• Tidak ada hasil yang ditemukan

CUIR at Chulalongkorn University: Taxonomic study of flowering plants in Khon Kaen university campus

N/A
N/A
Protected

Academic year: 2025

Membagikan "CUIR at Chulalongkorn University: Taxonomic study of flowering plants in Khon Kaen university campus"

Copied!
2
0
0

Teks penuh

(1)

g e o g r a p h ic a l HOTE

Khon Kacn U n iv e r s it y Campus l ie s n e a r 102 49 e a s t lo n g itu d e as th e 1 6 2o n o r th p a r a lle l a t th e a lt it u d e o f b e tw e e n 165-205 m . s . l. . I t i s w here th e exposed s o i l i s re d , s a n d y , le s s o rg a n ic m a tte r and l a t e r i t i c in c h a ra c te r ,

to g e th e r w ith r o c k s a lt ( N a C l ) d e p o s it in c e r ta in lo w la n d s p o ts . The p re y 'lie d c lim a te i s s e a s o n a l m onsoon p ro d u c in g h ig h r a i n f a l l b etw een May to O c to b e r, w ith a v e ra g e te m p e r­

a tu r e a b o u t 5 4 -3 5 c. Ho r a i n f a l l b u t s t i l l h ig h p r e c ip it a ­ t io n is re c o rd e d in c o ld sea so n b etw een N ovem ber to F e b ru a ry w ith a ve ra g e te m p e ra tu re a b o u t 4 -1 0 c . The c o n d itio n is d ry and d ro u g h t due to h ig h seepage b etw een M arch to May w ith h ig h te m p e ra tu re b etw een 36-42 c.

(2)

Map I

Highway Route No

Referensi

Dokumen terkait

Scale indicates the p ossib ility of using these scales in Thai culture, since there is a significant correlation between Anti-Chinese feelings and conformity to a peer group which has

คนว้โนนนงหน้ง รอบกกเลิก เธออยูในชุคแกงกายสิฝ็คเคนควงแขนกบขาย สูงอาบุออกมาจากโรงหนง สะอาค ไหคราย คคโกง สวย ใจรอน ออนแอ ฉลา0ไ เชอถือไค ข,เกียจ เลว สกปรก เมกกากชุซท

To search fo r more s c ie n tific inform ation, th is work was th is perfprmed by using alcohols and other organic solvents includ in g both polar and non-polar.. Some ty p ic a l

[r]

N ik itin , "The Chemistry of Cellulose and Wood", translated from Russian by J.. Morrison and

Piroj Sattayatham Department ะ Mathematics Academic Year ะ 1975 ABSTRACT The object of this Thesis is to generalize some Theorems on curves which lie in Euclidean 3-space to more

Then the zero vector in Equ.3, can be written as a linear conbination of for which not all coefficients of are zero since the coefficient of 1^ = 1.. This contradicts the assumed linear

CHAPTER IV HIGHER CURVATURES OF CURVES IN EUCLIDEAN N-SPACE The main purpose of this chapter is to characterize the Frenet frame and the curvatures of curves in Euclidean n-space..