• Tidak ada hasil yang ditemukan

Lecture Note 0

N/A
N/A
Protected

Academic year: 2024

Membagikan "Lecture Note 0"

Copied!
17
0
0

Teks penuh

(1)

Lecture Note 0 Review Second Semester, Academic Year 2012 Department of Mechanical Engineering Chulalongkorn University Contents Basic Statics Force system RigidbodiesinequilibriumRigid bodies in equilibrium Structures (trusses and frames/machines) in equilibrium Basic Mechanics of Materials Stress, strain and transformation Stress and deformation in axially loaded members, torsion, bdidl 2

bending and pressure vessels

Equilibrium

Definition An object is in equilibrium when it is stationary or in steady translation relative to an inertial reference frame. 

 0RFF 3



 0 OROMM When a body is in equilibrium, the resultant force and the resultant couple about any point are both zero.

R R

F MO

 

Example

Hibbeler Ex 5-6 #1

2D Equilibrium 4

Determine the horizontal and vertical components of reaction for the beam loaded as shown. Neglect the weight of the beam in the calculation.

(2)

Example

Hibbeler Ex 5-6 #2 Find:,,yxyABB

2D Equilibrium   

 

Find:

, , Equilibrium of 0(600 N)cos450 424.26 N424 NAns 0(100N)(2m)(600N)sin45(5m)

yxy xx x B

ABB ADB FB B M 5

   

 

0(100 N)(2 m)(600 N)sin45(5 m) (600 N)cos45(0.2 m)(7 m)0 319.50319 NAns 0(600 N)sin45(100

B y y yy

M A A FA 

N)(200 N)0 404.76 N405 NAnsy y

B B

2D Supports

Summary #1

2D Equilibrium 6

2D Supports

Summary #2

2D Equilibrium 7

2D Supports

Summary #3

2D Equilibrium 8

(3)

Example

Hibbeler Ex 5-15 #2

3D Equilibrium FBD of plate 9

 

 

Equilibrium of plate 00 00

xx yy

ABC FB FB

Example

Hibbeler Ex 5-15 #3 

Equilib

rium of plate 0(300 N)(980.7 N)0(1)zzzC

ABC FABT

3D Equilibrium   

 

0(2 m)(980.7 N)(1 m)(2 m)0(2) 0(300 N)(1.5 m)(980.7 N)(1.5 m)(3 m) (3 m)(200 Nm)0(3)

xCz yz z

MTB MB A Solve (1), (2) & (3) 79035N21667NAB 10

   

790.35 N, 216.67 N, 707.02 N 790 N, 707 N, 0,217 N Ans

zz C zC xyz

AB T AT BBB

3D Supports

Summary #1

3D Equilibrium 11

3D Supports

Summary #2

3D Equilibrium 12

(4)

3D Supports

Summary #3

3D Equilibrium 13

3D Supports

Summary #4

3D Equilibrium 14Comparison with 2D supports

Example

Disassembling the structure

Structure 15

Imaginary Section

Choice of Planes Imaginary section cuts through the considered region. The values of internal loads depends on the plane of imaginarysection

Loads imaginary section. 16

(5)

Stress

Normal and Shear StressesLoads 17

avgN AavgV A

Strain

Normal and Shear StrainsLoads   ss

  2nt 18

 avg sL

Axially Loaded Members

A homogeneous and isentropic prismatic bar is subjected to axial load.

Axial Load  , , latP ALL 19

Changes in Lengths

Prismatic Bars A prismatic bars has straight longitudinal axis and constant cross section.

Axial Load secto PL AE , , P E AL 20

AE

(6)

Example

Hibbeler 4-4 #1 The bronze C86100 shaft is subjected to the axial loads shown. If the diameters of each segment are dAB=0.75 in., dBC=2 in., and

Axial Load dCD=0.5 in., determine the displacement of end Awith respect to end D. 21

3 15.010 ksiE

Example

Hibbeler 4-4 #2Axial Load 22

Example

Hibbeler 4-4 #3 

FBD of sec

tion 0 2 kip0xAB

A FF

Axial Load    

 

2 kip (T) FBD of section 0 3(2 kip)0 6 kip (T)

xAB AB xBC BCF AB FF F 23



FBD of section 0 8 kip0

BC xCDAD FF 8 kip (T)CDF

Example

Hibbeler 4-4 #4Axial Load 24
(7)

Example

Hibbeler 4-4 #5   23(2.0 kip)(48 in.) 0.014487 in.ABAB ABFL AE

Axial Load     

   

23 23 23

(0.75 in.)(15.010 ksi) 4 (6.0 kip)(120 in.) 0.015279 in. (2.0 in.)(15.010 ksi) 4 (8.0 kip)(36 in.) (05i)(15010k

AB BCBC BC BC CDCD CD CD

AE FL AE FL AE0.097785 in. i) 25

 23 (0.5 in.)(15.010 ks 4CDAE  

i) 0.127551 in.0.158 in.Ans

ADABBCCD

Torsion

Linearly Elastic Circular Bars  , maxmaxGGrG c

Torsion 26

Torsion Formula

Torsion 

ATdM Tr TL 27

JGJ

Polar Moment of Inertia



 

23 00

Solid shaft (2)2 rr Jdd

Torsion 44 232rd J 



2223 Tubular shaft or circular tube rr

28





22 11

23 (2 )2rr rrJdd 4444 1212()() 232Jrrdd 

(8)

Example

Gere 3.4-2 #1 A stepped shaft ABCD consisting of solid circular segments is subjected to three torques as shown. The material is steel with shear modulus of elasticityG=80 GPa.

Torsion (a) Calculate the maximum shear stress τmaxin the shaft. (b) Calculate the angle of twist φD(in degrees) at end D. 29

Example

Gere 3.4-2 #2Torsion 30

   

FBD of shaft 0 3000 Nm 2000 Nm800 Nm0 5800 Nm

x A A

M T T

Example

Gere 3.4-2 #3Torsion 

FBD of sec

tion in equilibrium 005800 NmxAABAB

A MTTT 31

  

  

FBD of sec

tion in equilibrium 03000 Nm02800 Nm FBD of section in equilibrium 02000 Nm0

xABBCBC xBCCDCD

B MTTT C MTTT800 Nm

Example

Gere 3.4-2 #4Torsion 32
(9)

Example

Gere 3.4-2 #5  43421632 , Section

maxTrTrTTLTL JGJrdGd AB

Torsion    

    

6 33 4924

Section 1616(5800 Nm) ()57.69410 Pa (0.08 m) 3232(5800 Nm)(0.5 m) 0.0090146 rad (8010 N/m)(0.08 m) Section

AB maxAB AB ABAB AB AB

AB T d TL Gd BC 33

1 ()maxBC   

    

6 33 4924

616(2800 Nm) 66.02010 Pa (0.06 m) 3232(2800 Nm)(0.5 m) 0.013754 rad (8010 N/m)(0.06 m)

BC BC BCBC BC BC

T d TL Gd

Example

Gere 3.4-2 #6  6

Section 1616(800 Nm) ()6366210PaCD C

CD T

Torsion     

    

34 4924

()63.66210 Pa (0.04 m) 3232(800 Nm)(0.5 m) 0.019894 rad (8010 N/m)(0.04 m) 66.0 MPa betweenAns

maxCD CD CDCD CD CD max

d TL Gd BC 34

 

 

0.042663 rad 2.44

DABBCCD D CCWAns

Flexure Formula



The neutral axis NA does not change length. 0NA passes through the centroid.xF

Bending My



 

Load & stress relationshipzMM 35

 I

C & I:

Centroid and Moment of Inertia 33Area(,) (0,0) 1212

xyxyII bhhb bh

Bending 244

1212 (0,0) 46464DDD 36

2 1cxxIIAd

(10)

Shear Formula

DerivationBending 0xF VQ It 37

It QyA

Example

Hibbeler 4th 6-68 #1 The T-beam is subjected to the loading shown, determine the absolute maximum bending stress in the T-beam and sketch the normal stress distribution on the cross section.

StressBending 38

Example

Hibbeler 4th 6-68 #2 FBD of whole T-beam 00xBFH 

 

StressBending 0261.813.5180 12.3/180.68333 kip 021.80 56.1/183.1167 kip

AB B yAB A

MR R FRR R

    

 

39

Example

Hibbeler 4th 6-68 #3  

FBD 1

: 06 ft 020y

x FV

StressBending     

 

2 kip 020 2 kipft FBD 2: 6 ft15 ft

O

V MxM Mx x 40

   

 

023.11670 1.1167 kip 03.1167(6)20 1.116718.700 kipft

y O

FV V MxxM Mx

(11)

Example

Hibbeler 4th 6-68 #4Bending  

11 1

FBD 3: 09 ft (24 ft) 00.20.683330y

xxx FVx 41

    

 

1 1 111 2 11 2

0.20.683330.24.1167 kip 00.2(/2)0.683330 0.10.6833 0.14.116741.200 kipft

y F

Vxx MMxxx x MMx xx

Example:

Hibbeler 4th 6-68 #5Bending 42

Example

Hibbeler 4th 6-68 #6 Consider T-beam cross section

Bending 1122 12

NA locates on centroid(,). By symmetry about axis, 0 ii i

Cyz yz yAyAyA y AAA

   

 

43

(100.5)(61)5(110) (61)(110) 7.0625 in.yy   

Example

Hibbeler 4th 6-68 #7Bending 22 1122

Consider T-beam cross section NA locates on centroid(,). Find about neutral axis ()() 1

yy

Cyz I IIAdIAd 44

32 32 4

1 6(1)6(10.57.0625) 12 1 1(10)10(7.06255) 12 197.27 in.

I I I

  

(12)

Example

Hibbeler 4th 6-68 #8Bending Abs max bending moment 12 kipft at 6 ft at6ft

maxMx My x

   45

, at6 ft (1212)3.9375 2.8742 ksi 197.27 (1212)(7.0625) 5.1554 ksi 197.27

top bottom

x I  



 

   

Example:

Hibbeler 4th 6-68 #9 46Abs max bending stress5.16 ksi (C)Ansmax

Example

Hibbeler 4th 6-68 #10 02.9375 in. y

StressBending 2 3 2 4 3 4

61 in. (2.9375)1 in. 2.93750.5 in. (2.9375)/2 in.

A Ay y yyy

   

47

3344 22 3

(2.9375) (3.43756) in. 2 , 1 in.

I I I I

IQyAyA y VQ t It

Q

   

Example

Hibbeler 4th 6-68 #11 7.0625 in.0y

StressBending 2 223

(7.0625)1 in. 0.5(7.0625) in. 1 (70625)in

II II IIIIII

Ay yyy QyA yQ

   

48

223 (7.0625) in. 2 , 1 in.

II II II II

yQ VQ t It

 

(13)

Example

Hibbeler 4th 6-68 #12   Between 06 ft Absmaxisveupwardstressdirectionx V

StressBending  

  

Abs max isve upward stress direction 02.9375 in., 7.0625 in.0,

maxmaxI I maxII II

max

V VQVQ y ItIt VQ y ItVQ It

49

  max

at NA 0 20.5(7.

max maxII II

y VQ It

  22 06250) 0.253 ksiAns 197.271

Example

Hibbeler 4th 6-68 #13 1 2.9375 in.3.9375 in.y

StressBending    

2 223

6(3.9375) in. (3.9375)/2 in. 3(39375)in

III III IIIIIIIII

Ay yyy QyA yQ

50

 

3(3.9375) in. , t6 in.III

III III III

y VQ It

Q

Example

Hibbeler 4th 6-68 #14StressBending 51

Integration

Slopes & Deflections Successive integrations Find constants of integration through Bdditi

Bending Boundary conditions Find constants of integration through Continuity condition Symmetry condition

52

2 2dvM EIdx

(14)

Example

Hibbeler 12-6 #1Bending Determine the equations of the elastic curve for the beam and specifythebeam’smaximumdeflection.EIisconstant. 53

specify the beams maximum deflection.EIis constant.

Example

Hibbeler 12-6 #2Bending FBD of whole beam 00 33

xAFH LP

54

33 0()0 22 00 2

ABB yABA

LP MRLPR P FRRPR

  

 

Example

Hibbeler 12-6 #3Bending Section 1: 0 00 22y

xL PP FVV

 

55

00 2APx MMVxM

 Example

Hibbeler 12-6 #4Bending 3 Section2:L Lx 56

Section 2: 2 3 00 22 33 00 22

y A

Lx PP FVVP P MLVxMMPxPL

   

 

(15)

Example

Hibbeler 12-6 #5Bending 57

Example

Hibbeler 12-6 #6Bending 2 2 12 3 12 2

Section 1: 0 (1) 24 (2) 12 At , 0,0 with (2)0

xL dvPdvP EIMxEIxC dxdx P EIvxCxC AxvC

    58

2 1 222

At , , 0 with (2) 12 At , , 4126BB

PL BxLvC dvPLPLPL BxLvEIv dx

 

Example

Hibbeler 12-6 #7Bending 2 2 32 32 34

3 Section 2: 2 33 (3) 222 3 x(4) 64

L Lx dvdvP EIMPxPLEIxPLxC dxdx P EIvxPLxCC

   59

22 3 3 4

64 5 At , , with (3) 66 At , , 0 with (4) 4

dvPLPL BxLC dxEI PL BxLvC

 

Example

Hibbeler 12-6 #8Bending

 

32 22

Section 1: 0, 12 3Ans 12

P xLvxLx EI dvP xL dxEI

  60

 

3223 22

3 Section 2: ,2910x3 212 395Ans 6

LP LxvxLxLL EI dvP xLxPL dxEI

 

(16)

Example

Hibbeler 12-6 #9Bending 61

Example

Hibbeler 12-6 #10

 

22Max ve deflection in section 1 (0) 1 30

xL dvP LL



Bending

    

22 3 32 3

30 123 0.0321 12 33 Max ve deflection in section 2 () at 22

+ve max

xLxL dxEI PPL vxxL EIEI LL Lxx PPL

   62

 

3223 2910x3 128ve max maxve ma

PPL vxLxLL EIEI vv

 

3 in the downward directionAns 8xPL EI

Statically Indeterminate Members

The reactions of members cannot be determined by equilibrium equations alone. The degree of static indeterminacyis the number of reactions in excess of the number of equilibrium equations. 63

SI Members

Propped cantilever beams Statically indeterminate to the first degree Choose static redundants by remove support to obtain statically determinate released or primary structure 3 equations 4 unknowns 64

Add compatibility condition

(17)

Pressure Vessels

Sphere Consider half section 65

2 2 0(2)0 2 /2

xm m m

pr Frtpr rt rrtr

 

 2pr t

Pressure Vessels

Closed Cylinder 

1

Consider half section 0(2)20xFbtpbr 

2 2

Consider cross sectional section 0(2)0zmFrtpr 66

1 2

circumferencial or hoop stress longitudinal or axial stress  

1pr t2 2pr tσ2

Referensi

Dokumen terkait

To further assess the accuracy of the DSG beam elements, the profiles of deflection, rotation, bending moment, and shear force obtained using four elements were

Determine the internal normal force, shear force and bending moment acting at point C in the beam.. a home base

This includes the beam resting on a half-space, plates/beams resting on elastic foundations and subjected to dynamic loading, the analysis of composite pavements, reliability issues

Fatigue life estimation of a 1D aluminum beam under mode-I loading using the electromechanical impedance technique Abstract Structures in service are often subjected to fatigue

In addition to pure-bending tests, shear tests under a monotonic loading for screwed fittings and flexible couplings of a 1” diameter piping were conducted to further investigate the

Results and Discussions Crack pattern – Beam A • Minor flexural crack at mid-span during the early stages of loading • With increased loading, cracks propagated to the shear span •

Furthermore, we see that the normal stress on the elastic-fiber [that is the neutral line generated by loading the beam with a pure bending moment Mt] is always zero: σflξ = 0 = 0 3

21 The decreasing v-value for increasing strength seems to hold generally - Geometric effects Stress concentration Absolute value of dimension - Loading condition a/d ratio 1 1978