Response of MDOF systems
Degree of freedom (DOF): The minimum number of
independent coordinates required to determine completely the positions of all parts of a system at any instant of time.
Two DOF systems Three DOF systems
The normal mode analysis (EOM-1)
Example: Response of 2 DOF system
m 2m
k k k
x1 x2
FBD kx1 m k(x1-x2) 2m kx2
EOM
− kx
1− k ( x
1− x
2) = m x &&
12 2
2
1
) 2
( x x kx m x
k − − = &&
In matrix form, EOM is
⎥
⎦
⎢ ⎤
⎣
= ⎡
⎥ ⎦
⎢ ⎤
⎣
⎥ ⎡
⎦
⎢ ⎤
⎣
⎡
− + −
⎥ ⎦
⎢ ⎤
⎣
⎥ ⎡
⎦
⎢ ⎤
⎣
⎡
0 0 2
2 2
0
0
2 1 2
1
x x k
k
k k
x x m m
&&
&&
EOM -2 (example)
⎥ ⎦
⎢ ⎤
⎣
= ⎡
⎥ ⎦
⎢ ⎤
⎣
⎥ ⎡
⎦
⎢ ⎤
⎣
⎡
− + −
⎥ ⎦
⎢ ⎤
⎣
⎥ ⎡
⎦
⎢ ⎤
⎣
⎡
0 0 2
2 2
0
0
2 1 2
1
x x k
k
k k
x x m
m
&&
&&
x ¨ EOM
M K x F
) ( )
( )
( )
( t C x t Kx t F t x
M && + & + =
In general form
M is the inertia of mass matrix (n x n) C is the damping matrix (n x n)
K is the stiffness matrix (n x n)
F is the external force vector (n x 1)
x is the position vector (n x 1)
Synchronous motion
From observations, free vibration of undamped MDOF system is a synchronous motion.
• All coordinates pass the equilibrium points at the same time
• All coordinates reach extreme positions at the same time
• Relative shape does not change with time
2
=
1
x
x
constanttime
x1 x2 x1
x2
No phase diff. between x1 and x2
)
1
sin(
1
= A ω t + φ
x
)
2
sin(
2
= A ω t + φ
x
) ( 1
φ ω +
= A e
j t) ( 2
φ ω +
= A e
j tor or
Response of 2DOF system (example-1)
⎥ ⎦
⎢ ⎤
⎣
= ⎡
⎥ ⎦
⎢ ⎤
⎣
⎥ ⎡
⎦
⎢ ⎤
⎣
⎡
− + −
⎥ ⎦
⎢ ⎤
⎣
⎥ ⎡
⎦
⎢ ⎤
⎣
⎡
0 0 2
2 2
0
0
2 1 2
1
x x k
k
k k
x x m m
&&
&&
EOM
Synchronous motion
Sub. into EOM
⎥ ⎦
⎢ ⎤
⎣
= ⎡
⎥ ⎦
⎢ ⎤
⎣
⎥ ⎡
⎦
⎢ ⎤
⎣
⎡
− + −
⎥ ⎦
⎢ ⎤
⎣
⎥ ⎡
⎦
⎢ ⎤
⎣
⎡
ω
− ω
−
0 0 2
2 2
0
0
2 1 2
1 2
2
x x k
k
k k
x x m m
⎥ ⎦
⎢ ⎤
⎣
= ⎡
⎥ ⎦
⎢ ⎤
⎣
⎥ ⎡
⎦
⎢ ⎤
⎣
⎡
−
−
−
−
0 0 2
2 2
2 1 2
2
A A m
k k
k m
k
ω ω
0 Kx
Mx + =
ω
−
2( t ) ( t )
0 x
M
K − ω ) ( ) =
(
2t
2 0 2
2
2
2
=
ω
−
−
− ω
−
m k
k
k m
k det( K − ω
2M ) = 0 Characteristic equation (CHE)
)
1
sin(
1
= A ω t + φ
x
)
2
sin(
2
= A ω t + φ
x
) ( 1
φ ω +
= A e
j t) ( 2
φ ω +
= A e
j tor or
Response of 2DOF system (example-2)
2 0 2
2
2 2
ω =
−
−
− ω
−
m k
k
k m
k 0
2 3 3
2 2
4
⎟ =
⎠
⎜ ⎞
⎝ + ⎛
⎟ ω
⎠
⎜ ⎞
⎝
− ⎛
ω m
k m
k
m 634 k .
1
= 0
ω m
366 k .
2
= 2 ω
CHE
Solve the CHE Natural frequencies
of the system
;
⎥ ⎦
⎢ ⎤
⎣
= ⎡
⎥ ⎦
⎢ ⎤
⎣
⎥ ⎡
⎦
⎢ ⎤
⎣
⎡
ω
−
−
− ω
−
0 0 2
2 2
2 1 2
2
A A m
k k
k m
k
k
m k
m k
k A
A
22 2
1
2 2
2
ω
= − ω
= − ω
1= ω
731 . 0 )
634 . 0 ( 2
) 1 (
2
1
=
−
⎟⎟ =
⎠
⎜⎜ ⎞
⎝
⎛
m m k k
k A
A
ω
2= ω
73 . 2 )
366 . 2 ( 2
) 2 (
2
1
= −
−
⎟⎟ =
⎠
⎜⎜ ⎞
⎝
⎛
m m k k
k A
A
From
Response of 2DOF system (example-3)
ω
1= ω
731 . 0
) 1 (
2
1
⎟⎟ =
⎠
⎜⎜ ⎞
⎝
⎛ A
A 2 . 73
) 2 (
2
1
⎟⎟ = −
⎠
⎜⎜ ⎞
⎝
⎛ A
A
⎭ ⎬
⎫
⎩ ⎨
= ⎧
φ 1
731 .
) 0
1
( x
⎭ ⎬
⎫
⎩ ⎨
= ⎧−
φ 1
73 . ) 2
2
( x
Amp. ratio Amp. ratio
The first mode shape The second mode shape
0.731 1
-2.73 1
ω
2= ω
same direction Opposite
direction
Response of 2DOF system (example-4)
In general, the free vibration contains both modes
simultaneously (vibrate at both frequencies simultaneously)
) 1 sin(
73 . ) 2
1 sin(
732 . 0
2 2
2 1
1 1
2
1
ω + ψ
⎭ ⎬
⎫
⎩ ⎨ + ⎧−
ψ +
⎭ ω
⎬ ⎫
⎩ ⎨
= ⎧
⎭ ⎬
⎫
⎩ ⎨
⎧ c t c t
x x
2 1
2
1
, c , ψ , ψ
c are constants (depended on initial conditions)
Initial conditions (1)
) 1 sin(
73 . ) 2
1 sin(
732 . 0
2 2
2 1
1 1
2
1
ω + ψ
⎭ ⎬
⎫
⎩ ⎨ + ⎧−
ψ +
⎭ ω
⎬ ⎫
⎩ ⎨
= ⎧
⎭ ⎬
⎫
⎩ ⎨
⎧ c t c t
x x
⎭ ⎬
⎫
⎩ ⎨
= ⎧
⎭ ⎬
⎫
⎩ ⎨
⎧
4 2 )
0 (
) 0 (
2 1
x x
⎭ ⎬
⎫
⎩ ⎨
= ⎧
⎭ ⎬
⎫
⎩ ⎨
⎧
0 0 )
0 (
) 0 (
2 1
x x
&
&
Initial conditions and
) 1 cos(
73 . ) 2
1 cos(
732 . 0
2 2
2 2 1
1 1
1 2
1
ω + ψ
⎭ ⎬
⎫
⎩ ⎨ ω ⎧−
+ ψ +
⎭ ω
⎬ ⎫
⎩ ⎨ ω ⎧
⎭ =
⎬ ⎫
⎩ ⎨
⎧ c t c t
x x
&
&
Velocity response
⎭ ⎬
⎫
⎩ ⎨
= ⎧
⎭ ⎬
⎫
⎩ ⎨
⎧
4 2 )
0 (
) 0 (
2 1
x x
2 2
1
1
sin
1 73 . sin 2
1 732 . 0 4
2 ψ
⎭ ⎬
⎫
⎩ ⎨ + ⎧−
⎭ ψ
⎬ ⎫
⎩ ⎨
= ⎧
⎭ ⎬
⎫
⎩ ⎨
⎧ c c
⎭ ⎬
⎫
⎩ ⎨
= ⎧
⎭ ⎬
⎫
⎩ ⎨
⎧
0 0 )
0 (
) 0 (
2 1
x x
&
&
2 2
2 1
1
1
cos
1 73 . cos 2
1 732 . 0 0
0 ψ
⎭ ⎬
⎫
⎩ ⎨ ω ⎧−
+
⎭ ψ
⎬ ⎫
⎩ ⎨ ω ⎧
⎭ =
⎬ ⎫
⎩ ⎨
⎧ c c
Initial conditions (2)
2 2
1
1
sin
1 73 . sin 2
1 732 . 0 4
2 ψ
⎭ ⎬
⎫
⎩ ⎨ + ⎧−
⎭ ψ
⎬ ⎫
⎩ ⎨
= ⎧
⎭ ⎬
⎫
⎩ ⎨
⎧ c c
2 2
2 1
1
1
cos
1 73 . cos 2
1 732 . 0 0
0 ψ
⎭ ⎬
⎫
⎩ ⎨ ω ⎧−
+
⎭ ψ
⎬ ⎫
⎩ ⎨ ω ⎧
⎭ =
⎬ ⎫
⎩ ⎨
⎧ c c
4 Eqs.,
4 unknowns
Solve for four unknowns
, 732 .
1
= 3
c c
2= 0 . 268 , ψ
1= ψ
2= π / 2
2 ) 1 sin(
73 . 268 2
. 0 2 )
1 sin(
732 . 732 0 .
3
1 22
1
ω + π
⎭ ⎬
⎫
⎩ ⎨ + ⎧−
+ π
⎭ ω
⎬ ⎫
⎩ ⎨
= ⎧
⎭ ⎬
⎫
⎩ ⎨
⎧ t t
x x
The response is
t x t
x
2 1
2
1
cos
268 . 0
732 . cos 0
732 . 3
732 .
2 ω
⎭ ⎬
⎫
⎩ ⎨ + ⎧−
⎭ ω
⎬ ⎫
⎩ ⎨
= ⎧
⎭ ⎬
⎫
⎩ ⎨
⎧
Initial conditions (3)
) 1 sin(
73 . ) 2
1 sin(
732 . 0
2 2
2 1
1 1
2
1
ω + ψ
⎭ ⎬
⎫
⎩ ⎨ + ⎧−
ψ +
⎭ ω
⎬ ⎫
⎩ ⎨
= ⎧
⎭ ⎬
⎫
⎩ ⎨
⎧ c t c t
x x
⎭ ⎬
⎫
⎩ ⎨
= ⎧
⎭ ⎬
⎫
⎩ ⎨
⎧
2 464 . 1 )
0 (
) 0 (
2 1
x x
⎭ ⎬
⎫
⎩ ⎨
= ⎧
⎭ ⎬
⎫
⎩ ⎨
⎧
0 0 )
0 (
) 0 (
2 1
x x
&
&
(a) Initial conditions and
⎭ ⎬
⎫
⎩ ⎨
= ⎧−
⎭ ⎬
⎫
⎩ ⎨
⎧
1 73 . 2 )
0 (
) 0 (
2 1
x x
⎭ ⎬
⎫
⎩ ⎨
= ⎧
⎭ ⎬
⎫
⎩ ⎨
⎧
0 0 )
0 (
) 0 (
2 1
x x
&
&
(b) Initial conditions and
Try to do
Summary (Free-undamped) (1)
0 Kx
x
M && ( t ) + ( t ) =
The motion is synchronous:
constant ω and φ
0 Kx
Mx + =
ω
−
2( t ) ( t ) 0 x
M
K − ω ) ( ) =
(
2t
0 )
det( K − ω
2M =
Characteristics equation
2
ω
n Eigen valuenN n
n
ω
Eigen value problem
ω
ω
1,
2, K ,
N natural freq.0 x
M
K − ω
ni)
i=
(
2x
i Eigen vector) sin( ω + φ
= A t
x
or= A e
j(ωt+φ)N mode shapes
x
Nx
x
1,
2, K , 1
EOM2
3
4 5
Direct Method
Summary (Free-undamped) (2)
Free-undamped response
) sin(
) sin(
) sin(
)
( t = x
1A
1ω
1t + φ
1+ x
2A
2ω
2t + φ
2+ x
NA
Nω
Nt + φ
Nx K
∑
=φ + ω
=
Ni
i i
i
i
A t
t
1
) sin(
)
( x
x 6
where A and φ are from initial condition x(0) and v(0)
Direct Method
Example
k1
k2
x θ
l2
l1
Determine the normal modes of vibration of an automobile simulated by simplified 2-dof system with the following numerical values
lb
= 3220 W
ft 5 .
1
= 4
l k
1= 2400 lb/ft
ft 5 .
2
= 5
l k
2= 2600 lb/ft
ft
= 4
2
r
g r
J
C= W
Forced harmonic vibration (1)
Example
EOM
F t
x x k
k
k k
x x m
m ⎥ ω
⎦
⎢ ⎤
⎣
= ⎡
⎥ ⎦
⎢ ⎤
⎣
⎥ ⎡
⎦
⎢ ⎤
⎣ + ⎡
⎥ ⎦
⎢ ⎤
⎣
⎥ ⎡
⎦
⎢ ⎤
⎣
⎡ sin
0 0
0
12 1 22
21
12 11
2 1 2
1
&&
&&
System is undamped, the solution can be assumed as
X t X x
x ⎥ ω
⎦
⎢ ⎤
⎣
= ⎡
⎥ ⎦
⎢ ⎤
⎣
⎡ sin
2 1 2
1
Sub. into EOM
⎥ ⎦
⎢ ⎤
⎣
= ⎡
⎥ ⎦
⎢ ⎤
⎣
⎥ ⎡
⎦
⎢ ⎤
⎣
⎡
ω
− ω
−
0
1 2
1 2
2 22
21
12 2
1
11
F
X X m
k k
k m
k
[ ] ⎥
⎦
⎢ ⎤
⎣
= ⎡
⎥ ⎦
⎢ ⎤
⎣ ω ⎡
) 0
(
12
1
F
X Z X
Simpler notation,
[ ] ⎥
⎦
⎢ ⎤
⎣ ω ⎡
⎥ =
⎦
⎢ ⎤
⎣
⎡
−) 0
(
1 12
1
F
X Z
X
Forced harmonic vibration (2)
[ ] [ ]
⎥ ⎦
⎢ ⎤
⎣
⎡ ω
= ω
⎥ ⎦
⎢ ⎤
⎣ ω ⎡
⎥ =
⎦
⎢ ⎤
⎣
⎡
−0 )
(
) ( adj ) 0
(
1 1 12
1
F
Z F Z
X Z X
) )(
( )
( ω = m
1m
2ω
12− ω
2ω
22− ω
2Where
Z
ω1 and ω2 are natural frequencies
⎥ ⎦
⎢ ⎤
⎣
⎥ ⎡
⎦
⎢ ⎤
⎣
⎡
ω
−
−
− ω
−
= ω
⎥ ⎦
⎢ ⎤
⎣
⎡
0 )
(
1
12 1 11
21
12 2
2 22
2
1
F
m k
k
k m
k X Z
X
The amplitudes are
) )(
(
) (
2 2
2 2
2 1 2 1
1 2 2 22
1
ω − ω ω − ω
ω
= −
m m
F m
X k
) )(
(
12 2 22 22 1
1 21
2
ω − ω ω − ω
= −
m m
F
X k
Forced harmonic vibration (3)
) )(
(
) 2
(
2 2
2 2 2
1 2
1 2
1 ω −ω ω −ω
ω
= − m
F m
X k
) )(
( 12 2 22 2
2
1
2 = ω −ω ω −ω
m X kF
m m
k k k
x1 x2
F1sinωt
F t x
x k k
k k
x x m
m ⎥ ω
⎦
⎢ ⎤
⎣
= ⎡
⎥⎦
⎢ ⎤
⎣
⎥⎡
⎦
⎢ ⎤
⎣
⎡
− + −
⎥⎦
⎢ ⎤
⎣
⎥⎡
⎦
⎢ ⎤
⎣
⎡ sin
0 2
2 0
0 1
2 1 2
1
&&
&&
m k m
k 3
, 2
1 = ω =
ω
EOM
Force response of a 2 DOF system
0 1 2 3
0 1 2 3 4 5
-1 -2 -3 -4 -5
F Xk
ω1
ω
1 2
F k X
1 1
F k X
ω1
=
ω ω= ω2
Same direction
Opposite direction
Solving methods
Modal analysis
• is a method for solving for both transient and steady state responses of free and forced MDOF systems through
analytical approaches.
• Uses the orthogonality property of the modes to
“decouple” the EOM breaking EOM into independent SDOF equations, which can be solved for response separately.
Introduction
Coordinate coupling
k1 k2
l2
l1
mg
θ x
Ref.
)
( 1
1 x−l θ k
)
( 2
2 x−l θ k
k1 l1 mg k2
θ
x1 Ref.
1 1x k
) ( 1
2 x +lθ k
⎥⎦
⎢ ⎤
⎣
= ⎡
⎥⎦
⎢ ⎤
⎣
⎡
⎥ θ
⎦
⎢ ⎤
⎣
⎡
+
−
− + +
⎥⎦
⎢ ⎤
⎣
⎡
⎥ θ
⎦
⎢ ⎤
⎣
⎡
0 0 0
0
2 2 2 2 1 1 1 1 2 2
1 1 2 2 2
1 x
l k l k l k l k
l k l k k
k x
J m
&&
&&
⎥⎦
⎢ ⎤
⎣
= ⎡
⎥⎦
⎢ ⎤
⎣
⎡
⎥ θ
⎦
⎢ ⎤
⎣ + ⎡ +
⎥⎦
⎢ ⎤
⎣
⎡
⎥ θ
⎦
⎢ ⎤
⎣
⎡
0
1 0
2 2 2
2 2
1 1
1 1
1 x
l k l
k
l k k
k x
J ml
ml m
&&
&&
Concept of modal analysis
⎥⎦
⎢ ⎤
⎣
= ⎡
⎥⎦
⎢ ⎤
⎣
⎡
⎥ θ
⎦
⎢ ⎤
⎣
⎡
+
−
− + +
⎥⎦
⎢ ⎤
⎣
⎡
⎥ θ
⎦
⎢ ⎤
⎣
⎡
0 ) ( 0
0
2 2 2 2 1 1 1 1 2 2
1 1 2 2 2
1 x F t
l k l k l k l k
l k l k k
x k J m
&&
&&
) ( )
( )
( t Kx t F t x
M && + =
⎥⎦
⎢ ⎤
⎣
= ⎡
⎥⎦
⎢ ⎤
⎣
⎥⎡
⎦
⎢ ⎤
⎣
⎡
ω + ω
⎥⎦
⎢ ⎤
⎣
⎥⎡
⎦
⎢ ⎤
⎣
⎡
) (
) ( 0
0 1
0 0 1
2 1 2
1 2
2 2
1 2
1
t N
t N r
r r
r
n n
&&
&&
) ( )
( )
( t Λr t N t r && + =
EOM in modal coordinate (Independent SDOF equations) EOM in physical coordinate (Coordinates are coupled)
Solve for r (t )
Transform r(t) back to x(t)
Orthogonality
x = eigen vector (vector of mode shape)
ii i
T
i
Mx = M
x
j
i
i
T
j
Mx = 0 , ≠
x x
TjKx
i= 0 , i ≠ j
ii i
T
i
Kx = K
x
If M and K are symmetric and then x
iand x
jare said to be “orthogonal” to each other.
ni njω
≠
ω
Normalization
u = normalized eigen vector (respect to mass matrix)
= 1
i T
i
Mu
u
j
i
i
T
j
Mu = 0 , ≠ u
constant is
, C
C
ii
x
u
0 x
M
K − ω ) ( ) =
(
2t
From eigen value problem
=
0 u
M
K − ω ) ( ) =
(
2t
or Ku
i= ω
i2Mu
i2 2
i i
T i i i
T
i
Ku = ω u Mu = ω
u
Modal matrix
Modal matrix is the matrix that its columns are the mode shape of the system
[ u u u
n]
U =
1 2K Then
⎥ ⎥
⎥ ⎥
⎦
⎤
⎢ ⎢
⎢ ⎢
⎣
⎡
=
=
1 0
0
0 1
0
0 0
1
K M O M
M
K K I
MU U
T⎥ ⎥
⎥ ⎥
⎥
⎦
⎤
⎢ ⎢
⎢ ⎢
⎢
⎣
⎡
ω ω
ω
=
2 2
2 2
1
0 0
0 0
0 0
nN n
n T
K
M O
M M
K K KU
U
Λ (Spectral matrix)
Modal analysis (undamped systems)-1
1. Draw FBD, apply Newton’s law to obtain EOM 2. Solve for natural frequencies through CHE 3. Determine mode shapes through EVP
4. Construct modal matrix (normalized)
Procedures
) ( )
( )
( t Kx t F t x
M && + =
0 x
M
K − ω ) ( ) =
(
2t
0 ) det( K − ω
2M =
[ u u u
n]
U =
1 2K I
MU U
T=
Λ KU
U
T=
5. Perform a coordinate transformation
x ( t ) = Ur ( t ) )
( )
( )
( t Kx t F t x
M && + = MU r && ( t ) + KUr ( t ) = F ( t )
) ( )
( )
( t
Tt
Tt
T
MU r U KUr U F
U && + =
) ( )
( )
( t Λr t U
TF t
r && + =
Modal analysis (undamped systems)-2
) ( )
( )
( t Λr t U
TF t
r && + =
⎥⎥
⎥⎥
⎦
⎤
⎢⎢
⎢⎢
⎣
⎡
=
⎥⎥
⎥⎥
⎦
⎤
⎢⎢
⎢⎢
⎣
⎡
⎥⎥
⎥⎥
⎦
⎤
⎢⎢
⎢⎢
⎣
⎡
=
⎥⎥
⎥⎥
⎦
⎤
⎢⎢
⎢⎢
⎣
⎡
⎥⎥
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢⎢
⎢
⎣
⎡
ω ω
ω +
⎥⎥
⎥⎥
⎦
⎤
⎢⎢
⎢⎢
⎣
⎡
) (
) (
) (
) (
) (
) (
) (
) (
) (
) (
) (
0 0
0 0
0 0
) (
) (
) (
4 3 2 1
4 3 2 1
2 1
2 22
21
1 12
11 2
1
2 2
2 2
1 2
1
t N
t N
t N
t N
t F
t F
t F
t F
u u
u
u u
u
u u
u
t r
t r
t r
t r
t r
t
r T
NN N
N
N N
nN N n
n
N K
M O M
M
K K
M K
M O M
M
K K
&&
M
&&
&&
Independent SDOF equations, can be solve for r(t) 6. Transform the initial conditions to modal coordinates
) ( )
( t Ur t x =
I MU U
T=
) 0 ( )
0
( Ur
x =
) 0 ( )
0
( U MUr
Mx
U
T=
T) 0 ( )
0
( U Mx
r =
TFrom
and
r & ( 0 ) = U
TM x & ( 0 )
Modal analysis (undamped systems)-3
7. Find the response in modal coordinates
8. Transform the response in modal coordinate
back to that in original coordinate
x ( t ) = Ur ( t )
= K ) r (t )
r (t )
x (t
Example (Modal analysis) -1
⎥ ⎦
⎢ ⎤
⎣
= ⎡
⎥ ⎦
⎢ ⎤
⎣
⎥ ⎡
⎦
⎢ ⎤
⎣
⎡
− + −
⎥ ⎦
⎢ ⎤
⎣
⎥ ⎡
⎦
⎢ ⎤
⎣
⎡
0 0 3
3
3 27
1 0
0 9
2 1 2
1
x x x
x
&&
&&
EOM
⎥ ⎦
⎢ ⎤
⎣
= ⎡ 0 1
x
0⎥
⎦
⎢ ⎤
⎣
= ⎡ 0 0 v
0Initial conditions
Example (Modal analysis) -2
2dof string-bead system
⎥ ⎦
⎢ ⎤
⎣
= ⎡
⎥ ⎦
⎢ ⎤
⎣
⎥ ⎡
⎦
⎢ ⎤
⎣
⎡
− + −
⎥ ⎦
⎢ ⎤
⎣
⎥ ⎡
⎦
⎢ ⎤
⎣
⎡
0 0 2
1
1 2
0
0
2 1 2
1
x x a
T x
x m m
&&
&&
EOM
⎥ ⎦
⎢ ⎤
⎣
= ⎡ 0 0
x
0⎥
⎦
⎢ ⎤
⎣
= ⎡ 1 0 v
0Initial conditions
Example (Modal analysis) -2_2
Rigid body mode
• Rigid body mode is the mode that the system moves as a rigid body.
• The system moves as a whole without any relative motion among masses.
• There is no oscillation. ω
n= 0
Rigid-body modes
Compute the solution of the system.
Let m1 = 1 kg, m2 = 4 kg and k = 400 N/m.
Initial condition
⎥
⎦
⎢ ⎤
⎣
= ⎡
0 01 . 0
x
0⎥
⎦
⎢ ⎤
⎣
= ⎡
0
0
v
0More than two degrees of freedom
Calculate the solution of the n-degree-of-freedom system in the figure for n = 3 by modal analysis. Use the values m1 = m2 = m3 = 4 kg and k1 = k2 = k4 = 4 N/m, and the initial condition x1(0) = 1 m with all other initial
displacements and velocities zero.
Modal analysis on damped systems (1)
) ( )
( )
( )
(t Cx t Kx t F t
x
M && + & + =
C KM K
CM−1 = −1
The original modal analysis can be applied to MDOF damped system if and only if
K M
C = α +β
α β
However, there are subsets of the above systems where C can be written as a linear combination of M and K.
and are constants. Such system is called “proportionally damped.”
Necessary and sufficient condition
Sufficient but not necessary condition Such system is called “classically damped”.
EOM
Modal analysis on damped systems (2)
For proportionally damped Mx&&(t) +Cx&(t) + Kx(t) = F(t) ) ( )
( )
( ) (
)
(t M K x t Kx t F t
x
M && + α +β & + =
) ( )
(t Ur t
x = MUr&&(t) +(αM +βK)Ur&(t) +KUr(t) = F(t)
UT UTMUr&&(t) +UT(αM +βK)Ur&(t)+UTKUr(t) = UTF(t)
) ( )
( )
( )
( ) (
)
(t I Λ r t Λr t UTF t N t
r&& + α +β & + = =
) ( )
( )
( 2
)
( 1 1 21 1 1
1 t r t r t N t
r&& + ζωn & +ωn =
M
2 1
2ζωn1 = α +βωn Let
Premultiply by
Thus, the system when it is written in modal coordinates r(t) can be decoupled into k sets of SDOF equations
where
Modal analysis on damped systems (Ex.)
A belt-driven lathe
•bearings are modeled as providing viscous damping
•shafts provide stiffness
•belt drive provides and applied torque.
/rad kg.m
10
23 2
1
= J = J =
J
N.m/rad 10
32
1
= k =
k
N.m.s/rad
= 2 c
• Zero initial conditions
• Applied moment M(t) is a unit impulse function
Modal analysis on damped systems (Ex.)