GIflODUC-DflOTI w9
Gia tri cam niian ciia sinh vien ve dich vu dao tao
• • • • •
van bang dai hoc thir hai o" cac trirong dai hoc
Bill Thi Thanh*
Nghien eiru ndy nhdm kham phd vd dinh vi ede thdnh phdn gid Iri cam nhdn cua sinh vien vi djch vu dao tao vdn bdng dgi hgc thir hai d cde trirong dgi hgc. Dii- Hiu khao sdi dugc thu thdp lir 5H8 sinh vien dang iheo hgc vdn bdng dgi hgc ihir hai d ede Irudng dgi hge tgi TP HCM. Md hinh nghien ciiv de xudl dua tren nghien eiru gid tri cdm nhdn cua Patrick (2002). eua Shelh el al (1991) vd ke thira cde kel qud nghien eiru gid tri com nhdn Irong Imh vuc dich vu dao lao eua LeBlane vd Nguyen (1999). Do tin egy vd gid Iri cua thang do dirge kiem dinh bdng hi sd Cronbach 's alpha vd phdn lieh nhdn td kham phd (EFA). Kit qud phdn lieh hdi quy da bien eho thdy. gid Iri cdm nhgn ciia sinh vien ve dich vu dao tao vdn bdng dgi hoc Ihir hai gdm bay ihdnh phdn xip theo thir lu quan Irgng giam ddn nhu sau: gid tri tiin ti (^=0.378), gid tri in thirc ((i=0.36l). gid tri chdl lugng (^=0.286). gid tri chirc ndng ({3=0.240), gid tri dieu kien (p=0.234).
gid iri hinh dnh (p=0,179) vd gid tri xa hdi (P^O, 077).
Tir khda: Gia trj cam nhan, sinh vien, dich vy dao tgo van bang dgi hgc thir hai.
1. Gioi thieu
Bdi canh hgi nhgp quoc te va cam ket md cira Ihi trudng djch vy sau khi gia nhgp WTO ciia Chinh phii Vipt Nam da mang lai ca hgi nhung ddng thdi cung Igo ra ap Igc budc nganh giao due- dao igo phal nhanh chdng ddi mdi he thdng giao due dgi hgc theo hudng nang cao chat lugng va da dgng hda cac loai hinh dao tao. Theo dd, nhu'ng nam gan day, djch vy dao Igo dgi hgc van bang dai hpc thir hai da dugc nhicu trudng dgi hgc dua vao ap dyng va thu hiu dugc sg lua chgn ciia nhieu ngudi hge vdi muc dich ciia hg la gia tang ca hgi chuyen ddi nghi nghipp, boi dudng kian thirc. ky nang va nang cao kha nang thich irng trirdc nhiTng ddi hdi ngay cang cao ciia xa hgi.
Tii\ nhien, nhihig yeu to nao quyet dmh sg hai Idng va kha nang hiit sinh vien den vdi djch vu dao igo van bang dgi hgc ihir hai? Phdng van can bg quan ly dao tgo d mgi so trudng dgi hgc tai TR HCM cho thay cdn cd nhung quan diem khac nhau.
tham chi thieu rd rang, chang hgn: nhin chung la ngi dung chuong trinh dao tgo va thdi lugng dao tgo:
chat lugng ^lang vien va phuang phap giang day;
dieu kien dgy va hgc va cac djch vy bd trg; miic hgc phi- ho$c sg ket hgp cac yeu id nay.... NghTa la.
dudng nhu cac nha cung eSp dich vy dao igo van bang dgi hgc thir hai van chua tra Idi thau dao duge cac cau hdi: gia tri cam nhan ciia sinh vien hge van bang dgi hgc thir hai la gi? Gdm nhung ihanh phan nao? Trong do, nhii'ng thanh phan nao ddng vai trd quyet djnh? Mac dii, day chinh la co sd de cac trudng dgi hoc nang cao chat lugng djch vy dao igo, gia tang su hai long va kha nang thu hiit sinh vien.
Tren tinh than do, myc lieu ciia nghien ciru nay la kham pha va djnh vj cac thanh phan gia trj cam nhan eua sinh vien ve dich vu dao tgo van bang dgi hgc Ihir hai thdng qua viec \zy dgng va kiem djnh md hinh nghien ciiu gia tri cam nhgn ciia sinh vien ve dich vy dao lao van bang dai hgc thir hai d cac irudng dgi hgc tgi TP. HCM.
2. Co &d ly thuyet va mo hinh nghien ciru 2.1 Gid Iri cdm nhdn vd cdc thdnh phdn eua gid tri cdm nhgn
Theo Zeithaml (1988), gia trj cam nhan la su danh gia tdng the cua ngudi lieu dimg \ e linh huu dung ciia san pham, djch vu dga tren nhan thuc vi nhiing gi nhgn dugc va nhiing gi hg da bd ra; ddng thai, chat lugng, gia ca (tien te va phi tl6n te), danh tieng ciia san pham, djch vu va phan img cam xue
S,'i 193 Ihdng 7/2013
kiflllfilallriefl
pIflODUCBflOTflO
(lam cho khach hang cam xue nhu the nao) li nhimg thanh phan cd quan he vdi gia trj cam nhan. >
Theo Shelh et al (1991), gia tri cam nhSn gdm nam thanh phan: gia trj chirc nang, gia trj tri thirc, gia trj xa hdi. gia tri cam xiic va gia tri dieu kien, Trong dd:
- Gia tri chiic nSng dfi cap den Igi ich kinh te ma khach hang cam nhgn dugc bat ngudn tir cac thugc tinh (linh nang, tien ich,..) ciia cac san pham va dich vy;
- Gia Irj tri thiic d6 cap den Igi Ich ihu dugc thdng qua eung cap linh mdi hogc khoi day su td md, sang tao eiia khach hang nham dap ung nhu cau phal trien tri thirc;
- Gia trj xa hgi 6k cgp den loi ich xa hgi, dd la khach hang dugc ghi nhgn, dugc d6 cao, hoac dugc gia nhap vao cac mdi quan hp xa hgi,..,
- Gia trj cam xue de cap den cac gia irj Men quan den cam xue hay trgng thai tinh cam vui, budn khi mua dugc san phSm. dich vu, ciing nhu an tugng ciia khach hang trong qua trinh lieu diing san pham, djch vy.
- Gia tri difiu kipn de cap den cSc tien de kinh 18, xa hpi (bao gdm cac chi phf tien tp va phi tien tp, thii tuc phap ly) ma khach hang phai dap irng khi chgn mua san pham, djeh vu.
Theo Sweeney et al (1998), gia Irj chat lugng, gia trj earn xiic. gia ca va gia trj xa hdi ndi ten nhu la nhQ'ng dgc trung eiia gia trj cam nhgn ve mgl san pham. Trong dd, chat lugng phan anh san pham dirge tgo ra tdi nhu the nao? Gia trj cam xue phan anh san pham lam cho khach hang cam thay nhu the nao? Gia ca giai thich sd tien phai tra cho san pham da hgp ly hay chua? Gia trj xa hgi nhu la niem vui va an tugng cd dugc tir vipc mua san pham so vdi cac san pham khac.
Theo Petrick (2002), hau hk cac nha nghien ciru nhu: Bojanic (1996). Grewal et al (1998), Jayanii va Ghosh (1996), Oh (1999), Parasuraman va Grewal (2000), Woodruff va Gardial (1997), Zeithaml (1988). deu cho rang gia Irj cam nhgn la mgt sy so sanh giira nhirng gi ngudi tieu diing "nhgn dirge " so vdi nhii'ng gi ngudi tieu diing phai "bd ra" de gianh duge san pham, djch vy dd. Ap dung cho ITnh vyc djch \y. lien quan den nhirng gi ngudi lieu diing
"nhgn dugc", bao gdm: phan irng cam xue, chat lugng va danh lieng cua djch vy; lien quan den nhung gi phal bd ra la gia ca lien le va gia ca hanh
\ I the hipn Ihdi gian va nd Ige dugc sir dung de lim kiem san pham, djch vu. Trong dd:
Chal lugng dugc Dodds et al (1991), Swait va
Sweeney (2000) djnh nghTa nhu la sg danh gia ve nhirng diem ndi bgt ho§c vuol trgi ed linh tdng the ciia san phSm, djch vy.
Phan img cam xue dugc Grewal et al (1998), Parasuraman va Grewal (2000), Zeithaml (1988) djnh nghTa la nifim vui nhgn dugc khi mua hang, hay Iheo Sweeney et al (1998) la sy danh gia, sg md ta ve su hai Idng ciia ngudi mua doi vdi san pham, dich vu dugc cung cap.
Danh tiSng dugc Dodds ei al (1991) va Zeithaml (1988) dinh nghTa nhu la uy tin, vj the ciia mdt san pham, dich vy dugc cam nhan bdi ngudi mua, dga vao hinh anh cua nha cung cdp.
Gia ca tien te dugc Jacoby va Olson (1977) djnh nghTa nhu la gia cua mgt san pham, dich vy dugc hinh dung bdi ngudi tieu diing, hay Iheo Sweeney va Soutar (2001) la nhtmg lgi ieh nhan dugc tir san pham, djch vy nhd giam dugc chi phi cam nhan trong ngan hgn va dai hgn.
Gia ca hanh vi dugc Zeithaml (1988) xae djnh la gia ca (phi ti6n Ip) d^ dat dugc mgt djch vy, bao gdm thdi gian va nd Igc dugc sir dyng de tim ki^m san pham, djch vy.
Theo LeBlane va Nguyen (1999), ket qua kiem dinh lgi Irudng dai hgc chuyen nganh Kinh te d Canada, tbi gia trj cam nhan cua sinh vien ve djch vy dao tgo duge do ludng bdi sau thanh phan xep theo thu tu quan trgng giam dan la: gia trj chiie nang (chat lugng - gia ca); gia Iri tri Ihirc; gia trj chuc nang (ihda man udc mudn), gia trj hinh anh, gia trj cam xue va gia trj xa hgi.
Nhu vgy, gia trj cam nhan la mgt khai nipm da thanh phan, mac dii quan diem ve eae thanh phan nay chua cd su ddng nhat giii'a cac nghien ciiu.
Song, v6 thgc chSt gia trj cam nhan cung chinh la gia trj danh cho ngudi mua ciia Porter hay gia tri danh cho khach hang ciia Philip Kotler, dd la sg so sanh giua nhiing Igi Ich ma khich hang nhgn dugc (chat lugng, chuc nang, cam xiic, Iri thiic, hinh anh va su ghi nhgn eiia xa hdi) so vdi nhiing gi hg da bo ra (lien te, thdi gian, nd lyc, riil ro).
2.2 Mo hinh gid trj cdm nhgn cda sinh vien ve dich vu dao tgo van bdng dgi hge thir hai d cdc trudng dgi hoc
Van bang dgi hgc thir hai la van bSng cap cho nhirng ngudi da cd it nhat mgt bang tot nghipp dgi hgc, sau khi hoan thanh day dii chuang trinh dao tao dgi hgc cua nganh dao Igo mdi, cd dii dieu kien de cdng nhan va cap bang tdt nghipp dai hgc (Quyet djnh sd 22/200I/OD-BGD&DT).
So vol sinh vien hgc vSn bang dgi hgc thir nh5t, .S,i 193 lining -21113
M\tmm
GIflODUCfiflOTI m
sinh \ len hgc van bang dgi hgc ihii hai d cac trudng dai hgc cd dae diem la hau h^t trong sd hg da cd trai nghipm nhit djnh ca vS vipc bgc lin hogt dgng4hgc tien. ddng thai, myc tieu ciia vipc hgc dugc xae djnh rd rang, dd la ITnh hgi ki£n ihirc, phat trien ky nang va thai do de phyc vy cho hogi ddng nghe nghiep.
Vi the. yeu cau ciia hg la chuong trinh dao lao phai gan k^l vdi ihyc lien, giang vien phai cd chuyen mdn sau, trai nghiem thgc te va sii dung thanh ihgo phuong phap giang day tuong tac.
Da sd sinh vien hge van bang dai hgc thii hai da cd sg trirdng thanh ve nhan thirc, mdt bd phgn khdng nhd dam nhan nhfrng vj tri, trgng trach nhat djnh trong cac td chu"c nen y thirc ly trgng va nhu cau the hien cao, Vi the, ngoai dieu kipn dgy, hgc va cac djch vy bd trg phal cd su cai thien dang ke so vdi sinh vien hgc van bang thir nhat, thi hg cdn cd nhirng yeu cau ddi vdi thai dg, trach nhiem ciia giang vien va nhan vien phyc vy. Hon nira. viec hgc van bang dgi hgc ihu hai d trudng nao cdn la de cai thien htnh anh va su ghi nhan ciia xa hgi ve chinh danh ciia hg.
Tir nhirng dac diem tren va dga vao cac nghien ciru trudc, trong dd trgng tam la nghien ciru ciia Sheth et al (1991). Petrick (2002) va LeBlane &
NgiiNcii (1999) ve gia trj cam nhgn irong ITnh vyc djch vy dao lao, tac gia de xuat md hinh gia trj cam nhan ciia sinh vien ve djch vy dao tao van bang dgi hgc thii hai d cac trudng dgi hgc gdm cac ihanh phan: gia trj chSt lugng, gia trj tri thiic, gia trj chirc nang, gia trj hinh anh, gia trj xa hgi. gia trj cam xiic va gia trj lien te (Hinh 1). Trong dd: gid trj chdl lirong la cam nhgn ciia sinh vien ve ngi dung chuang trinh dao tgo, giang vien, dieu kien day va hgc \;i cac dich \u bd Irg; gid tri tri thirc la cam nhgn ciia sinh \icn ve nhung kidn ihuc, k> nang \a kinh nghiem nhgn dugc khi tham dg chuong trinh dao tgo; gid tri chirc ndng la cam nhgn ciia sinh vien
\k tinh hiiu ich ciia tri thirc va van bing hg nhgn dugc doi vdi yeu cau cua cdng vipc. sy thang lien va phal Iri^n nghe nghiep ciia hg; gid tri hinh anh \a cam nhgn cim sinh vien \ c danh tieng va van bang cua nha trirdng dem lgi sg hanh dien va sy lu tin eho hg trudc bgn be, dong nghiep; gid in .xd hdi the hien d nhirng Igl ich xa hgi ma sinh vien nhan dugc Ihdng qua sy ghi nhgn \a kha nang md rgng mdi quan hp giao luu, hgc hdi. chia se kinh nghiem \di bgn be. ddng nghipp- thdy cd; gid tri cam .trie the hipn mirc dg hai Idng x li an tugng ciia sinh vien \c djch vy dao tgo ciia nha irudng; gid tri tien /p phan anh cam nhan ciia sinh \ len ve miic hgc phi phai tra cd hgp ly va lirang ximg vdi chal lugng djch vy dao tgo. \ di kha nfing ciia sinh \ icn va m?l bang chung
cua ihj trudng; gid tri cam nhdn ciia sinh \ien la cam nhgn ve rfhtrng lgi ich (kien thiic, ky nang mdi, kinh nghiem lir su chia se ciia IhSy cd, ban be) ma sinh vien nhgn dugc tir djch vu dao tao so vdi nhiing hao phi (hgc phi, thdi gian va cdng sire) ma hg phai bd ra de thy hudng dich vu.
Ve mat logic, khi cac thanh phan iren dugc khach hang danh gia cao, ibi gia trj cam nhgn cua khach hang cung cang cao va dieu nay cung dugc kiem djnh trong cae nghien ciru ciia Sheth et al (1991).
Petrick (2002), LeBlane va Nguyen (1999), vi thi cd the phat bieu cac gia thuyet nghien ciru nhu sau:
HI Khi sinh vien cam nhgn ve gia tn chat lugng cang cao thi gia trj cam nhan ciia hg ve djch vy dao lao cang cao.
H2: Khi sinh vien cam nhgn ve gia trj tri thOrc cang cao thi gia trj cam nhgn cita hg ve dich vu dao tao cang cao.
H3: Khi sinh vien cam nhgn vc gia trj chiie nang cang eao Ihi gia trj cam nhgn ciia hg ve djch vu dao Igo cang cao.
H4: Khi sinh vien cam nhgn ve gia irj xa hdi cang eao thi gia trj cam nhgn ciia hg ve djch vy dao tgo cang eao.
H5: Khi sinh vien cam nhan ve gia trj hinh anh cang cao thi gia trj cam nhgn ciia hg ve dich vu dao igo cang cao.
H6: Khi sinh vien cam nhan ve gia trj cam xiic cang cao thi gia trj cam nhan ciia hg ve djch vu dao lao cang cao.
H7: Khi sinh vien cam nhan ve gia trj lien le eiia djch vu dao tgo cang hgp ly thi gia tri cam nhan eiia hg ve djch vy dao tao cang cao.
Ngoai ra, dga theo ly thuyet ciia Kotler (2001, ir.
46. 198), thi gia irj cam nhan eua khach hang cao hay thap bj chi phdi bdi cac dac diem ca nhan.
Nghien ciru ciia Sheth et al (1991) cho thay cd su khac bipt ve gia trj cam nhgn giira cac nhdm khach hang iheo gidi linh, do tudi. nghe nghiep va thu nhap. Vi the, cd the phat bieu gia Ihuyel H8 nhu sau:
H8: Cd sy khac biet vS gia tri cam nhan ciia sinh vien ve djeh vy dao tao van bang dai hgc thir hai theo cac dgc diem ea nhan (gidi tinh, dg tudi, nganh hgc, nghe nghiep, thu nhgp) ciia sinh vien.
3. Phuong phap nghien ciru
Nghien ciru sii dyng chii yeu cac phuong phap:
- Phuang phap nghien cim djnh tinh dugc thgc hien bang ky thugt thao luan nhdm tap Irung (vdi su Iham gia ciia 2 nhdm sinh vien dang Iheo hgc van bang dgi hgc Ihir hai d Irudng dgi hgc Kinh le TR
Sd If3 rhiiiis 7/2III3 75
KiiittlpJhal Irien
TODUC-OflOTflO
nh 1: M 6 hinh n g h i e n cihi gia t n cam nhan c n a sinh vien v l djch v n d a o tao v a n bang dai hoc thir hai ff cac truomg dai h9c
Gia tri chat lugng Gia tn tri thuc Gia tn chiic nang
Gia tn xa hpi Gia tn hinh anh Gia tr] cam xiic
\ . HI
H4 " " ^ " ^ ^ 115,..- "^^^^^^^^
Dac diem ca nhan cua sinh vien
1 HS Gia tn cam nhan
cCia sinh vien ve dich vy dao tao van bang dai hgc thu hai
Gia in lieu t^
H C M , mgl nhdm gdm 08 sinh vien chira cd viec lam va mgt nhdm gdm 08 sinh vien da ed vipc lam), t h e o dan bai thao lugn d o tae gia xay d g n g , nham vira kham pha vira khang djnh cac Ihanh phSn gia trj cam nhan ciia sinh vien ve dich vu dao tao van bang dgi hgc thir hai d cac trudng dgi hgc va phat trien thang do nhii'ng thanh phan nay.
- P h u a n g phap nghien ciiu djnh lugng d u g e t h y c hien nham danh gia d o tin cay (gia trj hgi tu va phan biet) thang do cac thanh phan ciia gia trj cam nhgn;
kiem djnh md hinh nghien ciiu va cac gia thuyet nghien ciru, kiem dinh cd hay khong s g khac biet v e gia trj cam nhan ciia sinh vien ve djch vy dao tao van bang dai hoc thii hai theo cac dac diem ca nhan.
Nghien euu djnh Iirgng d u g c thuc hien qua cac giai dogn:
- Thu thap dfl" lieu nghien ciiu bang ban cau hdi phdng van. theo p h u o n g phap l i y mau thugn lien 588 sinh \ icn hipn dang theo hgc van b i n g dgi hgc ihir hai lgi cac Irudng dgi hgc d T P . H C M . Trong d o , dai dien cho cae khdi nganh kinh te la trudng Dai hgc Kinh te. khoi nganh ky thugt la trirdng Dai hoc Kv thuat cdng nghp, khdi nganh luat la t r u d n g Dai hgc Lual. khdi nganh ngogi ngir la trudng Dal hgc Ngoai n g u - tin hgc.
- Danh gia s o bg dd tin cay va gia Iri cua thang d o bang he sd tin egy Cronbach alpha va phan tich nhan Id kham pha (EFA) thdng qua phan mem S P S S 16.
nhiim danh gia dp tin ca\ ciia cac thang do, q u a dd loai bd cac bien quan sat khdng dat dp lin cay, gia trj hgi ty va phan biet: d d n g thai tai cSu triic cac bien quan sal eon lai vao cac thanh phan d o l u d n g phii hgp, d^t c a s d c h o \ icc bleu chinh md hinh va cac gia Ihuvei ni»hicn ciiu.
Ngudn: Tdc gid de xudl
- Phan tich hdi qui da bien nham kiem djnh mo hinh nghien ciru. c a c gia IhuySl nghien ciiu va djnh vj tam quan trgng ciia eae thanh phAn.
- Kiem djnh T-Tests, A N O V A nham kiem dinh co hay khdng s u khac biet ve gia trj cam nhgn ve djch vu dao tgo van b a n g dgi hgc Ihii hai theo cac dac diem ea nhan (gidi tinh, dd tudi, nganh hgc, nghe ngbiep, thu nhgp) c u a sinh vien.
4. Ket q u a n g h i e n c u u
Ket qua nghien ciiu djnh tinh k h a n g djnh gia irj cam nhan ciia sinh vien ve djch vy dao tgo van bang dai hgc thir hai d cac t r u d n g dai hgc gdm bay thanh phan d u g c d e xual trong m d hinh ly thuyet (hinh 1), d d n g thdi phal trlen t h a n g d o cac thanh phan nay (thang d o Likert 5 bgc tir 1 -^ 5) g d m 4 0 bien quan sal. T r o n g dd. c a c t h a n g d o : gia trj chat lugng 9 bien; gia trj tri thirc 5 bi6n; gia trj chiic nSng 5 bien;
gia tri hinh anh 3 bien; gia tri xa hgi 4 bien; gia trj cam xiic 5 bien; gia trj tien te 4 bien va gia tr] cam nhan 5 bien, d u g c phat trien tir thang do gia tri cam n h a n c u a S h e t h et al ( 1 9 9 1 ) , Petrick (2002).
LeBlane va N g u y e n ( 1 9 9 9 ) , ket h g p vdi cac dge diem ciia sinh vien van b a n g dai hgc thir hai dugc xae djnh d m u c 2.2
Ket qua C r o n b a c h alpha eho Ihay cac thang do deu dat d o tin cay (thap nhai la thang d o gia trj hinh anh [t=0,662 va c a o nhat la thang d o gia trj cam nhan ciia sinh vien ci=0,894).
K8t qua EFA thang d o cac thanh phan gia trj cam nhan b a n g p h u o n g phap g i c h Principal Component Analysis va phep quay Varimax c h o thay, chi so K M O = 0 , 8 3 2 vdi mire y nghta s i g = 0 , 0 0 0 . d o n g thdi 4 0 bl£n quan sat d u g c nil trich vao 8 nhan to tgi Eigenvalue la 1,172 vdi tdng pbmTng sal trich
.So 193 Ihdn!; ' - " ' • * 76 kinlilfJ'tiatlri^
m
=60.82%. Chirng td dii lipu EFA thang do cac thanh phan gia trj cam nhgn la phii hgp va kel qua EFA la dang lin cay. Tuy nhien, ngoai 26 bi^n quan sal do ludng 6 Ihanh phan la gia trj tri thirc. gia irj chirc n5ng, gia trj hinh anh. gia trj xa hgi, gia trj cam xiic va gia tri tien le dugc giir nguyen gdc. ihl thanh phan gia irj chal lugng dugc rut irlch vao hai nhan td: nhan id thir nhat gdm 5 bien quan sat do ludng chuang trinh, ngi dung dao Igo va glang vien (vl the van dugc ggi la gia tri chat lugng); nhan td thir hai gdm 4 bien quan sat do ludng phuong tien, trang thiet bj phyc vy day va hgc (vi the dugc dat ten la gi;i irj dieu kien).
Ket qua EFA thang do gia trj cam nhan ciia sinh vien cho thay ehi sd KMO=0,878 vdi miic y nghTa sig=0,000, ddng thdi 5 bien do ludng khai niem gia tri cam nhan dugc riit trich vao cimg mgl nhan td lgi Eigenvalue la 3,521 vol tdng phirong sai trich
=70.42%. Dieu nay cung chiing td du" lieu EFA thang do gia tri cam nhan la phii hgp va ket qua EFA la dang tin cay.
Nhu vay, vdi ket qua EFA nay Ihi md hinh nghien ciru gi;i irj cam nhgn ciia sinh vien ve dich \ u dao Igo van biing dai hgc thir hai de xuSl ban dau dugc bd sung thanh phiin gia trj dieu kien do ludng dieu kiC'ii phyc vy dgy va hgc d cac trirdng diii hgc. ddng thai bd sung gia thuyet H9:
H9; Khi sinh vien cam nhan ve dieu kien phuc vu dgj' v:i hge cang cao thi gia Irj cam nhan ciia hg ve djch V u dao tgo cang cao,
Kel qua kiC-m tra he st^ Urang quan Spearman's Rho cho thay. tiraiig quan girra cac thanh phan ciia giii trj cam nhan vdi nhau dao ddng lir 0,152 - 0.705:
tuang quan giira cae thanh phan nay \di gia tri cam nhan dao ddng tir 0,176 - 0.567. Dieu nay cho thay.
It cd kha nang \av ra hien tirgng da cdim tuyen (John el al, 2000). ddng thdi chirng td cac Ihanh phan thu dirge lir k^l qua EFA cd nhicu kha nang giai thich cho gia trj cam nhgn ciia sinh v len, Vi the, cho phep dg doan md hinh hoi qui LO dang:
GTCN = Po + P,CL + p,TrT + P3CN + p^XH +
GIflODUC-DflOTi
P5HA + pgCX+ P7TT + pgDK + e,
(Trong dd: GTCN: gia Irj cam nhan cua sinh vien;
CL; gia trj chal lugng; TrT: gia irj In thiic: CN: gia trj chirc nang; XH: gia trj xa hgi; HA: gia gj hinh anh; CX: gia trj cam xiic; TT: gia trj tien te; DK: gia tri dieu kipn).
Ket qua Idm tat md binh hdi qui dugc the hien trong bang 1 cho thSy, trj sd R-=0,633 > R ' di8u chinh=0,623. Chirng td, md hinh hdi qui dugc dy doan giai thich dirge 62,3% bien thien ciia gia trj cam nhgn ciia sinh vien ve dich vu dao igo van bang dgi hgc thir hai.
Ket qua ANOVA the hipn tren bang 2 cho thay, gia tri kiem djnh F (=60,204) cd y nghta thdng ke (Sig =0,000 < 0,05). NghTa la, gia thuyil H^,: tap hgp cac thanh phan gia Irj cam nhgn khdng cd mdi tuong quan vdi gia tri cam nhan bi bac bd. Vi the. md hinh hdi quy dugc du doan la phii hgp vdi dir lieu nghien ciru va cd the suy rgng cho tdng the.
Kel qua kiem dinh md hinh hdi qui dugc the hipn d bang 3 cho thay, Irir gia trj cam xiic, cac thanh phan eon lgi dirge dg doan trong md hinh hdi qui deu giai ihich eho gia irj earn nhgn eiia sinh vien (Sig<0,05) vdi mirc dg quan trgng dugc xep theo thii tu giam dSn U: TT (0,378); TrT (0,361); CL (0.286); CN (0,240); DK (0.234): HA (0.179); XH (0.077), Dieu nay chirng Id, trir gia thuyet H6. eae gia thuya HI, 112. H3, H4, H5. H7 va H9 diu dugc chap nhgn va md hinh hdi qui ciia gia trj cam nhgn dugc xae djnh nhu sau:
GTCN = -2.819 + 0,45 ITT + 0.428TrT + 0.320CL I 0,306CN + 0,264DK + 0,200HA + 0.087XH
(Trong dd: GTCN- gid tri mm nhgn cua sinh vten: TT: gid in lien li: TrT gid tri tri thire: CL • gid In chdt lugrig: CN: gid Iri chirc ndng: DK: gid tri dieu ki?n: HA: gid tri hinh dnh: XH: gid iri xd hdi) Ket qua kiem tra cac vi pham gia djnh ciia md hinh hdi qui (cd lien he luyen tinh giii'a cac bien ddc lap V a bi8n phu thudc; phuong sai ciia sal sd khdng ddi; phan du cd phan phdi chuan va khdng cd tuong Bang I: TAni l^t cdc h^ so vc mirc dp phu hgp ciia mo hinh hoi qui
R
0.796"' R binh phirong
0.633 K b i n h phiroTiB
L-hinh 0.623
Dp Ivch chuan sui sii ciia uov
Iirgng 038683
Mirc dy (hay dSi j^ia (rj (hong ke Mirc dp
thoy doi R binh phuvng
0.633 Miic
(I9 (hay dni F (>(),204
Bac t\r do cua tii' sn 8
Bac t g d o ciia muu s<i
279 Miic dp (hay doi mirc y nghiu F
0.000 Durbin
Watson
1.761 Nguon: Theo linh todn cuu tdc gid
So 19.1 rtii»« ''-'"'•' 77
Kiahlrikallm
IflO DUC - BflO TflO
Bang 2: K i t q u a kiem dinh dp phii
H p s o h o i qui Phan du Tdng cgng
Tong binh phuwng
165,860 96,080 261,940
So bgc t g d o
8 279 287
tigp ciia mo lunh h&i q u i Binh p h u o n g
( r u n g binh 20.733
0.344
G i a trj kiem dinh F
60.204 Mirc y nghia
o.nno"
quan giua chung; khdng cd hien tuong da cgng tuyen) cho thay, cae gia djnh deu khdng bj vi pham.
Vi the. md hinh hoi qui va cac gia ihuyel nghien ciiu dugc kiem djnh tren day dugc chap nhgn.
Ket qua kiem djnh khae bipt cho Ihay, chua lim thay sy khac bipl ve gia trj cam nhgn cd y nghTa thdng ke giiia cac nhdm sinh vien theo gidi tinh, nganh hgc va thu nhgp. nhung cd su khac bipt giiia cac nhdm sinh \ ien theo dg ludi va nghi nghipp. Cy the la. nhdm sinh \ leii dg tudi dudi 30 cd gia Irj cam nhgn cao nhat (mean=3.745), ke den la nhdm sinh vien dg tudi lir 30 den dudi 40 (mean=3,44I) va thap nhat la nhdm sinh \ len dg tudi tir 40 trd len {mean=3.228); nhdm sinh vien chua cd vipc lam cd gui Irj cam nhgn cao ban (mean=3.812) so vdi nhdm sinh vien cd vipc lam (mean=3.344). NghTa la, gia I1UI>CM H8 ehi dugc chap nhgn mgt phan, dd la cosy khac bipt \e gia trj cam nhgn ve djch vu dao tgo vSn bang dgi hgc thir hai theo dg ludi va nghe nghiep ciia sinh vien.
5. Thao luan ket qua nghien cuu va mgt so hiim i
Ngudn: Theo linh todn ciia lac gid Ket qua Iren day cho thay, nghien ciru nay cung tuong ddng vdi nghien ciiu ciia LeBlane va Nguyen (1999). Tuy nhien, cd sg bd sung thanh phan gia tri dieu kipn (dugc tach ra lir gia trj chat lugng do ludng dieu kipn phyc vu dgy va hge) thay the gia trj cam xiic, ddng Ihdi cd su khac bipt ve gia tri cam nhan ve djeh vu dao igo van bang dgi hgc thii hai iheo dg tudi va nghe nghipp ciia sinh vien.
Thao lugn vdi hai nhdm sinh vien da tham gia nghien ciru dinh tinh, cac y kien deu cho rSng ket qua nghien ciru nay la phii hgp vdi thyc tien hipn nay tgi thj gudng Viet Nam vi cac ly do:
- Trong bdi canh chat lugng dao tao nguon nhan Igc chua theo kjp nhu edu ciia xS hgi nhu hien nay, thi cac thanh phan gia Irj chat lugng, gia trj Irl thirc, gia tri chiic nang ddng vai trd la nhiing nhan to quyet djnh chat lugng ciia dich vy dao tao. vi the chung quyet djnh gia trj cam nhgn ciia sinh vien van bang dgi hpc thir hai. Duong nhien, chat lugng ciia cac thanh phan gia tri nay dugc cai thien den dau mgl phan quan trgng la phu thugc vao diSii kien day va bgc. Hon nfl-a, nhu da trinh bay tren day (mye
Mi>
hinh
Hang so CL TrT M l
t s
C.\
TT UK HA
Bang 3 ; Cac thon H^ so hoi qui chira chuan hou
B
-2.81') 0,320 0.428 0,087 0.306 0,095 I).AS1 l U M OJOO
Df lech chuan cua sai
so 0.336 0,068 0,046 0.043 0,053 0,057 0.063 0.054 0,050
; so thong kc cua mo hmh hoi qui H$s6
hoi qui chuan hda
Beta
0.286 0,361 0,077 0,240 O.OM 0.37S 0.2.14 0,17')
Gia trj kiem d i n h t
-8.643 3,248 7,199 2.011 5.729 1.666 7.183 2.191 3.966
Thong k£
Miic ( l a c o n g t u y u n
nghta 1 D?
! chap nhSn 0,000 ' 0,001 . 0,432 0,000 1 0,802 0,045 0,888 (I.O(K) 0.752 0.097 0.877 0.000 , 0.474 (1.035 . 0.630 0.000 i 0,819
H$ so phong dai p h u u n g sai
2.316 1.247 1,127 1,330 1,140 2.110 1,588 1,221
\\;udn Theo tinh loan cua lac gid
hinHfAllrlM
GIflODUC-eflOTf PH^
2.2) dac di^m ciia sinh vien van bang dgi hge thii hai la quan tam nhieu den d i l u kipn dgy va hgc, nhung mdi Irudng dgi hgc Ihi da qua quen thugc vdi hg khi la sinh vien hgc van bang thir nhat. V i the, trong khi dieu kipn phuc vy dgy va hgc trd nen cd vai trd quan Irgng. thi gia trj cam xiic da bj lu m d trong vipc giai thich gia trj cam nhgn cita sinh vien van bang dai hgc thir hai.
- Song hanh vdi chat lugng, chi phi la van 6k dugc khach hang quan lam trong mgi hoan canh. C) giai dogn hien Igi, do tac dgng ciia khung hoang lam cho thu nhgp eiia ngudi dan giam 'siit, v i the gia t n lien tp cang ndi len ddng vai ird quan trgng dem Igi gia ir! cam nhgn cua sinh vien.
- Ky vgng va sg danh gia eiia sinh vien doi vdi chat lugng djch vy dao tao nhu the nao la tiiy thudc vao mirc dg trai nghipm ciia hg. Nhdm sinh vien cd dg tudi cao ban. hay da cd viec lam cd miic dd trai nghipm nhieu ban. vi th^ ky vgng ciia hg cao hon va do dd gia trj cam nhan ma hg nhgn dugc se thap ban so vdi cae nhdm sinh vien cd dg tudi nhd hem. hogc chua cd vipc lam,
Ket qua ciia nghien ciru nay dem Igl mgt sd ham y quan trgng cho cac trirdng dgi hgc:
Thirnhdi, cac Irudng dgi hgc can xay dimg va cap nhgt ngi dung, chuang trinh dao tgo theo hudng tang sd Iirgng va thdi Iirgng cac hgc phan trang bj cac kiL'ii thirc. ky nang gSn lien vdi yeu cau ciia hogi dgng nghe nghiep.
Thir hai, chu trgng den cdng tac luyen chgn. dao tgo chuyen mdn, k j nang va dgo dire nghe nghiep cho dgi ngii giang vien, ddng Ihdi lao dieu kien cho hg tham nhgp hogt dgng thgc lien, k i t hgp ap dyng ddng bg phuang phap giang dgy luang tac va su dgng glang vien trg glang.
Thir ba, cai thipn dicu kien day va hgc, tir thiet ke qu> mo Idp hgc hgp ly, trang bj phdng hgc. cac
phuong tien, thiet b!da> hgc. ilur vien, den nang cao chat lugng cac djch vu bd trg.
Thirtu, xay dgng chinh sach hgc phi hgp 1\ theo hudng dn djnh cho ca khda hgc va phii hgp vol dieu kien kinh le- xa hgi cua mdi dia phuong, timg giai dogn phat trien kinh le va cd sg phan biet vdi tung ddi tugng ngudi hgc. Trudng hgp ed su dieu chinh miic hgc phi can luan thu Id trinh da cdng bd va thdng bao cdng khai vao dau mdi nam bgc.
Thir ndm, Ihyc hipn ddng bg cac bien phap duy tri dam bao chat lugng dich vu dao lao lay mue lieu la chuan dau ra da cdng bd nhu: Id chirc danh gia va kipn loan chat lugng djch vu dao tgo hang nam; tang cirdng cdng lac thanh tra, kiem tra chat lugng day va hgc; tang sd lugng va nang cao chat lugng cac budi doi thogi tryc tiep glDa lanh dgo nha trirdng vdi sinh vien; cd chinh sach dgng vien, khuyen khich can bg giang vien va nhan vien nang eao traeh nhiem; ddng thdi thu hiit cac giang vien gidi, duge dao tao tir cac nude lien tien va giang vien cd uy tin d nude ngoai.
Thir sou, tao dgng hinh anh dpp va sy tin tudng CLia cgng ddng ve nha trudng thdng qua dam bao chat lugng djch vy dao tao ket hgp vdi boat ddng xay dyng va quang ba ihuang hieu nha trucmg tren cac phuang lien truyen thdng. cac chirong trinh lai trg, cac hogt dgng tir thien,...
Nghien ciru nay cung cd mdt sd ban che nhat djnh. Dd la nghien cii-u mdi chi kiem djnh lgi cac Irudng dai hgc lgi TR H C M ; mau nghien ciiu dugc chgn bang phuong phap lay m l u thuan lien; ddng thdi, 7 thanh phSn dugc cd dgng trong md hinh hdi qui chi mdi giai thich dugc 62,3% bien thien ciia gia iri cam nhan. Bdi vgy, can cd nhii'ng nghien ciiu lap lai chgn mau theo xae sual d cac Irudng dgi hgc lgi nhieu linh, thanh phd khac de gia tang tinh long quat hda ciia ket qua nghien c i i u . D
T a i lipu I h a m k h a o :
Bojanic. D C . (1996). "Consumer perceptions of price, value and satisfaction In the hotel industry: An exploratory auAy". Journal of HospUalil}- and Leisure Marketing. 4 (1), 5-22,
Dodds. W. B,. Monroe. K. B., and Grewal. D, (1991). "The effects of price, brand, and store information on buyers' product evaluations", Journal of Marketing Research. 28 (August), 307-319.
Grewal. D.. Monroe. K B.. & Krishnan. R. (1998). -The eiTects of price-comparison advertising on buyers' percep- tions of acquisition value, transaction value and behavioral \n\sn\\on%'\ Journal of Marlieting. 62 (April). 46-59 Jacoby, J, and Olson, J. C. (1977), "Consumer response to price: an attiludinal, information processing perspective", in Y. Wind and P Greenberg (Eds.), Moving Ahead with Attitude Research. 73-86. Chicago- American Mar- keting Association,
Jayanii. R K,.&Ghosh.A K (1996). "Service value detemiination. an integrative perspective". Journal of Hospi- lalilv and Leisure Marketing. 34 (4). 5-25
John. 0,P,, & Benel-Martinez. V. (2000). "Measurement: Reliability, Construct Validation, and Scale Construction".
Sit I93ihihi}i ^^2013 79
KintilfJIiadrifD
TODUC-BflOTflO
I In H T. Reis & C. M Judd (Eds.), Handbook of Research Methods in Social Psychology, pp. 39-369. New York:
Cambridge University Press.
Kotler, P. (2001), Qudn In marketing, Nha xuit ban Th6ng ke.
LeBlane. G. & Nguyen, N. (1999), "Listening to the customer's voice: Examining perceived service value among business college Sludents". Inlernalional Journal of Educational Management, Vol.13. No 4, 187-198 Oh. H. (1999), "Service quality, customer satisfaction, and customer value: A holistic perspective", Hospital it}' Man-
iigement. 18, 67-82.
Parasuraman. A., Zeithaml, V. A., & Berry, L L (1988). "Servqual: A multiple-item scale for measuring consumer perceptions of service quality". Journal of Retailing, 64, 12-40
Parasuraman, A., & Grewal, D. (2000), "The impact of technology on the quality-value-loyalty chain: A research agenda". Journal of ihe Academy of Marketing Science. 28 ( I ) . 168-74.
Pclrick. J. (2002). "Development of a mulli-dimentional scale for measuring the perceived value of a service". Jour- nal oj Leisure Research, 34, No. 2, 119-134.
Sheth. J, N., Newman, B. I & Gross, B, L. (1991b), "Why we buy what we buy: A theory of consumption values", Journal of Business Research. 22, 159-170,
Shelh. JagdishN., Bruce I Newman and Barbara L Gross (1991a), "Consumption values and market choice", Cincin- nati, Ohio: South Western Publishing.
Swan. J.. & Sweene). J. C. (2000), "Perceived value and its impacts on choice behavior in a retail setting". Journal of Retailing and Consumer Services, 7 , 77-88.
Sweeney, J, C , Soutar, G N and Johnson, L. W. (1998), "Consumer-perceived value: development of a multiple item Scale", American Marketing Association Conference Proceeding. 9, 138.
Sweeney, Jillian C. and Geoffrey N Soutar (2001), "Consumer-perceived value: The development of a multiple item scale". Journal ofRelailing, 77 (2), 203-220.
Woodruff. R. B (1997), & Cardial, S. F. (1996), "Know your customer: New Approaches to Understanding Customer value and Satisfaction", Cambridge. MA: Blackwell Publishers,
Zeithaml. V. A. (1998), "Consumer perceptions of price, quality, and value: A means-end model and synthesis of evi- dence", Journal of Marketing, 52 (July), 2-22.
Student perceived value of the second-degree training services in t h e universities Ab.sirael:
The aim of this research is to explore and identify the importance of components measuring the student per- ceived value of the second-degree training services in the university. Survey data were collected from 588 students currently enrolled in the second-degree training programs in universities in HCM city. The research model is proposed from the study of perceived value of Petrick (2002), Sheth el al (199!) and hu.\ed on the concept of perceived value in training service of LeBlane and Nguyen (1999). The reliability and validity of the scale was tested by cronbach's alpha coefficient and exploratory factor analysis (EFA).
Results of multivariable regression analysis show that student perceived value of the second-degree train- ing .sen-ices in the university of seven components arranged in descending order of importance as follow- ing: monciary value (p~0.3'^Hj. epistemic value (^=0,361). quality value (P=0,286), fimctional value f/i--<).240). eondilional value (P=0.234). reputation value (p=0,159) and social value (p=0.077).
Thong tin tac gia:
* Bid Thi Thanh, Tien s; kinh le
- \oi cdng tdc: Khoa Qudn tri kinh doanh Dgi hge Kinh ti TP HCM
- Linh vuc nghien cdu chinh: Phdt Irien vd Qudn trj ngudn nhdn lire; Hdnh vi khdch hang: Lgi thi cgnh tranh: Quan ly tri thirc.
- Cdc tgp chi dd cdng bd cdng Irinh: Tgp ehi Phdt trien kinh li, Tgp chi Kinh ti vd Phdi triin. Tgp chi Cdng
"ylN ^'gdn hdng, Tgp chi Tdi chinh.
Email. btthanh'Tfiueh. edu. vn
\- 193 lining •'/20I3