• Tidak ada hasil yang ditemukan

BAB 5 HASIL DAN PEMBAHASAN

5.5. Confusion Matrix

Adapun perhitungan manual untuk mendapatkan nilai akurasi klassifikasi pada dataset image angin puting beliung dan dataset image awan cumulonimbus dapat direpresentasikan hasil proses klassifikasi dengan menggunakan True Positive

(TP), True Negative (TN), False Positive (FP) dan False Negative (FN) seperti

* + *

Nilai akurasi terhadap klassifikasi training dataset image angin puting beliung dan testing dataset image awan cumulonimbus setelah dilakukan pengujian dari hasil algoritma dan model yang di dapat dari novalti dalam penelitian ini adalah sebesar 81.48%. Sehingga persentase jumlah dataset image awan yang benar diprediksi mengarah terjadinya angin puting beliung maupun yang tidak mengarah ke angin puting beliung dari keseluruhan dataset image awan adalah 81.48%.

Nilai presisi terhadap klassifikasi training dataset image angin puting beliung dan testing dataset image awan cumulonimbus setelah dilakukan pengujian dari hasil algoritma dan model yang di dapat dari novalti dalam penelitian ini adalah sebesar 0.80. Sehingga nilai presisi jumlah dataset image awan yang benar diprediksi mengarah terjadinya angin puting beliung dari keseluruhan dataset image awan yang mengarah ke angin puting beliung adalah sebesar 0.80.

Nilai recall terhadap klassifikasi training dataset image angin puting beliung dan testing dataset image awan cumulonimbus setelah dilakukan pengujian dari hasil algoritma dan model yang di dapat dari novalti dalam penelitian ini adalah sebesar 0.81 Sehingga persentase jumlah dataset image awan yang benar diprediksi mengarah terjadinya angin puting beliung dibandingkan dengan keseluruhan dataset image awan yang mengarah ke angin puting beliung adalah 0.81 .

Hasil Uji Analisi Dataset Testing Awan : Menggunakan Metode Naive Bayes untuk Cross Validation dan Confusion Matrix

=== Run information ===

Scheme: weka.classifiers.bayes.NaiveBayes

Relation: Dataset ACA Awan

Average Correlation Angle

35 3 | a = Awan Mengarah Angin Putting Beliung 7 9 | b = Awan Tidak Mengarah Angin Putting Beliung

Hasil Uji Analisis Dataset Training Angin Puting Beliung : Menggunakan Metode Naive Bayes untuk Cross Validation dan Confusion Matrix

=== Run information ===

Scheme: weka.classifiers.bayes.NaiveBayes Relation: New

std. dev. 0.0017 0.0017

Menggunakan Metode KNN untuk Cross Validation dan Confusion Matrix

=== Run information ===

Scheme: weka.classifiers.bayes.NaiveBayes Relation: New

Instances: 118 Attributes: 8

Number Sample Min

Number Sample Max Awan Mengarah Angin Putting Beliung Awan Tidak Mengarah Angin Putting Beliung

(0.52) (0.02)

precision 6.4885 6.4885

=== Confusion Matrix ===

a b c d <-- classified as

63 0 0 0 | a = Angin Putting Beliung 1 0 0 0 | b = Bukan Angin Putting Beliung

4 0 32 2 | c = Awan Mengarah Angin Putting Beliung 2 0 0 14 | d = Awan Tidak Mengarah Angin Putting Beliung

Keterangan dan Analisis :

TP : Jumlah dataset image awan yang mengarah ke angin puting beliung.

TN : Jumlah dataset image awan yang bukan mengarah ke angin puting beliung.

FP : Jumlah dataset image bukan awan yang mengarah ke angin puting beliung.

FN : Jumlah dataset image awan yang tidak mengarah ke angin puting beliung.

BAB 6

KESIMPULAN DAN SARAN

6.1. Kesimpulan

Pada bagian akhir dari desertasi ini, penulis memaparkan beberapa kesimpulan yang dapat diambil yang didasarkan pada temuan hasil penelitian diantaranya :

1. Model sampel dataset image yang digunakan image Angin Puting Beliung dan Awan untuk mendapatkan pola yang diekstrak menjadi Fenomena Chaos yaitu adanya ketidakteraturan spektrum warna dan edge/tepi.

2. Data yang dijadikan sebagai data training, data validasi dan data testing adalah untuk mendapatkan model baru dari penelitian ini yang berasal dari dataset image pihak ketiga.

3. Tahap pertama digunakan dengan Algoritma Edge Detection yang berfungsi untuk mengekstrak lapisan-lapisan yang terdapat pada awan dan angin puting beliung sehingga didapatkan model dengan menghasilkan image yang memiliki batas tepi.

4. Batas tepi yang terlihat adalah batas tepi yang memiliki spektrum warna yang ekstrem atau kontras (brightness) dengan hasil akhir berupa nilai Magnitude Gradiant.

5. Tahap kedua dengan menggunakan Algoritma Spectral Angle Mapper pada Supervised Image Classification untuk menghasilkan interval nilai Average Correlation Angle minimum dan maksimum sebesar 49.4° - 82.9° dari hasil training dataset image Fenomena Chaos.

6. Nilai akurasi yang didapat antara dataset training image angin puting beliung dengan dataset testing awan sebesar 81.48%, nilai presisi sebesar 0.80 dan nilai recall sebesar 0.81.

6.2. Saran

Berdasarkan dari pengkajian hasil penelitian pada disertasi yang dilakukan penulis, maka penulis bermaksud untuk memberikan saran yang mudah-mudahan dapat bermanfaat bagi lembaga maupun bagi peneliti selanjutnya, diantaranya sebagai berikut :

1. Dataset image yang digunakan pada penelitian ini dapat dikembangkan dari dataset lain, misalnya data hasil penelitian lapangan secara langsung baik dari hasil foto

maupun dari hasil video menggunakan satelite dan image dengan menggunakan time series.

2. Dapat dikembangkan dengan menggunakan metode Maximum Likelihood Classification dengan cara yang sama atau pun dengan cara yang berbeda untuk mendapatkan Algoritma baru.

3. Model yang terbentuk dari hasil penelitian ini dapat digunakan dan dikembangkan menjadi salah satu bahasan dalam mata kuliah Artificial Intelligence Supervised Image Classification ditambah dengan Chaos atau Fenomena Chaos.

4. Penelitian ini dapat dilanjutkan untuk menentukan range interval nilai awal,tenggah dan akhir dan dengan metode Maximum Likelihood Classification.

DAFTAR PUSTAKA

Ab, L., D. Batistella, C.M. Moran, and E. Ab. 2007. Land-Cover Classification in the Brazilian Amazon With the Integration of Landsat ETM + and Radarsat Data., International Journal of Remote Sensing 28(24) : pp. 5447 – 5459.

Al-doski, J., Mansor, S. B., & Shafri, H. Z. M. (2013). Image Classification in Remote Sensing. Journal of Environment and Earth Science, 3(10), 141–147.

https://doi.org/10.1016/0277-3791(96)89785-X

Alvarez-Ramirez, J., Ibarra-Valdez, C., & Rodriguez, E. (2016). Fractal analysis of Jackson Pollock’s painting evolution. Chaos, Solitons and Fractals, 83, 97–104.

https://doi.org/10.1016/j.chaos.2015.11.034

Arief1, M. (2010). METODA KLASIFIKASI TETANGGA TERDEKAT UNTUK MENGGUNAKAN DATA ALOS. 12(2), 114–121.

IEEE Trans. Geosci. Remote Sensing 40(10) : pp. 2313–2330.

Banerjee, S. (2016). An Algorithm for Pre-Processing of Satellite Images of Cyclone Clouds An Algorithm for Pre-Processing of Satellite Images of Cyclone Clouds.

Boris, H., A. Katok. 2003. A First Course in Dynamics: With a Panorama of Recent Developments. Cambridge University Press. ISBN 0-521-58750-6.

Boeing, G. (2016). Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction. Ssrn.

https://doi.org/10.2139/ssrn.2823988

Cangialosi, J P, Latto, A. S., & Berg, R. (2018). National Hurricane Center Tropical Cyclone Report - Hurricane Irma (AL112017) 30 August -12 September 2017.

(September 2017), 111. https://doi.org/10.1097/TA.0000000000002006

Cangialosi, John P, & Franklin, J. L. (2015). 2014 National Hurricane Center Forecast Verification Report John P. Cangialosi and James L. Franklin NOAA/NWS/NCEP/National Hurricane Center 25 March 2015. (March), 1–82.

Cai, W., Chen, S., Zhang, D. 2007. Fast and Robust Fuzzy c-Means Clustering Algorithms Incorporating Local Information for Image Segmentation. Pattern Recognition 40 : 825–838.

Chang, K. 2008. Edward N. Lorenz a Meteorologist and Father of Chaos Theory. Dies at 90., Net York Times

Chatzis, S., T.A. Varvarigon. 2008. A Fuzzy Clustering Approach Toward Hidden Markov Random Field Models For Enhanced Spatially Constrained Image Segmentation. IEEE Trans. Fuzzy Systems 16 : 1351–1361

Chen, C. L., J. L. Liu., and J. Y. Syu. 2012. Application of Chaos and data Mining To Seizure Detection Of Epilepsy. Proceedings of 2012 4th International Conference on Machine Learning and Computing. IPCSIT 25 IACSIT Press.

Singapore

Chen, M., J.H. Xuan, D.R. Li, et al. 2007. Classification Of Remote Sensing Fused Image Based On Independent Component Analysis And Support Vector Machines. Journal of Image and Graphics : 1665-1670.

Chen, S., Z., B, Part. 2004. Robust Image Segmentation Using FCM with Spatial Constraints Based on New Kernel-Induced Distance Measure. IEEE Trans.

Syst. Man Cybern 34 : 1907–1916.

Chi , M. M., Q. Qian, and J. Atli Benediktsson. 2008. Cluster-Based Ensemble Classification For Hyper Spectral Remote Sensing Images. Proc. IEEE Int.

Geosci. Remote Sens. Symp. 1 : pp. 209–212.

Chlouverakis, K. E. and J. C. Sprott. 2005. Chaos Solitons & Fractals. Chaotic Hyperjerk System : 739-746.

Christopher, S. et. al., 2006. Medium-Term Prediction of Chaos

Chen, C., Liu, J. and Syu, J. (2012). Application of Chaos Theory and Data Mining to Seizure Detection of Epilepsy. Dimension Contemporary German Arts And Letters, 25, pp. 23–28.

Chen, C., Liu, J. and Syu, J. (2012). Application of Chaos Theory and Data Mining to Seizure Detection of Epilepsy. Dimension Contemporary German Arts And Letters. 25. pp. 23–28.

Collins, F., & Collins, F. (2008). Objective Estimation of the 24-h Probability of Tropical Cyclone Formation. (Beven 1999), 456–471.

DeMaria, R. (2015). Automated detection using eye tropical cyclone. Master's Thesis.

Department of Computer Science. Colorado State University.

Devi, Mr. and Santhosh Baboo, D. (2011). Land use and Land Cover Classification using RGB&amp;L Based Supervised Classification Algorithm. International Journal of Computer Science & Engineering Technology. 2(10). pp. 2229–3345.

Dutta, I. Banerje, S. De, M. . 2016. An Algorithm for Pre Processing of Satellite Image of Cyclone Clouds. International Journal of Computer Applications (0975-8887). Volume 78 - No. 15

Danforth, C. M. 2013. Chaos in an Atmosphere Hanging on a Wall. Mathematics of Planet Earth.

Dean, A.M , Smith, G.M. 2003. An Evaluation Of Per Parcel Land Cover Mapping Using Maximum Likelihood Class Probabilities. International Journal of Remote Sensing 24 (14) : 2905-2920.

Dogan, T., A. K. Uysal. 2018. The Impact to Feature Selection on Urban Land Cover Classification. International Journal of Intelligent System and Applications In Engineering.

Dong E, Zhu G, Chen C. 2017. Classification of Four Categories of EEG Signals Based on Relevance Vector Machine. IEEE International Conference on Mechatronics and Automation : pp. 1024-1029.

Dong. E., G. Zhu., C. Chen., J. Tong., Y. Jiao., S. Du. 2018. Introduction Chaos Behavior to Kernel Relevance Vector Machine (RVM) for Four-Class EEG Classification. PLoS ONE 13(6): e198786

Doski J. A., B. Shattri, Mansor, H. Zulhaidi, M., and Shafi. 2013. Image Classification in Remote Sensing. Journal of Environment and Earth Science 3(10) : ISSN 2224-3216.

Du, C. J., and D. W. Sun. 2008. Multi-Classification Of Pizza Using Computer Vision And Support Vector Machine. J. Food Eng 86(2) : pp. 234–242.

Duarte, D. C., J. Zanetti., J. G. Junior., and N. G. Medeiros. 2016. Comparison of supervised Classification Methods of Maximum Likelihood Image, Minimum

Distance, Parallelepiped and Neural Network in Image of unmanned Air Vehicle (UAV) in Vicosa-MG. Proceedings XVII GEOINFO, Campos do Jordao, Brazil.

Eyupoglu, C., M. A. Aydin., A. H. Zaim., A. Sertbas. 2018. An Efficient Big Data Anonymization Algorithm Based on Chaos and Perturbation Techniques.

Journal Entropy doi : 10.3390.

Fernerkundung, G. and Schaepman, M. 2014. Image classification Landcover Classification Improvement.

Ge S, Wang R, Yu D. 2014. Classification of Four-Class Motor Imagery Employing Single-Channel Electroencephalography. PLoS One 9(6):e98019.

Gupta, R., Laghari K.R, and Falk T. H. 2016. Relevance Vector Classifier Decision Fusion and EEG Graph-Theoretic Features for Automatic Affective State Characterization. Neuro Computing 174 : 875–884.

Hidayat, A. D., & Afrianto, I. (2017). Sistem Kriptografi Citra Digital pada Jaringan Intranet Menggunakan Metode Kombinasi Chaos Map dan Teknik Selektif.

Ultimatics, 9(1), 59–66. https://doi.org/10.1037/11335-007

Hou, Y., 2018. Chaos Sequence Data Classification Mining Reseach Under Network Visualization Analysis. International Journal of Computers And Applications.

Huang, N., Jia, Z., and Yu, Y. 2011. Image Segmentation Based On Combination Of Improved FCM And Local Information Computer. Appl. Software 28 : 97–100.

Huang, X., L.P. Zhang, P.X. Li. 2007. Classification Of High Spatial Resolution Remotely Sensed Imagery Based Upon Fusion Of Multiscale Features and SVM, Journal of Remote Sensing., 48-54.

Huiyu, Z.,J. Wu., J Zhang. 2010. Digital Image Processing Part-One.Bookboon.com Huiyu, Z.,J. Wu., J Zhang. 2010. Digital Image Processing Part-Two.Bookboon.com Ivancevic, G. Vladimir. T. T. Ivancevic. 2008. Complex Nonlinearity : Chaos, Phase

Transitions, Topology Change And Path Integrals. Springer. ISBN 978-3-540-79356-4.

Indarto. (2017). Penginderaan Jauh : Metode Analisis & Interpretasi Penginderaan jarak jauh (remote sensing). (June).

Jong , R.de.,M. Schaepman., 2014. Image Classification., Lecture 7b Grundlagen Fernerkundung.

Jingying Tang and Corene Matyas. (2018). A Nowcasting Model for Tropical Cyclone Precipitation Regions Based on the TREC Motion Vector Retrieval with a

Semi-Lagrangian Scheme for Doppler Weather Radar.

https://doi.org/10.3390/atmos9050200

Jun, Z., & Jinglu, H. (2008). Image segmentation based on 2D Otsu method with histogram analysis. Proceedings - International Conference on Computer Science and Software Engineering, CSSE 2008, 6(1), 105–108.

https://doi.org/10.1109/CSSE.2008.206

Kachkach A. 2018. Problem Solving with ML (Machine Learning) : Automatic Document Classification. Google Cloud : Innovation in Data Processing and Machine Learning Technology.

Kahraman, I., Turan, M. K., & Karas, I. R. (2015). Road Detection from High Satellite Images Using Neural Networks. 5(4), 304–307.

https://doi.org/10.7763/IJMO.2015.V5.479

Kambhampaty, V., Gali, R., & Prasad, R. A. (2014). Short term tornado prediction model using satellite imagery. IEEE Proceedings of the 1st International Conference on Systems Informatics, Modelling and Simulation, Sheffield, 105–

111. https://doi.org/10.1109/SIMS.2014.29

Kovordanyi, R., & Roy, C. (2009). Cyclone track forecasting based on satellite images using artificial neural networks Cyclone Track Forecasting Based on Satellite Images Using Artificial Neural Networks. (64), 513–521.

Lawrence. B. P.K.C., W.R.Windham, d.P.Smith. 2006. Performance of Supervised Classification Algorithms of Hyperspectral Imagery for Identifying Fecal and Angesta Contaminants. Transaction of the ASABE 46(6):2017-2024.

Lee, R. S. T. and Liu, J. N. K. (2001). An Elastic Contour Matching Model for Tropical Cyclone Pattern Recognition. 31(3), pp. 515–516.

Li, E., S. Zhu, X. Zhou, and W. Yu. 2011., The Development And Comparison Of Endmember Extraction Algorithms Using Hyperspectral Imagery. J. Remote Sens 15( 4): pp. 659–679.

Li, J., Y. Han, and Z. Sun. 2005. Performance Analysis Of Chaos Optimization Algorithm. Journal of Chinese Computer Systems : 1340-1344.

Li, Yadong., S. Li. 2002. A New Genetic Chaos Optimization Combination Method, Control Theory & Applications : 143-145.

Liang, Q., Mendel, J.M. 2000. Interval Type-2 Fuzzy Logic Systems: Theory And Design. IEEE Trans. Fuzzy Syst. 8 : 535–549.

Liantoni, F., Suciati, N. and Fatichah, C. (2015). Modifikasi Ant Colony Optimization Berdasarkan Gradient Untuk Deteksi Tepi Citra. pp. 225–234.

Lillesand, T.M., R. Kiefer. 2007. Remote Sensing Image Interpretation. John Wiley, NewYork.

Lotte F, C. Guan. 2011. Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and New Algorithms. IEEE Trans Biomed Eng. 58(2) : 355–62.

Lu , S., K. Oki, Y. Shimizu, and K. Omasa., 2007. Comparison Between Several Feature Extraction/Classification Methods For Mapping Complicated Agricultural Land Use Patches Using Airborne Hyperspectral Data., Int. J.

Remote Sens., 28(5) : pp. 963–984.

LU, D., Q. Weng. 2012. A Survey of Image Classification Methods and Techniques for Improving Classification Performance, International Journal of Remote Sensing 28(5) : 823–870.

Ma, L., Li, M., Ma, X., Cheng, L., Du, P., & Liu, Y. (2017). A review of supervised object-based land-cover image classification. ISPRS Journal of

Photogrammetry and Remote Sensing, 130, 277–293.

Mandaya, I., 2016. Satellite ALOS (Advanced Land Observing Satellite). Japan Aerospace Exploration Agency.

Matthew L.Brooks., Cynthia s.Brown, Jeanne C.Chambers, Carla M.D Antonio, Jon E.Keeley and Jayne Belnap., (2012)., Result 1of 1 in Book for M.K. Creutzburg

Metz , L., N. Maheswaranathan, and B. Cheung. (2018). Learning Unsupervised Learning Rules.

Mishra, S., Toshihiko., H. Imaizumi. (2018). Supervised Classification of Dermatological Diseases by Deep Learning, Machine Learning (ML). Computer Vision and Pattern Recognition., Cornell University Library.

Munakata, T., (2008). Fundamentals of the New Artificial Intelligence. 2nd Ed, Springer-Verlag :Berlin-Heidelberg.

Ovchinnikov, I.V. 2016. Introduction to Supersymmetric Theory of Stochastic.

Entropy 18(4) : 108.

Ovchinnikov, I.V.; Schwartz, R. N.; Wang, K. L.(2016)., Topological Supersymmetry Breaking: Definition And Stochastic Generalization Of Chaos And The Limits Of Applicability Of Statistic. Modern Physic Letters B.30:

1650086.

Owojori, A., 2005., Landsat Image-Based LULC Changes of San Antonio, Texas Using Advanced Atmospheric Correction and Object-Oriented Image Analysis Approaches.

Peng, S., L. Wang, Z. Meng, et al., 2002. Monitoring The Seeper Subside In Coal District By The Remote Sensing_Examples From Huainan Coal District.

Journal of China Coal Society : 374-378.

Peter ,J. S., J. Hongland., N. Anderson., J. Drake., and P. Medley. 2018. Fine Resolution Probabilistic Land Cover Classification of Landscape in the Southeastern United States. International Journal Of Geo-Information 7:107.

Park, B. Lawrence, K,C. Windham, W,R. Smith, D,P. 2017. Performance of Supervised Classification Algorithms of Hyperspectral Imagery for Identifying Fecal And Ingesta Contaminants. American Society of Agricultural and Biological Enginers. Vol.49(6):2017-2024

Pramitasari, R. and Wardoyo, R. (2013). Penerapan Algoritma Optimasi Chaos pada Jaringan Ridge Polynomial untuk Prediksi Jumlah Pengangguran. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 6(2).

Richter, H. 2012. Artficial Immune Systems, Dynamic Fitness Landscapes, and the Change Detection Problem. HTWK Leipzig University of Applied Science Germany.

Safonov, Leonid A, Tomer, Elad, Strygin, Vadim V, Ashkenazy, Yosef, and H.

Shlomo. 2002. Multifractal Chaotic Attractors In A System Of Delay-Differential Equations Modeling Road Trafic. Chaos: An Interdisciplinary Journal of Nonlinear Science. 12 (4): 12.1006S. ISSN 1054-1500.

Shen, Y. 2018. Supervised Chaos Genetic Algorithm Based State of Charge Determination for LiFePO4 Batteries in Electric Vehicles. Advances in Materials, Machinery, Electronic II: doi:10.1063/1.5033714.

Su, H. J., Du , P. J., and Sheng, Y. H. 2008. Study On Feature Extraction And Experiment Of Hyper Spectral Data. Appl. Res. Comput. 25(2) : pp. 390–294.

Sun H, Bi L, Chen B., 2016., Partitioned Common Spatial Pattern Method for single trial EEG Signal classification in Brain-Computer Interface System.

Automatika. 57(1) : 66–75.

Sourav. S, Davide Bottari; Ramesh Kekunnaya; Brigitte Röder., Evidence of a retinotopic organization of early visual cortex but impaired extrastriate processing in sight recovery individuals., 2018., Journal of Vision., Vol.18 : 1-12.

St. Peter, J., Hogland, J., Anderson, N., Drake, J., & Medley, P. (2018). Fine

Resolution Probabilistic Land Cover Classification of Landscapes in the Southeastern United States. ISPRS International Journal of Geo-Information, 7(3), 107.

Suaydhi, Eddy Hermawan, Arief Suryantoro, Bambang Siswanto, dan Sri Kaloka Prabotosari., 2014. Variabilitas Cuaca dan Iklim di Indonesia. Cetakan Pertama, Andira Bandung.

Sigit Bayhu Iryanthony,. 2015. Pengembangan Modul Kesiapsiagaan Bencana Angin Puting Beliung Untuk Mahasiswa Pendidikan Geografi Unnes. Jurnal Geografi 12(2) : 144 - 221.

Wang, C., A. Xu., and X. Li. 2018. Supervised Classification High Resolution Remote-Sensing Image Based in Interval Type-2 Fuzzy Membership function.

Remote Sensing 10 (5).

Werndl, Charlotte. 2009. What are the New Implications of Chaos for Unpredictability. The British Journal for the Philosophy of Science. 60 (1):

195-220.

Wiley, V. and Lucas, T. (2018). Computer Vision and Image Processing : A Paper Review. 2(1), pp. 28–36.

Wu , Y. C., Y. S. Lee, and J. C. Yang. 2008. Robust And Efficient Multiclass SVM Models For Phrase Pattern Recognition. Pattern Recognit 41(9) : pp. 2874–

2889.

Yan, W. K. (2008). Automatic tropical cyclone eye fix using genetic algorithm. 34, pp. 643–656.

Yang, Y., C. Li. 2004., Chaos In Genetic Algorithms, Computer Engineering And Applications., 76-78.

Yi , Y.H., C.H. Yu, Q.Q., 2005. Method For Unsupervised Remote Imagery Classification Based On Independent Component Analysis. Geomatics and Information Science of Wuhan University : 19-22.

Yu, L., Y. Zhao, R. Ni, and T. Li. 2010. Improved Adaptive LSB Steganography Based on Chaos ang Genetic Algorithm. Hindawi Publishing Corporation EURASIP Journal on Advances in Signal Processing.

Yiqiang, G. Yanbin, W. Zhengshan, J. Jun, W. Luyan, Z. 2010. Remote sensing image classification by the Chaos Genetic Algorithm in monitoring land use changes.

Mathematical and Computer Modelling. Elsevier Ltd, 51(11-12), pp. 1408–

1416.

Zhang, A. and Xie, Y. (2014). Chaos theory-based data-mining technique for image endmember extraction: Laypunov index and correlation dimension (L and D).

IEEE Transactions on Geoscience and Remote Sensing, 52(4), pp. 1935–1947.

Zhao, Y. Yu, L. Ni, R. Li, T. 2010. Improved adaptive LSB steganography based on chaos and genetic algorithm. Eurasip Journal on Advances in Signal Processing, 2010.

Zadeh, L.A. 1975. The Concept Of A Linguistic Variable And Its Application To Approximate Reasoning-1. Inf. Sci. 8: 199–249.

Zhang, B. X. Sun, L. Gao, and L. Yang. 2010. Endmember Extraction Of Hyperspectral Remote Sensing Images Based On The Ant Colony Optimization (ACO) Algorithm. IEEE Trans. Geosci. Remote Sens. 49(7): pp. 2635–2646.

Zhao, X., Li, Y. Zhao, Q., 2016. Hidden Markov Gaussian Random Field Based Fuzzy Clustering Algorithm for High-Resolution Remote Sensing Image Segmentation. Acta Electron 44 : 679–686.

Zhao, X.; Li, Y.; Zhao, Q., 2014., Image Segmentation By Fuzzy Clustering Algorithm Combining Hidden Markov Random Field And Gaussian Regression Model. J. Electron. Inf. Technol. 36: 2730–2736.

Zhao, X.; Li, Y.; Zhao, Q., 2016. A Fuzzy Clustering Image Segmentation Algorithm With Double Neighborhood System Combined With Markov Gaussian Model.

J. Computer-Aided Des. Computer Graph. 28 : 615–623.

Zhou, X., Y. Hu, X. Chen, et al. 2005. Chaos Genetic Algorithm And Its Application In Function Optimization, Computer & Digital Engineering : 68-70.

Zhi-yong, Y., Guang, Y., Cun-bing, D., & Doi, G. (2011). Time-delay feedback control in a delayed dynamical chaos system and its applications . 20(1), 1–5.