedq0modelsareequivalent.

Anotherexample(Fig.3)isthelongtransmissionline.Inthisexamplethedq0dynamicphasorsareshowntorelatethroughtimedelays.

Assumealongpowerlineoflengthl.Thelineislossless,withinductanceLxandcapacitanceCxperunitlength.Itfeedsamatchedloadwith animpedanceequaltothecharacteristicimpedanceZc=

Lx/Cx.Theresultingloadcurrentisdelayedinrespecttothesourcevoltage [33]as

iabc2 (t)= 1

Zcvabc1 (t−d), (30)

wherethetimedelayisgivenbyd=l

LxCx.

(6)

Fig.4.Comparisonoffrequencyresponsesinthe9-busnetworkfordqquantitiesfrominput1tooutput4.

Fig.5. Comparisonoffrequencyresponsesinthe118-busnetworkfordqquantitiesfrominput76tooutput77.

Thecorrespondingdq0modelcanbecomputedby(9).DefiningYbus(ω)=(1/Zc)ejωdandapplyingtheinverseFouriertransform,the resultis

id2(t)= 1 Zc

cos(ωsd)vd1(t−d)+sin(ωsd)vq1(t−d)

, iq2(t)= 1 Zc

−sin(ωsd)vd1(t−d)+cos(ωsd)vq1(t−d)

, i02(t)= 1

Zcv01(t−d). (31) Thedirectandquadraturecurrentcomponentsaredelayedinrespecttothesourcevoltage.

6. Numericalresults

Inthissectionthevariousmodelsarecomparedintermsoffrequencyandtransientresponses.Threemodelsaretested:thefulldq0 model,thefirst-ordermodel,andthequasi-staticmodel.Thesearecomparedtothefulltransientmodel,whichisconstructedinstate- spaceusingMatlab’sSimscapePowerSystemssoftwarepackage.The9-,30-,and118-busnetworksfromtheMatPowerdatabase[35]are used.

(7)

Fig.6. Comparisonofthefirst100largestHankelsingularvaluesofthedq0modelandthefirst-ordermodelinthe118-busnetwork.

Fig.7.Comparisonofstep-responsesinthe9-bussystem.Theinputs(bottomplot)arestepsinphasesa,b,catbus1.Theoutputisthecurrentofphaseaatbus4.

AnarrayofBodeplotsrepresentingthedq0,first-order,andquasi-staticmodelsisgraphicallyillustratedinFigs.4and5for9-and 118-busnetworks.Theplotsdepictthemagnitude(indB)andphase(indegrees)forseveralinput/outputpairs.Thestepinputisapplied toageneratorlocatedatbus1andtheoutputismeasuredatbus4forthecaseof9-busnetwork.Similarly,for118-busnetworkthestep inputisappliedtoageneratorlocatedatbus76andtheoutputismeasuredatbus77.Thefiguresshowthatthefrequencyresponses coincideatlowfrequencies(ω→0)anddivergeathighfrequencies.Specifically,thequasi-staticmodelisrepresentedbyaconstantgain, andhasaconstantgainandphaseatallfrequencies.Thefirst-ordermodelresponsecoincideswiththedq0modelresponseoverawider frequencyrangeanddeviatesonlyathighfrequencies.ThesefiguresillustratethemainresultpresentedinTheorem1thatdq0model extendsbothquasi-staticandfirst-ordermodelsbytakinghigh-frequencydynamicphenomenaintoaccount.

Fig.6comparesthelargestsingularvaluesofthedq0modelandthefirst-ordermodelforthe118-busnetwork.Itcanbeseenthat themostenergetic(largest)valuesaresimilar,meaningthatthemajorityofenergyispreserved.Thisinturnverifiesthequalityofthe first-ordermodel.

Figs.7–11comparethetransientresponseofthevariousmodelsforthe9-,30-and118-busnetworks.Allinputsandoutputsarethree phasesignals.Thetransientmodelissimulateddirectlyintheabcreferenceframe.Thedq0model,quasi-staticmodel,andthefirst-order modelarerepresentedinthedq0referenceframe,soinputandoutputsignalsareconvertedaccordinglyusing(1).Tothisend,thedq0 modelisrepresentedinthestate-spaceformusingimplementationavailablein[36].Thefirst-ordermodelisimplementedusingequations (22)–(27).

Figs.7and8providesimulationresultsforthecaseof9-busnetwork.InFig.7thestepinputsignals(shiftedintimeforeachofthephases) areappliedtothegenerator1atbus1andtheoutputsaremeasuredatbus4.InFig.8amorecomplicatedscenarioisconsidered.Before thetransient,theinputsarebalancedthreephasesinusoidalsignalsua1=sin(250t)atbus1.Then,thetransientistriggeredbyshorting phaseatoground,i.e.,ua1=0.Notethatuc,d1 =sin(250t±2/3).Theoutputisthecurrentofphaseameasuredatbus4.Thesimulation resultsconfirmtheabovefrequencydomainanalysispresentedinFig.4andthefactthatthequasi-staticmodelbecomesinaccurateat highfrequencies.Thesimilarsettingswereusedtoobtainsimulationresultsforthe30-and118-busnetworks(seeFigs.9–11).Thefigures showthattransientresponsesofthedq0modelsaresimilartothoseofthetransientmodels.Thequasi-staticmodelisimplementedby constantgains,andisinaccurate,exceptforbalancedsinusoidalinputs.Thefirst-ordermodelismoderatelyaccurate.

(8)

Fig.8.Comparisonoftransientsinthe9-bussystem.Beforethetransient,theinputsarebalancedthreephasesinusoidalsignalsatbus1.Thetransientistriggeredby shortingphaseatoground.Theoutputisthecurrentofphaseaatbus4.

Fig.9.Comparisonofstepresponsesinthe30-busnetwork.Theinputsarestepsatt=0inphasesa,b,c.(a)inputatbus1,outputatbus2,(b)inputatbus5,outputatbus 7,(c)inputatbus8,outputatbus28,(d)inputatbus11,outputatbus9.

Table1

Errorsintransientresponses.

Fig.7 Fig.8(a) Fig.10 Fig.11(a)

MSE

dq0 0.9595×10−8 0.9572×10−9 0.6557×10−8 0.9340×10−7

fo 0.0035 3.4425×10−5 4.6116×10−5 4.9407×10−4

qs 0.1929 0.0020 0.0039 0.0170

ISE

dq0 0.7922×10−8 0.9706×10−9 0.3570×10−8 0.8491×10−7

fo 0.0035 3.4446×10−5 1.1498×10−5 1.2363×10−4

qs 0.1913 0.0020 9.6554×10−4 0.0042

(9)

Fig.10.Comparisonofstep-responsesinthe118-bussystem.Theinputs(bottomplot)arestepsinphasesa,b,cofbus76.Theoutputisthecurrentofphaseaatbus77.

Fig.11.Comparisonoftransientsinthe118-bussystem.Beforethetransient,theinputsarebalancedthreephasesinusoidalsignalsatbus76.Thetransientistriggeredby shortingphaseatoground.Theoutputisthecurrentofphaseaatbus77.

ErrorsinthemodelstransientresponsesarepresentedinTable1,wheretwotypicalmetrics,themeansquarederror(MSE)andthe integralsquarederror(ISE),areused.Theerrorsarecalculatedincomparisontothetransientmodel,whichservesasareference.Itcanbe seenthatthemagnitudesoferrorsforthedq0modelaresignificantlylowerthanthoseoffirst-orderandquasi-staticmodels.

7. Conclusion

Dynamicbehaviorandstabilityoflarge-scalepowersystemshavebeentraditionallystudiedbymeansoftime-varyingphasors,under theassumptionthatthesystemisquasi-static.However,withincreasingintegrationoffastrenewableanddistributedsourcesintopower grids,thisassumptionisbecomingincreasinglyinaccurate.Thispaperusesdynamicphasorsinthedq0referenceframetodescribethe dynamicsoflargetransmissionanddistributionnetworks.Theproposedmodelsdonotemploytheassumptionofquasi-staticphasors, andthereforeremainaccurateoverawiderangeoffrequencies.Thefulldq0modelisbasedonthefrequencydependentadmittance matrix,andisapproximatedusingtheTaylorseriesexpansiontogeneratemodelsoflowercomplexity:theclassicquasi-staticmodel isobtainedbyazero-orderapproximation,whilethemoreaccuratefirst-ordermodelisobtainedbyafirst-orderapproximation.The developedmodelscombinetwopropertiesofinterest.Ononehand,theyprovidetheadvantagesofthedq0referenceframe.Specifically,

(10)

themodelsemploynonrotatingdq0signalsthatarestaticatsteady-state,andthusenableawell-definedoperatingpoint.Ontheother hand,theproposedmodelsimprovetheaccuracyofthequasi-staticmodelathighfrequencies,enablingrepresentationoffastdynamic phenomenainnetworksthatincludesmalldistributedgeneratorsandfastpowerelectronicsbaseddevices.Inparticular,theseproperties cancontributetoaccurateandlowcomplexitystabilityanalysisinsuchnetworks.Simulationsshowthatthefrequencyresponsesofall modelscoincideatlowfrequenciesanddivergeathighfrequencies.Inaddition,responsesofthedq0modelinthetimedomainandinthe abcreferenceframeareveryclosetothoseofthetransientmodel.

Acknowledgment

TheworkwaspartlysupportedbyGrandTechnionEnergyProgram(GTEP)andaTechnionfellowship.

References

[1]Y.Liu,K.Sun,Y.Liu,Ameasurement-basedpowersystemmodelfordynamicresponseestimationandinstabilitywarning,Electr.PowerSyst.Res.124(2015)1–9.

[2]L.Miller,L.Cibulka,M.Brown,A.V.Meier,Electricdistributionsystemmodelsforrenewableintegration:Statusandresearchgapsanalysis,Tech.rep.,California EnergyCommission,CA,USA,2013.

[3]P.M.Anderson,A.A.Fouad,PowerSystemControlandStability,JohnWiley&Sons,2008.

[4]C.Dufour,J.Mahseredjian,J.Bélanger,Acombinedstate-spacenodalmethodforthesimulationofpowersystemtransients,IEEETrans.PowerDel.26(2)(2011) 928–935.

[5]U.N.Gnanarathna,A.M.Gole,R.P.Jayasinghe,EfficientmodelingofmodularmultilevelHVDCconverters(MMC)onelectromagnetictransientsimulationprograms, IEEETrans.PowerDel.26(1)(2011)316–324.

[6]R.Majumder,Someaspectsofstabilityinmicrogrids,IEEETrans.PowerSyst.28(3)(2013)3243–3252.

[7]T.Nishikawa,A.E.Motter,Comparativeanalysisofexistingmodelsforpower-gridsynchronization,NewJ.Phys.17(1)(2015).

[8]R.Zárate-Minano,T.V.Cutsem,F.Milano,J.A.Conejo,Securingtransientstabilityusingtime-domainsimulationswithinanoptimalpowerflow,IEEETrans.Power Syst.25(1)(2010)243–253.

[9]M.Ili ´c,J.Zaborszky,Quasistationaryphasorconcepts,in:DynamicsandControlofLargeElectricPowerSystems,Wiley,NewYork,2000,pp.9–60.

[10]P.C.Stefanov,A.M.Stankovi ´c,ModelingofUPFCoperationunderunbalancedconditionswithdynamicphasors,IEEETrans.PowerSyst.17(2)(2002)395–403.

[11]R.Yousefian,S.Kamalasadan,ALyapunovfunctionbasedoptimalhybridpowersystemcontrollerforimprovedtransientstability,Electr.PowerSyst.Res.137(2016) 6–15.

[12]A.M.Stankovi ´c,S.R.Sanders,T.Aydin,DynamicphasorsinmodelingandanalysisofunbalancedpolyphaseAmachines,IEEETrans.EnergyConvers.17(1)(2002) 107–113.

[13]S.Almer,U.Jonsson,Dynamicphasoranalysisofperiodicsystems,IEEETrans.Autom.Control54(8)(2009)2007–2012.

[14]M.Daryabak,S.Filizadeh,J.Jatskevich,A.Davoudi,M.Saeedifard,V.K.Sood,J.A.Martinez,D.Aliprantis,J.Cano,A.Mehrizi-Sani,ModelingofLCC-HVDCsystemsusing dynamicphasors,IEEETrans.PowerDel.29(4)(2014)1989–1998.

[15]T.Demiray,G.Andersson,L.Busarello,Evaluationstudyforthesimulationofpowersystemtransientsusingdynamicphasormodels,in:TransmissionandDistribution Conf.andExpo,Bogotá,Colombia,2008,pp.1–6.

[16]A.M.Stankovi ´c,T.Aydin,Analysisofasymmetricalfaultsinpowersystemsusingdynamicphasors,IEEETrans.PowerSyst.15(3)(2000)1062–1068.

[17]C.Liu,A.Bose,P.Tian,ModelingandanalysisofHVDCconverterbythree-phasedynamicphasor,IEEETrans.PowerDel.29(1)(2014)3–12.

[18]H.Zhu,Z.Cai,H.Liu,Q.Qi,Y.Ni,Hybrid-modeltransientstabilitysimulationusingdynamicphasorsbasedHVDCsystemmodel,Electr.PowerSyst.Res.76(6-7)(2006) 582–591.

[19]M.C.Chudasama,A.M.Kulkarni,DynamicphasoranalysisofSSRmitigationschemesbasedonpassivephaseimbalance,IEEETrans.PowerSyst.26(3)(2011) 1668–1676.

[20]P.Mattavelli,A.M.Stankovic,G.C.Verghese,SSRanalysiswithdynamicphasormodelofthyristor-controlledseriescapacitor,IEEETrans.PowerSyst.14(1)(1999) 200–208.

[21]Z.Miao,L.Piyasinghe,J.Khazaei,L.Fan,Dynamicphasor-basedmodelingofunbalancedradialdistributionsystems,IEEETrans.PowerSyst.30(6)(2015)3102–3109.

[22]S.Chandrasekar,R.Gokaraju,Dynamicphasormodelingoftype3DFIGwindgenerators(includingSSCIphenomenon)forshort-circuitcalculations,IEEETrans.Power Del.30(2)(2015)887–897.

[23]T.H.Demiray,Simulationofpowersystemdynamicsusingdynamicphasormodels.Ph.D.thesis,TUWien,2008.

[24]T.Yang,S.Bozhko,G.Asher,Multi-generatorsystemmodellingbasedondynamicphasorconcept,in:EuropeanConf.onPowerElectronicsandApplications,Lille, France,2013,pp.1–10.

[25]T.Bi,H.Liu,Q.Feng,C.Qian,Y.Liu,Dynamicphasormodel-basedsynchrophasorestimationalgorithmforM-classPMU,IEEETrans.PowerDel.30(3)(2015) 1162–1171.

[26]D.-G.Lee,S.-H.Kang,S.-R.Nam,Modifieddynamicphasorestimationalgorithmforthetransientsignalsofdistributedgenerators,IEEETrans.SmartGrids4(1)(2013) 419–424.

[27]R.K.Mai,L.Fu,Z.Y.Dong,K.P.Wong,Z.Q.Bo,H.B.Xu,DynamicphasorandfrequencyestimatorsconsideringdecayingDCcomponents,IEEETrans.PowerSyst.27(2) (2012)671–681.

[28]R.K.Mai,L.Fu,Z.Y.Dong,B.Kirby,Z.Q.Bo,AnadaptivedynamicphasorestimatorconsideringDCoffsetforPMUapplications,IEEETrans.PowerDel.26(3)(2011) 1744–1754.

[29]J.Ren,M.Kezunovic,Anadaptivephasorestimatorforpowersystemwaveformscontainingtransients,IEEETrans.PowerDel.27(2)(2012)735–745.

[30]T.Yang,S.Bozhko,J.M.Le-Peuvedic,G.Asher,C.I.Hill,Dynamicphasormodelingofmulti-generatorvariablefrequencyelectricalpowersystems,IEEETrans.Power Syst.31(1)(2016)563–571.

[31]X.Guo,Z.Lu,B.Wang,X.Sun,L.Wang,J.M.Guerrero,Dynamicphasors-basedmodelingandstabilityanalysisofdroop-controlledinvertersformicrogridapplications, IEEETrans.SmartGrids5(6)(2014)2980–2987.

[32]A.E.Fitzgerald,C.Kingsley,S.D.Umans,ElectricMachinery,6thed.,McGraw-Hill,NewYork,2003.

[33]J.J.Grainger,W.D.Stevenson,PowerSystemAnalysis,McGraw-Hill,NewYork,1994.

[34]T.V.Cutsem,C.Vournas,VoltageStabilityofElectricPowerSystems,KluwerAcademicPublishers,Norwell,MA,1998.

[35]R.D.Zimmerman,C.E.Murillo-Sánchez,R.J.Thomas,MATPOWER:steady-stateoperationsplanningandanalysistoolsforpowersystemsresearchandeducation,IEEE Trans.PowerSyst.26(1)(2011)12–19.

[36]Y.Levron,J.Belikov,Toolboxformodelingandanalysisofpowernetworksinthedq0referenceframe,MATLABCentralFileExchange,2016http://www.mathworks.

com/matlabcentral/fileexchange/58702(retrieved15.08.16).

Referensi

Dokumen terkait

This U-Dictionary application provides a good change for students because of its maximum utilization, such as students being able to speak English with the help of