• Tidak ada hasil yang ditemukan

저작자표시-비영리-변경금지 2.0 대한민국 ... - KMOU Repository

N/A
N/A
Protected

Academic year: 2023

Membagikan "저작자표시-비영리-변경금지 2.0 대한민국 ... - KMOU Repository"

Copied!
46
0
0

Teks penuh

(1)

저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다. 다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

(2)

Walsh code Manchester code 3

A Study on Three Dimensional Indoor Visible Light Communication Localization based on Manchester Code using

Walsh Code

2016 2

(3)

: : :

2016 2

(4)

···

···

Abstract ···

1 ··· 01

2 ··· 04

2.1 ··· 04

2.2 ··· 07

2.3 Manchester code ··· 09

2.4 Walsh code ··· 10

3 ··· 11

3.1 ··· 12

3.2 ··· 13

3.3 ··· 14

3.4 ··· 15

3.5 3 ··· 19

4 ··· 21

4.1 ··· 21

4.2 ··· 24

5 ··· 33

··· 34

(5)

< >

2.1 ··· 4

2.2 ··· 7

3.1 ··· 12

3.2 (1) ··· 17

3.3 (2) ··· 18

4.1   ··· 25

4.2  ··· 26

4.3   ··· 27

4.4 ··· 29

4.5 ··· 30

4.6 3 ··· 31

4.7 3 ··· 32

(6)

< >

4.1 ··· 23

(7)

A Study on Three Dimensional Indoor Visible Light Communication Localization based on Manchester Code using Walsh Code

by Won-Yeol, Kim

Department of Electrical & Electronics Engineering The Graduate School of Korea Maritime University

Busan, Republic of Korea

Abstract

In this paper, we propose an indoor visible light communi-

cation(VLC) localization using Walsh code which can distinguish

overlapped transmitted-signals as each of transmitted signal with

different LED source at the receiver and using Manchester code which

can eliminate the flicker of LED light. The proposed system can

estimate the relative three dimensional position of the receiver by using

Lambertian radiation properties and trilateration method that are applied

to the location information of fixed LED sources and the received

(8)

signals from them. In order to verify the feasibility of the proposed

system, we carried out the simulation in an indoor space with 6×6×3

m

3

installed 16 LED lamps. The simulation result shows that the

proposed method achieves an average positioning error of 0.0536 m and

a maximum positioning error of 0.2977 m.

(9)

1

(LBS: Location based service)

[1-10]. LBS ·

.

GPS(Global Positioning System) .

.

RFID[11], UWB(Ultra-wide band)[12], CSS(Chirp Spread Spectrum), Bluetooth[13], WLAN(Wireless Local Area Network)[14]

[15-23]. ,

.

LED

[24-28].

, ,

(10)

,

. AoA(Angle of Arrival),

ToA(Time of Arrival)[29], TDoA(Time Difference of Arrival)[30], RSSI(Received signal strength indication)[31]

. AoA ,

ToA ·

. RSSI LED

. RSSI

Overlapped RSSI[32], DTMF(Dual-tone multi-frequency)[33], OOC(Optical

orthogonal code)[34] .

Overlapped RSSI R-D

RSSI ( , VLC

) . DTMF

ID LED

DFT(discrete-time Fourier transform)

. OOC

. Walsh code

Light emitting diode(LED) LED

Manchester code .

LED

.

(11)

16 LED 6×6×3 m3

. ,

0.2977 m, 0.0536 m

.

(12)

2

2.1

2.1

Fig. 2.1 Visible light communication channel model

2.1  VLC LED

,  PD(Photodiode) . LED PD

(2.1) .

×⊗ (2.1)

 PD

(13)

,  LED ,  (noise) , 

.  .

(2.2) ,

   (2.2)

. (channel DC gain) 

(2.3) .

 

 ∞ 



 

cos  ≤  ≤ 

   

(2.3)

,  PD , 

,  ,  ,  , 

.  FOV(Field of view) .

 LED ln lncos .

     .  (2.4)

.

(14)

 

sin

  ≤  ≤ 

  ≥ 

(2.4)

,  . (2.3) LED

,  , cos cos   .

 

   

   

  ≤  ≤ 

   

 (2.5)

(2.5) .  

 × (2.6)

(2.6) .

(15)

2.2

2.2

Fig. 2.2 Trilateration method

. 3 LED PD PD

, 2.2 LED PD

. LED PD

, 3

. (2.6) 3 LED

 ,  .

(16)

      

      

      

(2.6)

(2.6) ,

   

  

  

  





    



    

  

 



(2.7)

(2.7) ,    LSM(Least square

method) (2.6) . LED

PD , PD

.

(17)

2.3 Manchester code

Manchester code NRZ Clock XOR

.

   

       (2.8)

   

         

        (2.9)

 ⊕ (2.10)

, (2.10) ‘⊕’ XOR . 

,   , High-Low ,

  , Low-High .

‘0’ ‘1’ ,

flicker . NRZ(Non return to

zero) 2

.

(18)

2.4 Walsh code

Walsh code “Hadamard Matrix” ,



 



 

   (2.11)

.  1 ,  2 .

Hadamard 4×4

   

     

     

     

(2.12)

, ,,, .

Hadamard



× 

  ≠    (2.13)

.  Hadamard , 

. 4 Walsh code(,,,) .

(19)

3.

Walsh code Manchester code . Manchester code

‘0’ ‘1’ flicker

. LED

Walsh code

. Lambertian

LED ,

. ,

.

(20)

3.1

3.1

Fig. 3.1 Indoor localization system

3.1 2 m

2 m 4 × 4 3 m VLC

LED 1.5 m (PD)

. LED ,

LED-ID , ID “Hadamard matrix” 16

× 16 (0, 1) ,,, , .

LED .

.

(21)

3.2

LED  (2.8) “Hadamard matrix”

(0, 1) Walsh code XOR .

   

 

     

 mod

 

     

 mod

 

(3.1)

 ×⊕ (3.2)

,  ,   ,

 LED Walsh code ,  ,  Walsh code

. “Hadamard matrix” 16×16

‘16’ . ‘ mod ’ ÷ . ‘⊕’

XOR . ,  

‘ ’ , High-Low , ‘ ’ , Low-High .

(22)

3.3

PD  (3.3) ,

   

 ⊗  (3.3)

LED   , 

. ‘⊗’ Convolution ,  LED

. LED 

× 

 

××

(3.4)

. (3.4)   ,  

LED Channel DC gain, 

. ,  (3.5) (3.6) . Walsh code

 LED

“Hadamard matrix”

.

(23)

   

           (3.5)

   

 

      

  mod

 

      

 mod

 

(3.6)



 LED ID (1, -1) Walsh code

.

3.4

LED PD

(2.6) , (2.5)

 

  

   

×  ≤  ≤  (3.7)

(3.7) .  .

(24)

 

 ×× ×

  

   ≤  ≤  (3.8)

(3.8) LED  . 

(3.8) .

3.2 LED

, 3.3 LED

.

(25)

3.2 (1) Fig. 3.2 The block diagram of proposed indoor localization (1)

(26)

3.3 (2) Fig. 3.3 The block diagram of proposed indoor localization (2)

(27)

3.5 3

3 4

.

       

       

        

       

(3.9)

(3.9) 3 LED PD

. (3.10)  ,

     (3.14) .



××

   ≤  ≤  (3.10)

,

(28)

   

 

     

× 

× 

     

× 

× 

     

× 

× 

(3.11)



    

    

    

  

(3.11) ,    LSM(Least square

method) . LED

PD , PD 3

.

(29)

4

4.1

, 3

. VLC  shot noise, thermal noise,

inter-symbol interference .

      (4.1)

(4.1) . (4.2) (4.4) .

  

 (4.2)

    (4.3)

  



 



(4.4)

(4.3) shot noise , , ,

. (4.4) thermal noise feedback-resistor

noise FET channel noise , ,

, , PD ,

(30)

FET , FET , = 0.0868 .

2 LED

 _,

__

, .

2 1.5 m LED

 _,

__

. 3.1 3

.

4.1 .

(31)

4.1

Table 4.1 parameters of simulation

 deg

deg













(32)

4.1

4.1, 4.2 ,

4.1(a) _ , 4.1(b)

AWGN(Adiitve White Gaussian Noise) OOK

_ , 4.1(c) _

. _

OOK _

_

.

OOK

4.2(a) .

4.2(b)

.

(a)

(33)

(b)

(c)

4.1   : (a) _

, (b) _ , (c) _

Fig. 4.1 Received power  distribution for horizontal distance : (a) _

characteristic curve, (b) _ characteristic curve, (c) _ characteristic curve

(34)

(a)

(b)

4.2  :(a) _

, (b) _

Fig. 4.2 Received power  distribution for external light:(a) _

characteristic curve, (b) _ characteristic curve

(35)

(c) (d)

4.3   : (a)

_ , (b) _ , (c)

_

, (d) _

Fig. 4.3 Received power  distribution for horizontal distance : (a)

_ characteristic curve, (b) _ characteristic curve, (c)

_  characteristic curve, (d) _  characteristic curve

(36)

4.3 4.3(a)

_ , 4.3(b)

_ , 4.3(c) _

, 4.3(d) _ .

4.4

. LED 1 _



, LED 2 _ 

LED 3 _

 . LED

2 m 2 m

.

(37)

4.4

Fig. 4.4 Estimated horizaontal distance for real horizontal distance

(38)

, 4.5 . 0.2977 m,

0.0536 m . LED

.

4.5

Fig. 4.5 Result of proposed indoor localization error

(39)

3

4.6 .

(2, 2, 1.5) , (2.0263, 2.5094, 1.5018) .

MSE(Mean Squared Error) 0.0279 m .

4.6 3

Fig. 4.6 Result of proposed three dimensional indoor localization error

(40)

4.7 3

Fig. 4.7 Result of proposed three dimensional indoor localization error

(41)

5

Walsh code Manchester code

. LED

, LED

.

Flicker, Dimming Manchester code

. , Walsh code LED

LED .

. 0.2977

m, 0.0536 m .

3 .

, LED

LBS (Location based

service) .

(42)

[1] J. H. Koo and K. I. Hwang, “A Koreans’ consciousness survey on the onboard safety of domestic passenger ship,” Journal of the Korean Society of Marine Engineering, vol. 38, no. 4, pp. 495-501, 2014 (in Korean).

[2] K. I. Hwang, “Comparative study on predictions of passengers’ evacuation performances before and after the remodelling of MV SEWOL,” Journal of the Korean Society of Marine Engineering, vol. 39, no.1, pp. 105-114, 2014 (in Korean).

[3] W. O. Kim, J. S. Kim, and W. C. Park, “Improvement of citadel structure on board ship using FDS,” Journal of the Korean Society of Marine Engineering, vol. 39, no. 3, pp. 306-311, 2015 (in Korean).

[4] W. O. Kim, J. S. Kim, and W. C. Park, “A study on the improvement of survival rate of the passengers and crews according to FDS Analysis,”

Journal of the Korean Society of Marine Engineering, vol. 39, no. 3, pp.

312-317, 2015 (in Korean).

[5] H. J. Kwon, H. S. Yang, and S. G. LEE, “Site monitoring of crews and passengers on board by the BLE and PLM combination,” Journal of the Korean Society of Marine Engineering, vol. 39, no. 4, pp. 463-467, 2015 (in Korean).

[6] G. W. Yim, S. H. Lee, S. Y. Kim, and N. S. Kang, “Development of unified communication for marine VoIP service,” Journal of the Korean Society of Marine Engineering, vol. 39, no. 7, pp. 744-753, 2015 (in Korean).

[7] H. J. Kwon, M. G. Kim, Y. S. Kim, and S. G. Lee, “Lifetime test of batteries for BLE modules for site identification of vessel’s crews and passengers (SIVCP),” Journal of the Korean Society of Marine Engineering, vol. 39, no. 7, pp. 754-759, 2015 (in Korean).

[8] F. Donovan, “Indoor location market to reach $4 billion in 2018,” Online.

FierceMobileIT. [Online]. Available:

(43)

h t t p : / / w w w . f i e r c e m o b i l e i t . c o m / s t o r y / i n d o o r - location-market-reach-4-billion-2018-predicts-abi/2013-10-18, Accessed November 28, 2013.

[9] P. Harrop, Online. IDTechEx. [Online]. Available:

h t t p : / / w w w . i d t e c h e x . c o m / r e s e a r c h / a r t i c l e s /mobile-phone-indoor-positioning-systems-create-10bn-market-00006207.asp, Accessed September 15, 2014.

[10] Daryl C. Plummer, Top 10 Strategic Predictions for 20 15 and Beyond Digital Business Is Driving ‘Big Change, Gartner [Online]. Available:

h t t p s : / / w w w . g a r t n e r . c o m / d o c / 2 8 6 4 8 1 7 ? r e f = u n- authreader&srcId=1-3478922254, Accessed October 16, 2015.

[11] H. Koyuncu and S. H. Yang, “A survey of indoor positioning and object locating systems,” International Journal of Computer Science and Network Security, vol. 10, no. 5, pp. 121-128, 2010.

[12] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of Wireless Indoor Positioning Techniques and Systems,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 37, no. 6, pp. 1067-1080, 2007.

[13] I. Bisio, F. Lavagetto, M. Marchese, and A. Sciarrone, “Performance comparison of a probabilistic fingerprint-based indoor positioning system over different smartphones,” International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS), pp.

161-166, 2013.

[14] L. Pei, R. Chen, J. Liu, T. Tenhunen, H. Kuusniemi, and Y. Chen,

“Inquiry-based bluetooth indoor positioning via rssi probability dis- tributions,” Second IEEE International Conference on Advances in Satellite and Space Communications (SPACOMM), pp. 151-156, 2010.

[15] J. H. Seong, T. W. Lim, J. S. Kim, S. G. Park, and D. H. Seo, “An improvement algorithm for localization using adjacent node and distance variation analysis techniques in a ship,” Journal of the Korean Society of Marine Engineering, vol. 37, no. 2, pp. 213-219, 2013 (in Korean).

[16] J. H. Kim, S. G. Lee, J. S. Kim, J. W. Kim, and D. H. Seo, “A study

(44)

on indoor navigation system using localization based on wireless commu- nication,” Journal of the Korean Society of Marine Engineering, vol. 37, no. 1, pp. 114-120, 2013 (in Korean).

[17] J. H. Seong, J. S. Park, S. H. Lee, and D. H. Seo, “Indoor localization algorithm based on WLAN using modified database and selective oper- ation,” Journal of the Korean Society of Marine Engineering, vol. 37, no.

8, pp. 932-938, 2013 (in Korean).

[18] H. J. Cho, J. S. Kim, S. G. Lee, J. W Kim, and D. H. Seo, “Fixed node reduction technique using relative coordinate estimation algorithm,”

Journal of the Korean Society of Marine Engineering, vol. 37, no. 2, pp.

220-226, 2013 (in Korean).

[19] J. H. Kim, H. J. Kim, J. S. Kim, S. G. Lee, and D. H. Seo, “An in- door localization approach using RSSI and LQI based on IEEE 802.15.4,” Journal of the Korean Society of Marine Engineering, vol. 38, no. 1, pp. 92-98, 2014 (in Korean).

[20] J. H. Kim, H. J. Kim, J. S. Kim, S. G. Lee, and D. H. Seo, “Relative azimuth estimation algorithm using rotational displacement,” Journal of the Korean Society of Marine Engineering, vol. 38, no. 2, pp. 188-194, 2014.

[21] H. J. Cho, S. G. Lee, W. H. Cho, D. S. Noh, and D. H. Seo, “Self-po- sitioning fusion system based on estimaion of relative coordinates,”

Journal of the Korean Society of Marine Engineering, vol. 38, no. 5, pp.

566-572, 2014.

[22] J. H. Kim, J. H. Sung, Y. S. Ha, and D. H. Seo, “Improved Adaptive Smoothing Filter for Indoor Localization Using RSSI,” Journal of the Korean Society of Marine Engineering, vol. 39, no. 2, pp. 179-186, 2015.

[23] H. J. Cho, W. Y. Kim, Y. I. Joo, and D. H. Seo, “Robust Relative Localization Using a Novel Modified Rounding Estimation Technique,”

Journal of the Korean Society of Marine Engineering, vol. 39, no. 2, pp.

187-194, 2015.

(45)

[24] K. R. Sohn, “A study on the short-range underwater communication us- ing visible LEDs,” Journal of the Korean Society of Marine Engineering, vol. 37, no. 4, pp. 425-430, 2013 (in Korean).

[25] K. R. Sohn, “Performance analysis of the visible light communication in seawater channel,” Journal of the Korean Society of Marine Engineering, vol. 37, no. 5, pp. 527-532, 2013 (in Korean).

[26] M. S. Kim and K. R. Sohn, “Implementation of underwater visible light communication system interlinked with bluetooth,” Journal of the Korean Society of Marine Engineering, vol. 38, no. 7, pp. 923-928, 2014 (in Korean).

[27] M. S. Kim and K. R. Sohn, “Performance Investigation of Visible Light Communication Using Super Bright White LED and Fresnel Lens,”

Journal of the Korean Society of Marine Engineering, vol. 39, no. 1, pp.

63-67, 2015 (in Korean).

[28] K. R. Sohn, “Implementation of the Equalization Circuits for High Bandwidth Visible Light Communications Using Phosphorescent White LED,” Journal of the Korean Society of Marine Engineering, vol. 39, no.

4, pp. 473-477, 2015 (in Korean).

[29] K. Pahlavan, X. Li, and J. P. Makela, “Indoor geolocation science and technology,” IEEE Communications Magazine, vol. 40, no. 2, pp.

112-118, 2002.

[30] T. H. Do and M. Yoo, “TDOA-based indoor positioning using visible light,” Photonic Network Communications, vol. 27, no. 2, pp. 80-88, 2014.

[31] S. H. Yang, D. R. Kim, H. S. Kim, Y. H. Son, and S. K. Han, “Visible light based high accuracy indoor localization using the extinction ratio distributions of light signals,” Microwave and Optical Technology Letters, vol. 55, no. 6, pp. 1385-1389, 2013.

[32] D. Y. Kim and K. Y. Yi, “RSSI-Based Indoor Localization Method Using Virtually Overlapped Visible Light,” The Transactions of The Korean Institute of Electrical Engineers vol. 63, no. 12, pp. 697-1703,

(46)

2014 (in Korean).

[33] P. Luo, Z. Ghassemlooy, H. L. Minh, A. Khalighi, X. Zhang, M. Zhang, and Y. Changyuan, “Experimental demonstration of an indoor visible light communication positioning system using dual-tone multi-frequency technique,” 3rd IEEE International Workshop in Optical Wireless Communications (IWOW), pp. 55-59, 2014.

[34] S. Yamaguchi, V. V. Mai, T. C. Thang, and A. T. Pham, “Design and performance evaluation of VLC indoor positioning system using optical orthogonal codes,” 5th IEEE International Conference on Communications and Electronics (ICCE), pp. 54-59, 2014.

[35] T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using led lights,” IEEE Transactions on Consumer Electronics, vol. 50, no. 1, pp. 100-107, 2004.

[36] TIA/EIA/IS-95 Interim Standard, “Mobile station-base station compatibility standard for dual-mode wide-band spread-spectrum cellular system,”

Telecommunications Industry Association, 1993.

[37] H. J. Kim, D. H. Seo, K. I. Hwang, and T. W. Lim, “Hierarchical se- curity system using real-valued data and orthogonal code in Fourier do- main,” Optics communications, vol. 313, pp. 15-21, 2014.

Gambar

Fig. 2.1 Visible light communication channel model
Fig. 2.2 Trilateration method
Fig. 3.1 Indoor localization system
Table 4.1 parameters of simulation
+7

Referensi

Dokumen terkait

In this study, the measurement data, obtained from the temporary retaining wall in the bermed excavation site in urban and the numerical analysis results, were used to investigate the