• Tidak ada hasil yang ditemukan

Electromagnetics:

N/A
N/A
Protected

Academic year: 2024

Membagikan "Electromagnetics:"

Copied!
7
0
0

Teks penuh

(1)

Yoonchan Jeong

School of Electrical Engineering, Seoul National University Tel: +82 (0)2 880 1623, Fax: +82 (0)2 873 9953

Email: [email protected]

Electromagnetics:

General Transmission-Line Equations

(9-3)

(2)

General Transmission Line Equations

d G =

σ

w

c

f c

R w

σ µ π

= 2

w L =

µ

d

d C =

ε

w

Equivalent circuit

Faraday’s law:

0 ) , ) (

, ) (

, ( )

,

( − + ∆ =

∆ ∂

→ v z z t

t t z z i L t

z i z R t

z t v

t z L i t

z z Ri

t z v

∂ + ∂

∂ =

− ∂ ( , )

) , ) (

, (

Ampère’s law:

0 ) , ) (

, ) (

, (

) ,

( − + ∆ =

∆ +

∆ ∂

∆ +

→ i z z t

t t z z

z v C t

z z

v z G t

z i t

t z C v

t z z Gv

t z i

∂ + ∂

∂ =

− ∂ ( , )

) , ) (

, (

) ( ) ) (

( R j L I z

dz z

dV = + ω

[ V z e

j t

] → t

z

v ( , ) = Re ( )

ω

d

Kirchhoff’s voltage law

Kirchhoff’s current law

D. K. Cheng, Field and Wave Electromagnetics, 2nd ed., Addison-Wesley, 1989.

(3)

Wave Characteristics on an Infinite Transmission Line

) ( ) ) (

( R j L I z

dz z

dV = + ω

) ( ) ) (

( G j C V z

dz z

dI = + ω

Time-harmonic transmission-line equations:

) ) (

(

2

2 2

z dz V

z V

d = γ

) ) (

(

2

2 2

z dz I

z I

d = γ

β α

γ = + j

Propagation const.

(Attenuation const. & phase const.)

General solutions:

) ( )

( )

( z V z V z

V =

+

+

= V

0+

e

γz

+ V

0

e

+γz

)

( )

( )

( z I z I z

I =

+

+

= I

0+

e

γz

+ I

0

e

+γz

+

+

= −

=

0 0 0

0

0

I

V I

Z V

Characteristic impedance:

γ ω L j R +

= G j ω C

γ

= +

C j G

L j R

ω ω +

= +

3

) )(

(R + j

ω

L G + j

ω

C

=

(4)

Line Characteristics (1)

Lossless line:

Propagation constant:

γ = α + j β = j ω LC

Phase velocity:

β

= ω u

p

LC

= 1

Characteristic impedance:

Z

0

= R

0

+ jX

0

C

= L

Low-loss line:

Propagation constant:

γ = α + j β

2 / 1 2

/ 1

1

1  

 

 +

 

 

 +

= j C

G L

j LC R

j ω ω ω

Phase velocity:

β

= ω u

p

LC

≅ 1

Characteristic impedance:

Z

0

= R

0

+ jX

0

2 / 1 2

/ 1

1 1

 

 

 +

 

 

 +

= j C

G L

j R C

L

ω ω

LC C j

G L L

R C   + ω

 

 +

≅ 2 1

 

 

 

 

  −

≅ C

G L R j C

L

ω 1 2

) )(

(R + j

ω

L G + j

ω

C

= 0

,

0 =

=

R G

C G

L

R <<

ω

<<

ω

→ ,

C j G

L j R

ω ω +

= +

(5)

Transmission-Line Parameters (1)

Propagation constant:

γ

=

α

+ j

β

= (R+ j

ω

L)(G + j

ω

C)

2 / 1

1 

 

 +

=

j C

LC G

j

ω ω

γ

L

R <<

ω

2 / 1

1 

 

 +

=

ωε

µε σ ω

γ

j j

Propagation constant for a TEM wave in a lossy dielectric medium:

ε

= σ

→ C G

µε

=

→ LC

Useful relations to determine transmission-line parameters if any single of those is known!

For low loss conductors:

5

(6)

Transmission-Line Parameters (2)

Two-wire transmission line:

( D a )

C = cosh

1

πε / 2

(See Eq. 4-47)

L = µε C

C G ε

= σ

R

s

R = 2 f

c

σ µ π π

= 1

Coaxial transmission line:

a L ln b

2 π

= µ

) / ln(

2 a C = b πε

) / ln(

2 a G = b πσ

 

 

  +

= 1 f

c

1 1 σ

µ π ) π

1 ( 1

R

s

R = +

(See Eq. 3-139)

 

 

=

a D cosh

1

2 π

µ

) 2 / (

cosh

1

D a

= πσ

D. K. Cheng, Field and Wave Electromagnetics, 2nd ed., Addison-Wesley, 1989. D. K. Cheng, Field and Wave Electromagnetics, 2nd ed., Addison-Wesley, 1989.

(7)

Attenuation Constant from Power Relations

) )(

(R j L G j C

j

ω ω

β α

γ

+ +

= + Propagation constant: =

Attenuation constant:

α = Re[ ( R + j ω L )( G + j ω C ) ]

z

e

j

V z

V ( ) =

0 (α+ β)

z

e

j

I z

I ( ) =

0 (α+ β) Time-averaged power loss:

[ ( ) ( ) ]

2 Re ) 1

( z V z I

*

z

P =

→ R e

z

Z

V

2α

2 0 0 2 0

2

=

z

e

j

Z

V

( )

0

0 α+ β

=

) ) (

( P z

z z P

=

L

− ∂

Time-averaged power loss per unit length

) ( 2 α P z

= ) ( 2

) (

z P

z P

L

=

→ α

[ I ( z )

2

R V ( z )

2

G ]

2

1 +

= R G Z e

z

Z

V

2 2α

2 0 0 2

0

( )

2

+

=

) 2 (

1

2

0 0

Z G R R +

=

(

02

)

2

0

1 R GR

R +

→ α 

 

 +

= C

G L L R C 2 1

For a low-loss line:

Z

0

≅ R

0

= L / C

7

0 0

0

R jX

Z = +

Loss by conducting walls Loss by dielectric

Referensi

Dokumen terkait

Lee, John F &amp; Sears F.W, 1963, Therm Odynamics and Introductory Text for Engineering Students , Tokyo: Addison Wesley Publishing Company, Inc.. Budi Purwanto, 2009,

(1976), : Curriculum and Instruction for Emerging Adolescents , New York: Addison Wesley. Metode Penelitian Sosial Ekonomi. Jakarta: Bumi Aksara. Metode Penelitian Untuk

*Howard Anton, Elementary Linear Algebra, 8thedn, John Wiley & Sons, Inc., New Jersey, 2000.. Lay, Linear Algebra and Its Applications, 3rdedn, Addison Wesley Longman,

Complex Carbohydrates Their Chemistry, Biosynthesis, and Functions A Set of Lecture Notes Nathan Sharon The Weizmann Institute of Science 1975 Addison-Wesley Publishing

 Benyamin Ginsberg, The Consequences of consent: Elections, Citizen control and Popular Acquisecence, Massachuset: Addison-Wesley Publishing, 1982  Hanna F Pitikin, The Concept of

Approaches to training and development, Reading, Mass: Addison-Wesley Website : [1] About Tajweed Main Page: Retrieved 20 May 2012, from :

References Bandura, A 1986 Social Boundaries of Thought and Action, Prentice Hall, Englewood Cliffs, NJ Beckhard, R 1969 Organization Development: Strategy and Models, Addison-Wesley,

Recommended: 콘크리트구조설계기준 해설, 2007개정, 기문당, 2007 by 한국콘크리트학회 Reinforced Concrete Design, 6th Edition, Addison Wesley, 1998 by Chu-Kia Wang and Charles Salmon GRADING Homework