• Tidak ada hasil yang ditemukan

Operational Amplifier

N/A
N/A
Protected

Academic year: 2024

Membagikan "Operational Amplifier"

Copied!
32
0
0

Teks penuh

(1)

주요한 단자

1. inverting input 2. noninverting input 3. output

4. positive power supply ( v+) 5. negative power supply (v)

NC : no connection

Balance(offset null) : compensate for a degradation

(b) The correspondence between the circled pin numbers of the integrated circuit and the nodes of the operational amplifier.

(a) A µA741 integrated circuit has eight connecting pins

Operational Amplifier Operational Amplifier

(2)

Common node : reference

- All voltages rise from the reference node.

- All currents come into the amplifier.

KCL

i1 + i2 + io + i+ + i- = 0

An op amp, including power supplies v+ and v-.

Symbol and Circuits Symbol and Circuits

(3)

- Op amp가 선형이기 위해서는 다음의 조건을 만족해야 한다.

) ,

) (

( SR SR slew rate

dt t dv

i i

v v

o sat o

sat o

s V SR

mA i

V v

A For

sat

sat 14 , 2 , 500,000 /

, 741

=

=

=

μ

v0

V+

V+

A V+/

V+/A (v2 v1)

Linear region Positive saturation

Negative saturation

Ideal Operational Amplifier Ideal Operational Amplifier

(4)

Table. Operating Condition for an Ideal Operational Amplifier

Variable Ideal Condition

Inverting node input current Noninverting node input current Voltage difference between

inverting node voltage v1 and noninverting node voltage v2

i1 = 0 i2 = 0

v2 - v1=0

- Ideal operational amplifier Op amp input current는 영이다.

Input node voltage는 같다.

* Virtual short condition.

0 ,

0 2

1 = i =

i

1

2 v

v =

The ideal operational amplifier

i

R

A

Ideal Operational Amplifier Ideal Operational Amplifier

(5)

R A

Ri , o 0,

-Ideal OP Amp

(1) Infinite gain, (2) infinite input resistance, (3) zero output resistance

- 실제 소자 거동(e.g. saturation)을 정확히 묘사하지 못하나, 해석을 단순화.

Ideal Operational Amplifier Ideal Operational Amplifier

(6)

KCL

i2 + i1 + io + i+ + i- = 0

여기서 i2 , i1은 매우 작으므로 i2 = i1 0

따라서, io = -( i+ + i- )

Input current는 영이지만 output current는 상당히 흐른다.

Op amp 회로는 선형 구간에서 그림과 같이

간략화 할 수 있다.

여기서 이고

i2 + i1 + io = 0 은 성립하지 않는다.

왜 냐 하 면 이 회 로 는 간 략 화 한 회 로 이 기 때문이다.

< V+

v0

An op amp, including power supplies v+ and v-.

The ideal operational amplifier

Op amp

Op amp

회로의 회로의 간략화 간략화

(7)

v1 , vo가 미지수

0 , 1 2

1

2 = v i = i = v

) 1 ( 0

1 0

1 + =

Ω +

Ω

v v v

v a o

) 2 ( 0

30 0 0 10

1

1 + =

Ω +

Ω

k v k

v v b

) ' 2 ( 3 0

4

) ' 1 ( 3 0

3 4

1 1

=

=

b

o a

v v

v v v

Nodal Analysis of Op Amp Circuits Nodal Analysis of Op Amp Circuits

Op amp : virtual short condition

Input 단자에서 KCL 적용.

Node 1

Node 2

(8)

Virtual short condition v2=v1=vb=0, i1=0

vc, vc+vsNode Voltage 정의 Node bKCL

Node a KCL

Supernode c, dKCL

) 1 ( 0 0

) (

0

4 3

= + +

R v R

v

vc s c

) 2 ( ) 0

(

6 5

2 1

=

+

+ + +

R v R

v v

R v v

R v v

va c s a c a o a

) 3 ( 0 0

0

3 1

4 2

= + +

+ +

+

R v v R

v v v R

v R

v

vc a c c s a c s

(b) The bridge circuit Supernode

Bridge Amplifier Circuits (I) Bridge Amplifier Circuits (I)

(a) A bridge amplifier, including the bridge circuit

(9)

vc, va, vo가 미지수.

) ' 3 ( 1 )

( 1 1 )

1 1

( 1 1 )

( 1

) ' 2 1 (

1 ) ( 1

1 ) 1

1 ( 1

) ' 1 ( 1 )

( 1

3 1

4 3

2 1

2 1

1 0

5 2

1 6

5 2

1

3 4

3

s c

a

s c

a s c

R v v R

R R

R v R

R R

R v v

v R R v R

R R

R R

R v R

v R

+

= +

+ +

+ +

=

+

+

+ +

= +

(c) Its Thévenin equivalent circuit

(d) The bridge amplifier, including the Thévenin equivalent of the bridge

va, vc를 소거하면 v0를 구할 수 있다.

Bridge Amplifier Circuits (II) Bridge Amplifier Circuits (II)

(10)

따라서, v0 = -Avin이고

이어야 하므로

vin는 매우 작아야 Op amp가 선형동작한다. v2 = 0 이고 v2 = v1 이므로 v1 = 0, i1 = 0 KCL에서 iR1 + iRf = 0.

) :

( 0 0

0

1 1

0

0 1

factor scaling

R v R

R v R

R v R

v

f in

f f in

=

=

+

<V+

v0

1

1 R R

v V V

R v R

f in

in

f +

+ <

<

A V

vs < +

Inverting Amplifier Inverting Amplifier

이어야 하므로

Rf가 없는 open loop인 경우

v0 = -Av1이 되고 i1 0 이므로 v1 vin가 된다.

(11)

i2 0 이므로 Rg 에서의 전압강하 = 0.

따라서, v2 vin이고 v1 v2이므로 v1= vin

KCL에서

in f

o

in f

f o

f o in

in

R v v R

R v R

R v

R v v

R v

) 1 (

1 ) ( 1

0 0

1 1 1

+

=

+

=

=

+

Noninverting

Noninverting AmplifierAmplifier

(12)

3 3 2

2 1

1

3 3 2

2 1

1

) (

) (

) (

0

R v v R

R v R

R v R

R v v

R v v

R v v

R v v

f f

f o

n n

n f

o n

+

+

=

=

+

+

+

vp = vn = 0 이고 KCL을 적용.

따라서, voscale n개의 입력 전압의 합이고 부호는 역전되어 있다.

Summing Amplifier Summing Amplifier

(13)

vp = vn 이고 KCL을 적용.

) (

)) (

1 (

)) 0

( 1 /(

0 /

/ /

) 1 (

) 1 (

) 0

1 (

0

3 3 2

2 1

1 4

3 3 2

2 1

1

3 3 2

2 1

1 3

2 1

3 2

1

3 2

1 3

3 2

2 1

1

4 0 4

0 4

4

4

0

v K v

K v

K K v

v K v

K v

K v

R

v K v

K v

K R

v K K

K R

v K R

v K R

v K

K K

K R

v K

R

v v

K R

v v

K R

v v

K v v

R K

v R

K v K

R K

v v

R v

o n

a a

n a

n a

n a

n

a

n a

n a

n a

n

n b

b n

b n

b n

+ +

+ +

+ +

+ +

+ +

=

=

= +

+ +

= +

+ +

=

=

= +

따라서,

Noninverting

Noninverting Summing AmplifierSumming Amplifier

(14)

v-= vin = vout

Circuit #1의 출력은 Circuit #2 를 연결하는 순간 변하고 만다. 이 를 Loading effect라고 한다.

그림(b)와 같은 전압은 바뀌게 된 다. Op ampvoltage follower 를 이용하면 출력전압을 그대로 유 지할 수 있다.

Voltage follower (buffer amplifier)

(b) After Circuit#2 is connected (a) Circuit#1 before

(c) Preventing loading using a voltage follower

Voltage Follower and Loading Effect Voltage Follower and Loading Effect

(15)

Ω

= Ω

=

=

=

k v

k v

i

v v

v v

in in

c

in out

a out

40 30

4 3

4 3

이므로

(a) A voltage divider before a 30 kΩ resistor is added

(b) A voltage divider after a 30-kΩresistor is added

(c) A voltage follower is added

그림 (c)와 같이voltage follower를 삽입.

Node a KCL

in

a v

v = 3 4

= Ω + Ω

Ω Ω =

+ Ω

k v v

k k

k v k

v

v in

a a

in a

) 20 60

1 20

( 1 60 0

0 20

in in

a v v

v 4

3 60

20

60 =

= + 그림 (a)의 경우

in

b v

v 2

1 30 //

60 20

30 //

60 =

= + 그림 (b)의 경우.

30 kΩ 의 저항을 연결했으므로

Voltage Follower (Buffer or Isolation Amplifier) Voltage Follower (Buffer or Isolation Amplifier)

(16)

Gf G1

V+ G2

Gg V- Vs1

Vs2

(

2

)

0

2 v+ v +G v+ =

G s g

i+ = 0 이므로

2 2

2 1

1

1 (1 ) s

g f

s f

o v

G G

G G

v G G

v G

+ +

+

=

두 식에서 i- = 0 이므로

(

1

) ( )

0

1 v+ vs +Gf v+ vo = G

1 2

2

1

이고 이면

만약

G = Gf G = Gg vo = vs vs

)

이면

(

이고

만약

G1 = kGf G2 = kGg vo = k vs2 vs1

Difference Amplifier Difference Amplifier

(17)

(1) Finite gain : typically 104 to 106.

(2) Saturation : Output voltage cannot exceed the saturation voltage

0

= v+ v vd

Saturation & the Active Mode Saturation & the Active Mode

(18)

Typical Op

Typical Op--AmpAmp

(19)

Equivalent Circuit of a 741 Op Amp Equivalent Circuit of a 741 Op Amp

(20)

Simplified Internal Circuitry of a Basic Op Amp Simplified Internal Circuitry of a Basic Op Amp

(21)

Ideal op amp.

i1 = 0, i2 = 0, v1-v2 = 0 Practical op amp.

- nonzero bias currents (ib1, ib2) - nonzero input offset voltage (vos) - finite input resistance (Ri)

- nonzero output resistance (Ro) - finite voltage gain (A)

i1 = ib 1, i2 = ib2 , v1-v2 = vos ios= ib1 - ib2

For µA 741,

mV v

nA i

i

nA i

nA i

b b

b b

5

200

500 ,

500

2 1

2 1

(b) The offsets model of an operational amplifier

Practical Op

Practical Op--AmpAmp

(22)

Ideal op amp.

i1 = 0, i2 = 0, v1-v2 = 0 Practical op amp.

- nonzero bias currents (ib1, ib2) - nonzero input offset voltage (vos) - finite input resistance (Ri)

- nonzero output resistance (Ro) - finite voltage gain (A)

Practical Op

Practical Op--AmpAmp

(c) The finite gain model of and operational amplifier

(d) The offsets and finite gain model of an

operational amplifier

(23)

(a) An inverting amplifier

- 실제 Op amp bias current source 두 개와 offset voltage source 한 개가 ideal Op amp 더해져 있는 것으로 간주 (그림 (b)).

(b) An equivalent circuit that accounts for the input offset voltage and bias currents of the operational amplifier

Realistic Model

Realistic Model -- Inverting Amp(I)Inverting Amp(I)

- Op amp µA 741.

(24)

Realistic Model

Realistic Model -- Inverting Amp (II)Inverting Amp (II)

in o

o in

v v

k v k

v

5 50 0 0 10

0

=

Ω = +

Ω

(c) Analysis using superposition

- 그림 (c) ideal Op amp.

- 그림 (d) : Offset voltage source

os o

o os

os v v

k v v

k

v 0 6

50 10

0 = =

Ω +

Ω

(25)

Realistic Model

Realistic Model -- Inverting Amp (III)Inverting Amp (III)

- 그림 (f) : Bias current source, ib2 in = 0, vp = vn = 0 이므로

10kΩ 에 흐르는 전류=0 이고 50kΩ 에 흐르는 전류=0. v0 = 0

1

1 0 50

50 0 10

0 0

b o

o

b v k i

k v

i k = = Ω

Ω +

Ω +

- 그림 (e) : Bias current source, ib1

50 1

6

5 in os b

o v v k i

v = + + Ω

Superposition에 의해서

output offset voltage

Output offset voltage for µA 741

= 6×5 mV + 50 kΩ· 500 nA = 55 mV

최대 최대

5v >500 mV인 영역에서 offset voltage를 무시.

(26)

Offset Voltage

Offset Voltage -- Inverting AmpInverting Amp

(a) Bias current 에 의해 offset 전압이 발생. (b) Offset current에 의해 offset 전압이 발생.

(c) 대개 offset currentbias current ¼ 정도. 20 kΩ 의 역할

(27)

o o

f f

s s

i i

o

n o

f n o

f o n

s s n

i n

R G R G

R G R G

R

v A

v R

v b v

node

R v v

R v v

R a v

node

=

=

=

=

= +

=

+

+

, 1 , 1

, 1 1

) 0 0

: (

0 0 :

라 하면

0 )

( )

(

) (

= +

+

=

+

+

o o f

n f o

s s o

f n

f s

i

v G G

v G AG

v G v

G v

G G

G

) (

) )(

(

)

2 (

0

f o

f o

f f

s i

s f o

s

G AG

G G

G G

G G

v G AG

G D

v D

+

+ +

+

=

=

Ideal op amp의 경우, A→∞ , Gi0, Go→∞ 이므로 이를 대입하면 앞의 예와 같다.

출력 단에 부하저항 RL을 연결하면 vo가 바뀌며 이 값도 KCL에 의해서 구할 수 있 다.

Real Inverting Op

Real Inverting Op--Amp CircuitAmp Circuit

(28)

0 ))

( (

) (

:

0 ) (

:

= +

+

=

+ +

+

o L n

p o

o n

o f

o n f g

i

g n

n s

v G v

v A v

G v

v G b node

v v R G

R v v v

G a node

또한 RiRg 에 흐르는 전류가 같으므로

여기서, vp, vn, vo가 미지수이고 식이 세 개이므로 vo를 구할 수 있다.

g g p

g i

g n

R v v

R R

v

v

+ =

Real

Real NoninvertingNoninverting OpOp--Amp CircuitAmp Circuit

(29)

Node 1 voltage : E/16 Node 2 voltage : E/8 Node 3 voltage : E/4 Node 4 voltage : E/2

Applications

Applications -- D/A Converter D/A Converter Building

Building--Weighted Summing Circuit (I)Weighted Summing Circuit (I)

[bn1,....,b0]

D/A converter

[

0

]

0

1 1 1

12 .. b 2 b E

b

vout = n n + + +

R I E

0 = 32

(30)

Applications

Applications -- D/A Converter D/A Converter Building

Building--Weighted Summing Circuit (II)Weighted Summing Circuit (II)

[1,0,0,1]=[b3,b2,b1,b0]

Switch voltage

I0

Switch 0 : up Switch 1 : down Switch 2 : down

8I0 Switch 3 : up

Rf9 I0가 흐르므로 Vout = 2R x 9 I0

= 2R X 9 E/32R

= 9 E/16

(31)

Transducer Interface Circuit (I) Transducer Interface Circuit (I)

- Pressure sensor 의 출력을 PC에 입력을 하려면 ADC (analog-digital converter)를 이용해야 한다.

- ADC 0 ~ 10 V 의 입력을 필요로 하는데 pressure sensor의 출력은 – 250 mV ~ 250 mV 이다.

- 이것을 증폭시켜야 한다.

V 10 V

0

mV 250 mV

250

2 1

v

v v2 = av1 +b v2 = 20v1+5 V

(32)

Transducer Interface Circuit (II) Transducer Interface Circuit (II)

- Inverting amplifier,

voltage follower, summing amplifier를 이용하여 회로를 완성한다.

Referensi

Dokumen terkait

The title for this project is about optimization of power and gain in MOSFET muti- stage operational amplifier using Taguchi’s approach.. Operational amplifier (op-amp) has a high

In this project,will SILVACO EDA tool will be used to design the layout and schematic of folded cascade operational amplifier (Op-Amp).. Both of them must be

Cara kerja dari op-amp current feedback ditunjukan oleh gambar 2.1, dimana input non- inverting dari CFA terhubung pada masukan sebuah buffer dengan penguatan G B , sehingga

JFETs usually have increased input referred voltage noise, but in power amplifier applications this is not a serious issue due to the line-level signal voltages involved..

In Figure 4 the measured parameter relation is shown - under the zero flow condition - between the voltage difference across input of the heater as the input variable

▪ Karena terminal inverting dalam kondisi virtual ground, maka input resistance yg terlihat dari sumber (vs) adalah Rs?. ▪

Dengan penyesuaian yang tepat antara gelombang segitiga dengan tegangan kontrol, diperoleh pengaturan tegangan yang halus.. Kata Kunci : Unipolar PWM, H-bridge, operational amplifier,

It consists of gain- controlled amplifier block, AGC bias generation block, and voltage-to-current converter VIC block including temperature and supply-voltage compensation.. Detailed