Chapter 13 Diffraction
Reading Assignment:
1. D. Sherwood, Crystals, X-rays, and
Proteins-chapter 9
Contents
Electron Density Function Electron Density Function
Atomic Scattering Factor Atomic Scattering Factor
Structure Factor Structure Factor 3
1 2
4
Scattering of X-ray by electron Scattering of X-ray by electron
5 Systematic Absences Systematic Absences
Contents of the Unit Cell
- diffraction pattern of a crystal- in terms of reciprocal lattice
( ) ( ) [ ( ) * ( )]
- motif (contents of the unit cell) envolop that of the finite cryst
Tf crystal = Tf motif i Tf infinite lattice Tf shape function al lattice
intensity determined by the diffraction pattern of motif - intensities of all the diffraction maxima
inverse Fourier transform
parameters pertaining molecules within unit cell scatt
→
→
→ ering of the incident X-rays by electrons → distribution of electron within the unit cell
Scattering of X-ray by a Single Electron
- interaction of X-rays with an electron
Thomson scattering vs. Compton scattering - Thomson scattering (coherent scattering) assumption- free electron, passive response incident X-ray with electr
2 2
2 0
ic field
accelerate electron of charge and mass
act as a source of radiation, scattered wave 1 cos 2
, well defined phase relationship
4 2
in
in
scat scat
in
E
e m
a e E m
E
E e
E rmc
θ πε
→
=
→
= +
Scattering of X-ray by a Single Electron
- Compton scattering
a definite set of waves with wavelength rather longer than that of the incident wave
collision between an electron and a photon particle-particle collision
no well def
No discrete diffraction effects result from Com ined phase relationship
incoherent scattering
(overall backgrou
pton nd sc
Scatt atter
ering ing)
Scattering of X-ray by a Distribution of Electrons
2 2
2 0
- X-ray diffraction by Thomson scattering 1 cos 2
(2 )
4 2
: electronic scattring factor, (2 ): polarization factor
scat
e in
e
E e
rmc f p E
f p
θ θ
πε
θ
= + =
D. Sherwood, Crystals, X-rays, and Proteins
Scattering of X-ray by a Distribution of Electrons
- ( )
( )
- principle of superposition
( ) ( ) ( )
( )
- from an array of electrons
( )
n F( k) ( )
scat A e in
i
scat B e in
scat total scat A scat B
scat total i
e e
in
scat total
e in n
i i k
E f E
E f E e
E E E
E f f e
E
E f e f r e
E
φ
φ
φ Δ
=
=
=
⇔ +
= +
=
∑
Δ =all r
rd r
∫
iScattering of X-ray by a Distribution of Electrons
- electron density function ( )
any element of volume, centered on the point , which represented by
average number of electrons within the volume is given by ( )
scattered wa
r
r d r
d r r d r
ρ
ρ
ve amplitude ( )
- F( k) ( )
scat e
e all r
i k r
dE f r d r f r e d r
ρ
ρ Δ
=
Δ =
∫
icontinuous distribution
D. Sherwood, Crystals, X-rays, and Proteins
Diffraction Pattern of the Motif
- within a single unit cell
electron density function ( ) position of atoms from the electron density maxima bond lengths, bond angles
- ( ) e ( ) ( ) e ( )
all r
i k r i k
r
F k f r e d r F k f r e
ρ
ρ Δ ρ Δ
→
→
Δ =
∫
i ⇒ Δ =- ( ) / : relative scattering ability of the contents of the unit cell compared to a single electron
- ( ) ( )
unit cell e
rel
unit cell
r
i k r
d r
F k f
F k ρ r e Δ d r
Δ
Δ =
∫
∫
i
i
Diffraction Pattern of the Motif
- triclinic system, a a, b b, c c
- ( ) ( )
- any point within the unit cell
a b c 0 , 0 , 0
/ , / , /
0 1, 0
rel
unit cell
i k r
a b c
F k r e d r
r X Y Z X a Y b Z c
x X a y Y b z Z c
x y
ρ Δ
= = =
Δ =
= + + ≤ ≤ ≤ ≤ ≤ ≤
= = =
≤ ≤ ≤ ≤
∫
i1, 0 1
a b c
- volume element
z
r x y z
d r dXdYdZ a b c dxdydza b c
Vdxdydz
≤ ≤
⇒ = + +
= ×
= ×
=
i i
D. Sherwood, Crystals, X-rays, and Proteins
1 1 1
)
0 0 0
( a b c
- amplitude of the diffraction pattern of the contents of the unit cell
( ) ( , , )
envolop the diffraction pattern of the crystal lat
x y z
rel
x y z
i k x y z
F k V = = = ρ x y z e dxdydz
= = =
Δ + +
Δ =
⇒
∫ ∫ ∫
itice restrict the values of the scattering vector to those which correspond crystal lattice diffraction maxima - 2
2 ( * * *) ( )
2 (
hkl
k
k G
k r ha kb lc xa yb zc
hx π
π π
⇒ Δ
Δ =
Δ = + + + +
= +
i i
) ky lz+
Diffraction Pattern of the Motif
1 1 1
0 0 0
2 ( )
- for a single particular maximum corresponding to the reciprocal lattice point
[ ( )] ( , , )
amplitude of the diffraction pattern at the
x y z
rel hkl
x y z
i hx ky lz
hkl
F k V = = = ρ x y z e π dxdydz
= = =
Δ =
∫ ∫ ∫
+ +1 1 1
0 0 0
2
2 ( )
point indexed as - structure factor
( , , )
- in general , complex quantity
-
hkl
x y z
hkl
x y z
hkl hkl
hkl hkl
i hx ky lz
i
hkl
F V x y z e dxdydz
F F e
I
Fπ
α
ρ
= = =
= = =
= + +
=
=
∫ ∫ ∫
Diffraction Pattern of the Motif
Calculation of the Electron Density Function
1 1 1
0 0 0
2 ( )
( )
2 ( )
- ( ) ( , , )
- ( , , ) 1 ( ) ( )
- ( , , ) 1 ( )
- diffraction pattern- discr
x y z
rel
x y z
rel all k
hkl all k
i hx ky lz
i k xa yb z c
i hx ky lz
F k V x y z e dxdydz
x y z F k e d k
V
x y z F e d k
V
π
π
ρ ρ
ρ
= = =
= = =
Δ
Δ
+ +
− Δ + +
− + +
Δ =
= Δ Δ
= Δ
∫ ∫ ∫
∫
∫
i
2 ( )
ete, not continuous
( , , ) 1 hkl
h k l
i hx ky lz
x y z F e
V
ρ =
∑∑∑
− π + +Fourier Synthesis
electron density map of protein myoglobin
D. Sherwood, Crystals, X-rays, and Proteins
Electron Density Projections
1
0 0
1
0
2 ( )
2 ( )
2
- determination of relatively small molecules- 2D function ( , )
- ( , ) ( , , ) ( , , )
( , , ) 1
( , ) 1
c
hkl
h k l
hkl
h k l
hkl
i hx ky lz
i hx ky lz
i
x y x y x y z dZ c x y z dz
x y z F e
V
x y c F e dz
V A F e
π
π
π
ρ
ρ ρ ρ
ρ ρ
− + +
− + +
−
= =
=
=
=
∫ ∫
∑∑∑
∫ ∑∑∑
1 1
0 0
0
( ) 2 2
2 ( )
( )
1
h k l
hk
h k
hx ky ilz ilz
i hx ky
e dz e dz l
A F e
π π
π
+ − − δ
− +
=
=
∑∑∑ ∫ ∫
∑∑
Electron Density Projections
nickel phthalocyanine
D. Sherwood, Crystals, X-rays, and Proteins
Calculation of Structure Factor
1 1 1
0 0 0
2 ( )
2 ( )
- ( , , ) - ( , , ) 1
- only infer atomic position from the maxima in the electron density function
- alternatively,
x y z
hkl
x y z
hkl
h k l
i hx ky lz
i hx ky lz
F V x y z e dxdydz
x y z F e
V
r xa y
π
π
ρ ρ
= = =
= = =
+ +
− + +
=
=
= +
∫ ∫ ∫
∑∑∑
( )
2-
hkl
hkl
unit cell
j j
iG r
b zc
F r e d r
r r R
ρ
π+
=
= +
∫
iD. Sherwood, Crystals, X-rays, and Proteins
atomic electron density function ρj(r − r j)
( ) j( j)
j
r r r
ρ =
∑
ρ −Calculation of Structure Factor
D. Sherwood, Crystals, X-rays, and Proteins
Calculation of Structure Factor
2
)
2
2 (
2
- ( )
, positions of nuclei are constant
- ( )
( )
j j
j
hkl
hkl
hkl
hkl j j
unit cell j
j j
j
j R j
hkl j
unit cell j
j j j
iG r
iG r
iG r
F r r e d r
r r R
d r d R
F R e d R
R e e
ππ
π
π
ρ
ρ ρ
+
= −
= +
=
=
=
∫ ∑
∫ ∑
∑
i
i
i
2 2
j ( )
i Ghkl R j
h i Ghk R j
l l
k
j uni
j j
j atom t cell
j
iG r
d R
e
πρ
R e π d R=
∫
∑ ∫
i
i i
Calculation of Structure Factor
2
2
2 (
- atomic scattering factor ( )
-
- th atom
( * * *) ( ) ( )
-
j
i Ghkl R j
hkl
j j
j j
atom
hkl j
j
j j j j
hkl j j j j
hk
j j
j l
j
iG r
i
f R e d R
F f e
j r x a y b z c
G r ha kb lc x a y b
F f e
z c hx ky lz
π
π π
ρ
=
=
= + +
=
= + + + + = + +
∫
∑
i
i
i i
1 1 1
0 0 0
)
2 ( )
- ( , , )
j j j
x y z
hkl
x z
j
y
i h hx ky lz
x ky lz
F V
= = =ρ x y z e
πdxdydz
= = =
+
+ + +
=
∫
∑
∫ ∫
Atomic Scattering Factor
2
2 0
2
- ( )
scattering ability of an atom as compared to that of a single electron ( )
- spherically symmetric
sin(4 sin )
2 ( )
(2 sin ) 4 ( ) sin
i Ghkl R j
j j
j j
atom
e
j j
j
f R e d R
f
R
f R R dR
R R R s
ρ π
π θ
π ρ πλ θ
λ π ρ
∞
=
=
=
∫
∫
i
0
4 sin s=
RdR sR
π θ λ
∞
∫
D. Sherwood, Crystals, X-rays, and Proteins
B. D. Cullity, Elements of X-ray Diffraction
Crystal Symmetry and X-ray Diffraction
)
)
2 (
2 ( 2 (
- symmetry of crystal symmetry of diffraction pattern 230 space group
-
- ex) mirror parallel to plane ( , , ) ( , , - )
( ) [
A Aj j j
A A A
hkl j
j
A A A A A A
hkl A A
i hx ky lz
i hx ky lz i hx ky
F f e
ab
x y z x y z
F f e e
π
π π
+ +
+ + + −
↔
=
= +
∑
)
) )
2 ( 2 (
]
( ) [ ]
- mirror plane, rotation axis
A A
A
A A A A
hkl hk l
A A
hk l
lz
i hx ky lz i hx ky lz
F f e e
I I
π + − π + +
= +
=
D. Sherwood, Crystals, X-rays, and Proteins
Friedel’s Law
)
)
*
* 2
2 (
2 (
-
- is real, (complex conjugate)
- magnitude of the structure factor of centrosymmetr
j j j
j j j
hkl j
j hkl j
j
j hkl hkl
hkl hkl hkl hkl hkl
i hx ky lz
i hx ky lz
F f e
F f e
f F F
F F I I F
π π
+ +
− + +
=
=
=
= = =
∑
∑
ically related reciprocal lattice points are equal
- intensity of the diffraction maxima corresponding to
centrosymmetrically related reciprocal lattice points are equal (inversion center)
D. Sherwood, Crystals, X-rays, and Proteins
- Friedel's law was proved on a perfectly general basis and its significance is that the X-ray diffraction picture in
general are centrosymmetric whether or not the crystal has an inversion center
- observation of the symmetry of the diffraction pattern in general allows to identify mirror planes and proper rotation axes, but inversion centers and improper rotation axes.
Systematic Absence
1 1 1 2 2 2)
) )
)
1 1 1
2 (
2 ( 0 0 0 2 2 2
(
- body centered cubic (000,
[1 ] 2 2
0 2 1 - systematic absenc
hkl j j
j j
i h k l i h k l
i h k l
F f e f e
f e f if h k l n
if h k l n
π π π
+ + + +
+ +
= +
= + = + + =
+ + = +
1 2
) )
)
)
2 [ ( 1
2 ( 2
2 ( 4
e or extinction - a glide ( (001))
,
[1 ]
0 0, 2 1 0
hkl j j
j
hkl
i h x ky lz i hx ky lz
i hx ky lz i h ilz
xyz x y z
F f e f e
f e e e
l hk h n F
π π
π π π
+ + − + +
+ + −
+
= +
= +
= ⇒ = + ⇒ =
Reciprocal lattice
- cubic I a = =b c
90o
α β γ
= = =C. Hammond, The Basics of Crystallography and Diffraction
Systematic Absence
1 1 1 1 1 1
, ,
2 2 2 2 2 2
) )
)
)
) ) )
1 1 1 1
2 ( 0 2 ( 0
2 ( 0 0 0 2 2 2 2
1 1
2 ( 0
2 2
( ( (
- face centered cubic (000, 0 0 0)
[1 ]
4 ,
hkl j j j
j
j j
i h k l i h k l
i h k l
i h k l
i k l i h l i h k
F f e f e f e
f e
f e e e
f if h k
π π
π π
π π π
+ + + +
+ +
+ +
+ + +
= + +
+
= + + +
= , unmixed
0 , , mixed
100 110 111 200 210 220 300(221) 310 311 x x o o x o x x o
l
if h k l
Systematic Absence
1 1 1 1 1 1 1 1 1 1 3 3 3 1 3 3 3 1
, , , , ,
2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4
) ) )
)
) )
1 1 1 1 1 1
2 ( 0 2 ( 0 2 ( 0
2 ( 0 0 0 2 2 2 2 2 2
1 1 1 1 3 3
2 ( 2 (
4 4 4 4 4 4
- diamond structure (000,0 0 0, )
hkl j j j j
j j
i h k l i h k l i h k l
i h k l
i h k l i h k l
F f e f e f e f e
f e f e
π π π
π
π π
+ + + + + +
+ +
+ + + +
= + + +
+ + ) )
) ) ) ) / 2
3 1 3 3 3 1
2 ( 2 (
4 4 4 4 4 4
( ( ( (
[1 ][1 ]
, , mixed, 0
, , unmixed 4 (1 i) , , are odd
j j
j
hkl
hkl j
i h k l i h k l
i k l i h l i h k i h k l
f e f e
f e e e e
if h k l F
if h k l F f if h k l
π π
π π π π
+ + + +
+ + + + +
+ +
= + + + +
=
= ±
8 , , are even multiple of 2 0 , , are odd multiple of 2
100 110 111 200 210 220 300(221) 310 311 222 x x
hkl j
hkl
F f if h k l
F if h k l
=
=
o x x oo x x o x
2000 TMS Fall Meeting: Special Tutorial
D. Sherwood, Crystals, X-rays, and Proteins
D. Sherwood, Crystals, X-rays, and Proteins
Determination of Crystal Symmetry
- 230 space group
- M.J. Buerger: 122 different diffraction pattern types
- what symmetry information can be derived from the symmetry of an X-ray photograph?
- systematic absence lattice type
→
- 11 out of 32 point group-centrosymmetric (Laue group)
- as many as necessary for the systematic absence (glide, screw) (diffraction symbol)
- 58 uniquely define a single space group 64 ambiguity as to space group
Determination of Crystal Symmetry
- of all the symmetry operations, the only one about which we can derive no information is the presence or absence of an inversion center
(i) breakdown of Friedel's law (ii) piezoelectric effect
(iii) pyroelectric effect (iv) optical activity