Lecture Note 0 Review Second Semester, Academic Year 2012 Department of Mechanical Engineering Chulalongkorn University Contents Basic Statics Force system RigidbodiesinequilibriumRigid bodies in equilibrium Structures (trusses and frames/machines) in equilibrium Basic Mechanics of Materials Stress, strain and transformation Stress and deformation in axially loaded members, torsion, bdidl 2
bending and pressure vessels
Equilibrium
Definition An object is in equilibrium when it is stationary or in steady translation relative to an inertial reference frame.
0RFF 3
0 OROMM When a body is in equilibrium, the resultant force and the resultant couple about any point are both zero.R R
F MO
Example
Hibbeler Ex 5-6 #12D Equilibrium 4
Determine the horizontal and vertical components of reaction for the beam loaded as shown. Neglect the weight of the beam in the calculation.
Example
Hibbeler Ex 5-6 #2 Find:,,yxyABB2D Equilibrium
Find:, , Equilibrium of 0(600 N)cos450 424.26 N424 NAns 0(100N)(2m)(600N)sin45(5m)
yxy xx x B
ABB ADB FB B M 5
0(100 N)(2 m)(600 N)sin45(5 m) (600 N)cos45(0.2 m)(7 m)0 319.50319 NAns 0(600 N)sin45(100
B y y yy
M A A FA
N)(200 N)0 404.76 N405 NAnsy y
B B
2D Supports
Summary #12D Equilibrium 6
2D Supports
Summary #22D Equilibrium 7
2D Supports
Summary #32D Equilibrium 8
Example
Hibbeler Ex 5-15 #23D Equilibrium FBD of plate 9
Equilibrium of plate 00 00
xx yy
ABC FB FB
Example
Hibbeler Ex 5-15 #3
Equilibrium of plate 0(300 N)(980.7 N)0(1)zzzC
ABC FABT
3D Equilibrium
0(2 m)(980.7 N)(1 m)(2 m)0(2) 0(300 N)(1.5 m)(980.7 N)(1.5 m)(3 m) (3 m)(200 Nm)0(3)
xCz yz z
MTB MB A Solve (1), (2) & (3) 79035N21667NAB 10
790.35 N, 216.67 N, 707.02 N 790 N, 707 N, 0,217 N Ans
zz C zC xyz
AB T AT BBB
3D Supports
Summary #13D Equilibrium 11
3D Supports
Summary #23D Equilibrium 12
3D Supports
Summary #33D Equilibrium 13
3D Supports
Summary #43D Equilibrium 14Comparison with 2D supports
Example
Disassembling the structureStructure 15
Imaginary Section
Choice of Planes Imaginary section cuts through the considered region. The values of internal loads depends on the plane of imaginarysectionLoads imaginary section. 16
Stress
Normal and Shear StressesLoads 17avgN AavgV A
Strain
Normal and Shear StrainsLoads ss 2nt 18
avg sL
Axially Loaded Members
A homogeneous and isentropic prismatic bar is subjected to axial load.Axial Load , , latP ALL 19
Changes in Lengths
Prismatic Bars A prismatic bars has straight longitudinal axis and constant cross section.Axial Load secto PL AE , , P E AL 20
AE
Example
Hibbeler 4-4 #1 The bronze C86100 shaft is subjected to the axial loads shown. If the diameters of each segment are dAB=0.75 in., dBC=2 in., andAxial Load dCD=0.5 in., determine the displacement of end Awith respect to end D. 21
3 15.010 ksiE
Example
Hibbeler 4-4 #2Axial Load 22Example
Hibbeler 4-4 #3
FBD of section 0 2 kip0xAB
A FF
Axial Load
2 kip (T) FBD of section 0 3(2 kip)0 6 kip (T)
xAB AB xBC BCF AB FF F 23
FBD of section 0 8 kip0
BC xCDAD FF 8 kip (T)CDF
Example
Hibbeler 4-4 #4Axial Load 24Example
Hibbeler 4-4 #5 23(2.0 kip)(48 in.) 0.014487 in.ABAB ABFL AEAxial Load
23 23 23
(0.75 in.)(15.010 ksi) 4 (6.0 kip)(120 in.) 0.015279 in. (2.0 in.)(15.010 ksi) 4 (8.0 kip)(36 in.) (05i)(15010k
AB BCBC BC BC CDCD CD CD
AE FL AE FL AE0.097785 in. i) 25
23 (0.5 in.)(15.010 ks 4CDAE
i) 0.127551 in.0.158 in.Ans
ADABBCCD
Torsion
Linearly Elastic Circular Bars , maxmaxGGrG cTorsion 26
Torsion Formula
Torsion
ATdM Tr TL 27 J GJ
Polar Moment of Inertia
23 00Solid shaft (2)2 rr Jdd
Torsion 44 232rd J
2223 Tubular shaft or circular tube rr 28
22 11
23 (2 )2rr rrJdd 4444 1212()() 232Jrrdd
Example
Gere 3.4-2 #1 A stepped shaft ABCD consisting of solid circular segments is subjected to three torques as shown. The material is steel with shear modulus of elasticityG=80 GPa.Torsion (a) Calculate the maximum shear stress τmaxin the shaft. (b) Calculate the angle of twist φD(in degrees) at end D. 29
Example
Gere 3.4-2 #2Torsion 30
FBD of shaft 0 3000 Nm 2000 Nm800 Nm0 5800 Nm
x A A
M T T
Example
Gere 3.4-2 #3Torsion
FBD of section in equilibrium 005800 NmxAABAB
A MTTT 31
FBD of section in equilibrium 03000 Nm02800 Nm FBD of section in equilibrium 02000 Nm0
xABBCBC xBCCDCD
B MTTT C MTTT800 Nm
Example
Gere 3.4-2 #4Torsion 32Example
Gere 3.4-2 #5 43421632 , SectionmaxTrTrTTLTL JGJrdGd AB
Torsion
6 33 4924
Section 1616(5800 Nm) ()57.69410 Pa (0.08 m) 3232(5800 Nm)(0.5 m) 0.0090146 rad (8010 N/m)(0.08 m) Section
AB maxAB AB ABAB AB AB
AB T d TL Gd BC 33
1 ()maxBC
6 33 4924
616(2800 Nm) 66.02010 Pa (0.06 m) 3232(2800 Nm)(0.5 m) 0.013754 rad (8010 N/m)(0.06 m)
BC BC BCBC BC BC
T d TL Gd
Example
Gere 3.4-2 #6 6Section 1616(800 Nm) ()6366210PaCD C
CD T
Torsion
34 4924
()63.66210 Pa (0.04 m) 3232(800 Nm)(0.5 m) 0.019894 rad (8010 N/m)(0.04 m) 66.0 MPa betweenAns
maxCD CD CDCD CD CD max
d TL Gd BC 34
0.042663 rad 2.44
DABBCCD D CCWAns
Flexure Formula
The neutral axis NA does not change length. 0NA passes through the centroid.xFBending My
Load & stress relationshipzMM 35 I
C & I:
Centroid and Moment of Inertia 33Area(,) (0,0) 1212xyxyII bhhb bh
Bending 244
1212 (0,0) 46464DDD 36
2 1cxxIIAd
Shear Formula
DerivationBending 0xF VQ It 37It QyA
Example
Hibbeler 4th 6-68 #1 The T-beam is subjected to the loading shown, determine the absolute maximum bending stress in the T-beam and sketch the normal stress distribution on the cross section.StressBending 38
Example
Hibbeler 4th 6-68 #2 FBD of whole T-beam 00xBFH
StressBending 0261.813.5180 12.3/180.68333 kip 021.80 56.1/183.1167 kip
AB B yAB A
MR R FRR R
39Example
Hibbeler 4th 6-68 #3
FBD 1: 06 ft 020y
x FV
StressBending
2 kip 020 2 kipft FBD 2: 6 ft15 ft
O
V MxM Mx x 40
023.11670 1.1167 kip 03.1167(6)20 1.116718.700 kipft
y O
FV V MxxM Mx
Example
Hibbeler 4th 6-68 #4Bending
11 1
FBD 3: 09 ft (24 ft) 00.20.683330y
xxx FVx 41
1 1 111 2 11 2
0.20.683330.24.1167 kip 00.2(/2)0.683330 0.10.6833 0.14.116741.200 kipft
y F
Vxx MMxxx x MMx xx
Example:
Hibbeler 4th 6-68 #5Bending 42Example
Hibbeler 4th 6-68 #6 Consider T-beam cross sectionBending 1122 12
NA locates on centroid(,). By symmetry about axis, 0 ii i
Cyz yz yAyAyA y AAA
43
(100.5)(61)5(110) (61)(110) 7.0625 in.yy
Example
Hibbeler 4th 6-68 #7Bending 22 1122Consider T-beam cross section NA locates on centroid(,). Find about neutral axis ()() 1
yy
Cyz I IIAdIAd 44
32 32 4
1 6(1)6(10.57.0625) 12 1 1(10)10(7.06255) 12 197.27 in.
I I I
Example
Hibbeler 4th 6-68 #8Bending Abs max bending moment 12 kipft at 6 ft at6ftmaxMx My x
45
, at6 ft (1212)3.9375 2.8742 ksi 197.27 (1212)(7.0625) 5.1554 ksi 197.27
top bottom
x I
Example:
Hibbeler 4th 6-68 #9 46Abs max bending stress5.16 ksi (C)AnsmaxExample
Hibbeler 4th 6-68 #10 02.9375 in. yStressBending 2 3 2 4 3 4
61 in. (2.9375)1 in. 2.93750.5 in. (2.9375)/2 in.
A Ay y yyy
47
3344 22 3
(2.9375) (3.43756) in. 2 , 1 in.
I I I I
IQyAyA y VQ t It
Q
Example
Hibbeler 4th 6-68 #11 7.0625 in.0yStressBending 2 223
(7.0625)1 in. 0.5(7.0625) in. 1 (70625)in
II II IIIIII
Ay yyy QyA yQ
48
223 (7.0625) in. 2 , 1 in.
II II II II
yQ VQ t It
Example
Hibbeler 4th 6-68 #12 Between 06 ft Absmaxisveupwardstressdirectionx V
StressBending
Abs max isve upward stress direction 02.9375 in., 7.0625 in.0,
maxmaxI I maxII II
max
V VQVQ y ItIt VQ y ItVQ It
49
max
at NA 0 20.5(7.
max maxII II
y VQ It
22 06250) 0.253 ksiAns 197.271
Example
Hibbeler 4th 6-68 #13 1 2.9375 in.3.9375 in.yStressBending
2 223
6(3.9375) in. (3.9375)/2 in. 3(39375)in
III III IIIIIIIII
Ay yyy QyA yQ
50
3(3.9375) in. , t6 in.III
III III III
y VQ It
Q
Example
Hibbeler 4th 6-68 #14StressBending 51Integration
Slopes & Deflections Successive integrations Find constants of integration through Bdditi
Bending Boundary conditions Find constants of integration through Continuity condition Symmetry condition
52
2 2dvM EIdx
Example
Hibbeler 12-6 #1Bending Determine the equations of the elastic curve for the beam and specifythebeam’smaximumdeflection.EIisconstant. 53specify the beams maximum deflection.EIis constant.
Example
Hibbeler 12-6 #2Bending FBD of whole beam 00 33xAFH LP
5433 0()0 22 00 2
ABB yABA
LP MRLPR P FRRPR
Example
Hibbeler 12-6 #3Bending Section 1: 0 00 22yxL PP FVV
5500 2APx MMVxM
Example
Hibbeler 12-6 #4Bending 3 Section2:L Lx 56Section 2: 2 3 00 22 33 00 22
y A
Lx PP FVVP P MLVxMMPxPL
Example
Hibbeler 12-6 #5Bending 57Example
Hibbeler 12-6 #6Bending 2 2 12 3 12 2Section 1: 0 (1) 24 (2) 12 At , 0,0 with (2)0
xL dvPdvP EIMxEIxC dxdx P EIvxCxC AxvC
58
2 1 222
At , , 0 with (2) 12 At , , 4126BB
PL BxLvC dvPLPLPL BxLvEIv dx
Example
Hibbeler 12-6 #7Bending 2 2 32 32 343 Section 2: 2 33 (3) 222 3 x(4) 64
L Lx dvdvP EIMPxPLEIxPLxC dxdx P EIvxPLxCC
59
22 3 3 4
64 5 At , , with (3) 66 At , , 0 with (4) 4
dvPLPL BxLC dxEI PL BxLvC
Example
Hibbeler 12-6 #8Bending
32 22Section 1: 0, 12 3Ans 12
P xLvxLx EI dvP xL dxEI
60
3223 22
3 Section 2: ,2910x3 212 395Ans 6
LP LxvxLxLL EI dvP xLxPL dxEI
Example
Hibbeler 12-6 #9Bending 61Example
Hibbeler 12-6 #10
22Max ve deflection in section 1 (0) 1 30xL dvP LL
Bending
22 3 32 3
30 123 0.0321 12 33 Max ve deflection in section 2 () at 22
+ve max
xLxL dxEI PPL vxxL EIEI LL Lxx PPL
62
3223 2910x3 128ve max maxve maPPL vxLxLL EIEI vv
3 in the downward directionAns 8xPL EI
Statically Indeterminate Members
The reactions of members cannot be determined by equilibrium equations alone. The degree of static indeterminacyis the number of reactions in excess of the number of equilibrium equations. 63SI Members
Propped cantilever beams Statically indeterminate to the first degree Choose static redundants by remove support to obtain statically determinate released or primary structure 3 equations 4 unknowns 64Add compatibility condition
Pressure Vessels
Sphere Consider half section 652 2 0(2)0 2 /2
xm m m
pr Frtpr rt rrtr
2pr tPressure Vessels
Closed Cylinder
1Consider half section 0(2)20xFbtpbr
2 2Consider cross sectional section 0(2)0zmFrtpr 66
1 2
circumferencial or hoop stress longitudinal or axial stress
1pr t2 2pr tσ2