• Tidak ada hasil yang ditemukan

Abubakar M. 2008. Kebijakan Pangan, Peran Perum Bulog, dan Kesejahteraan Petani [internet]. [diunduh 2012 Okt 2]. Tersedia pada: www.stneg.go.id. Andoko A. 2002. Budidaya Padi secara Organik. Bogor (ID): Penebar Swadaya. Aliansi Organis Indonesia. 2012. Statistik Pertanian Organik Indonesia 2011.

59 Augustburger F, Jorn N, Udo C, Petra H, Joachim M., Christine S, Vitoon P, Koen DB. 2002. Organic Farming in the Tropics and Subtripics: Rice. 1st Edition. Germany: Naturland e.V.

Ayatullah. 2012. Sistem Pertanian Modern [internet]. [diunduh 2012 Nov24]. Tersedia pada: http://septa-ayatullah. Blogspot.com/2009/05/sistem- pertanian-modern.html.

Badan Standardisasi Nasional. 2010. Sistem Pangan Organik SNI 6729:2010. Bank Pengetahuan Padi Indonesia. 2012. Padi Organik [internet]. [30 September

2012]. bbpadi.litbang.deptan.go.id/www.pustaka-deptan.go.id.

Battese GE. 1992. Frontier Production Function and Technical Effeciency: A Survey of Empirical Applications in Agricultural Economics. J.Agricultural Economics. 7(1): 185-208.

Beattie BR and CR Taylor. 1985. The Economics of Production. New York (USA): Wiley.

BioCert. 2005. Panduan Budidaya Tanaman Pangan Organis. Bogor (ID): BIOCert.

Coelli TJ. 1996. A Guide to FRONTIER Version 4.1: A Computer Program for Stochastic Frontier Production and Cost Function Estimation. Centre for Efficiency and Productivity Analysis. University of New England. Armidale. Coelli TJ, DSP Rao and GE Battese. 1998. An Introduction to Efficiency and

Productivity Analysis. Boston: Kluwer Academic Publishers.

Darmadjati DS. 2005. Kebijakan operasional pemerintah dalam pengembangan pertanian organik di Indonesia. Di dalam: Workshop dan Kongres Nasional II MAPORINA, Jakarta 21-22 Desember 2005. Jakarta (ID): MAPORINA. Darwanto. 2010. Analisis Efisiensi Usahatani Padi di Jawa Tengah (Penerapan

Analisis Frontier). Jurnal Organisasi dan Manajemen. 6 (1): 46-5.

Debertin DL. 1986. Agricultural Production Economics. New York (US): Mac Millan Pub.Co.

De Datta SK. 1981. Principles and Practices of Rice Production. Canada (UK): John Wiley & Sons, Inc. 618 p.

Dinas Tanaman Pangan. 2012. Roadmap Peningkatan Produksi Beras Nasional (P2BN)-Menuju Surplus Beras 10 Juta Ton Pada Tahun 2014 [internet].

[diunduh 2012 Sep 30]. Tersedia pada:.http://tanamanpangan.deptan.go.id /doc_upload/44_BAB%20I% 20dan% 20II.pdf.

Direktorat Jenderal Pengolahan dan Pemasaran Hasil Pertanian. 2011. Pedoman Teknis Pembinaan dan Sertifikasi Pangan Organik. Jakarta (ID): Kementerian Pertanian.

Direktorat Jenderal Tanaman Pangan. 2012. Pedoman Pelaksanaan Program Peningkatan Produksi, Produktivitas dan Mutu Tanaman Pangan untuk Mencapai Swasembada dan Swasembada Berkelanjutan. Jakarta (ID): Kementerian Pertanian.

Doll P and F Orazem. 1984. Production Economics: Theory with Application. New York (US): Wiley.

Farrell MJ. 1957. The Measurement of Productive Efficiency. Journal of Royal Statistic Society. Series A : 253-81.

60

Gujarati DN. 1993. Ekonometrika Dasar. Jakarta (ID): Erlangga.

Hanafie R. 2010. Pengantar Ekonomi Pertanian. Yogyakarta (ID): CV. Andi Offset.

Haryani D. 2009. Analisis Efisiensi Usahatani Padi Sawah Pada Program Pengelolaan Tanaman dan Sumberdaya Terpadu di Kabupaten Serang Provinsi Banten. Tesis. Pascasarjana. Bogor: Institut Pertanian Bogor. Heady EO and Dillon JL. 1964. Agricultural Production Functions. IOWA (US):

Ames Iowa State Univ Press.

IFOAM. 2012. Organic Agriculture and Food Security [internet]. [diunduh 2012 Nov 24]. Tersedia pada: http://www.ifoam.org/pdfs/OrganicAgricultureand FoodSecurity.pdf.

Jahroh S. 2010. Organic Farming Development in Indonesia: Lessons Learned From Organic Farming in West Java and Nort Sumatera. Montpellier (FR): Innovation and Sustainable Development in Agriculture and Food (ISDA). June 28-30.

Karama AS. 2012. Perkembangan Pertanian Organik di Indonesia [internet]. [28 November 2012]. http://www.agrikencanaperkasa.com/index.php/organic- farming/15-iof.

Katayama TC. 1993. Morphological and taxonomical characters of cultivated rice (Oryza sativa L.). Science of the Rice Plant. Vol 1: 41-49

Khai HV and Mitsuyasu Y. 2011. Technical efficiency Analysis of Rice Production in Vietnam. J.ISSAAS. 17 (1): 135-146.

Khan A, Fakir AH, Akhtarul A. 2010. Farm Household Technical Efficiency: A Study on Rice Producers in Selected Areas of Jamalpur District in Bangladesh. European J SS. 14 (2): 262-271.

Kusnadi N, Netti T, Sri HS, Adreng P. 2011. Aalisis Efisiensi Usahatani Padi di Beberapa Sentra Produksi Padi di Indonesia. JAE. Bogor: Pusat Sosial Ekonomi dan Kebijakan Pertanian. 29 (1).

Lau LJ and PA Yotopoulos. 1971. A Test for Relative Efficiency and Application to Indian Agriculture. The American Economic Review. 61(1): 94-109. Nemes N. 2009. Natural Resources Management and Environment Departmen:

Comparative Analysis of Organic and Non-Organic Farming Systems: A Critical Assessment of Farm Profitability. Rome: Food and Agriculture of the United Nation.

Pemerintahan Kota Bogor. 2011. Agribisnis (Profil Investasi Bidang Agribisnis Kota Bogor) [internet]. [diunduh 2013 Feb 3]. Tersedia pada: http://www. kotabogor.go.id/investasi/agribisnis?showall=1.

Prawirokusumo S. 1990. Ilmu Usahatani. Yogyakarta [ID]: BPFE.

Prihmantoro J. 1999. Memupuk Tanaman Sayur. Jakarta [ID]. Penebar Swadaya. 69 hal.

Prabowo DM. 2006. Berkaca Dari Revolusi Hijau. Globalisasi Pangan dan Pertanian Lokal. Kajian Politik Lokal dan Sosial.Humaniora.Renai. Vol. VI (2).

Red-PSA. 2002. Sertifikasi Bertahap Menuju Pertanian Organik. Bul. Info Mutu. Edisi September 2002.

61 Salvator D. 2005. Managerial Economics. Jakarta (ID): Penerbit Salemba Empat. Samsudin. 2008. Membangun Sektor Pertanian dengan Pertanian Sehat.

[internet]. [diunduh 2013 Feb 30]. Tersedia pada:

http://www.pertaniansehat.or.id/index.php?pilih=news&mod=yes&aksi=lih at&id=17.

Saragih SE. 2008. Pertanian Organik: Solusi Hidup Harmoni dan Berkelanjutan. Bogor [ID]: Penebar Swadaya.

Soekartawi. 2002. Prinsip Dasar Ekonomi Pertanian Teori dan Aplikasi . Cet ke-4. Jakarta [ID]: PT RajaGrafindo Persada.

Soekartawi. 2002. Analisis Usahatani. Jakarta [ID]: Penerbit Universitas Indonesia (UI-Press).

Soekartawi. 2003. Teori Ekonomi Produksi. Jakarta [ID]: RajaGrafindo Persada. Sugito Y, Yulia N, Ellis N. 1995. Sistem Pertanian Organik. Malang (ID):

Fakultas Pertanian Universitas Brawijaya.

Suryana A, Sudi M. 2001. Bunga Rampai Ekonomi Beras. Jakarta (ID): LPEM- FEUI.

Sutanto R. 2002. Penerapan Pertanian Organik. Yogyakarta (ID): Kanisius. Tiamiyu SA, Akintola JO, Rahji MAY. 2010. Production Efficiency Among

Growerd of New Rice Africa in the Savanna Zone of Nigeria. Agricultura Tropica Et Subtropica. 43 (2): 134-139.

Tinaprilla, N. 2012. Efisiensi usahatani padi antar wilayah sentra produksi di Indonesia [disertasi]. Bogor (ID): Institut Pertanian Bogor.

www.suaramerdeka.com. Peluang Bisnis dari Sehatnya Beras Organik [internet].

[diunduh 2012 Des 5]. Tersedia pada:

http://www.mb.ipb.ac.id/artikel/view/id/d43c2495aadf4a814fdbded1263bc7. html.

62

Lampiran 1 Output Frontier 4.1 Padi Semi Organik Output from the program FRONTIER (Version 4.1c) instruction file = terminal

data file = y2-dta.txt

Tech. Eff. Effects Frontier (see B&C 1993) The model is a production function

The dependent variable is logged the ols estimates are :

coefficient standard-error t-ratio

beta 0 0.94033067E+00 0.61250630E+00 0.15352180E+01 beta 1 0.77874903E+00 0.77957428E-01 0.99894141E+01 beta 2 0.35454084E-02 0.90424499E-02 0.39208494E+00 beta 3 0.53089402E-02 0.95199152E-02 0.55766675E+00 beta 4 0.58224511E-02 0.96380175E-02 0.60411294E+00 beta 5 0.74242602E-02 0.11695416E-01 0.63480085E+00 sigma-squared 0.94342801E-01

log likelihood function = -0.40601525E+01 the estimates after the grid search were : beta 0 0.12322973E+01 beta 1 0.77874903E+00 beta 2 0.35454084E-02 beta 3 0.53089402E-02 beta 4 0.58224511E-02 beta 5 0.74242602E-02 delta 0 0.00000000E+00 delta 1 0.00000000E+00 delta 2 0.00000000E+00 delta 3 0.00000000E+00 delta 4 0.00000000E+00 delta 5 0.00000000E+00 sigma-squared 0.16132741E+00 gamma 0.83000000E+00

iteration = 0 func evals = 20 llf = -0.32498600E+01

0.12322973E+01 0.77874903E+00 0.35454084E-02 0.53089402E-02 0.58224511E-02

0.74242602E-02 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00

63 0.00000000E+00 0.00000000E+00 0.16132741E+00 0.83000000E+00

gradient step

iteration = 5 func evals = 42 llf = -0.12258625E+01

0.12318574E+01 0.78686999E+00 0.71004582E-02 0.29950288E-02- 0.17165933E-02

0.22439908E-01-0.22979072E-02-0.15762953E-02-0.45202553E-01 0.79387760E-03

0.20472605E-01-0.12733644E-02 0.14896700E+00 0.83555116E+00 iteration = 10 func evals = 67 llf = -0.59243258E+00

0.12161217E+01 0.78997986E+00 0.89231919E-02 0.12338246E-02 0.11519119E-02

0.21679336E-01-0.14154184E-01 0.42632210E-03-0.61753737E-01- 0.17593923E-02

0.28289591E-01-0.76267508E-02 0.12700203E+00 0.86828917E+00 iteration = 15 func evals = 98 llf = 0.32012996E+01

-0.30812320E-01 0.94869324E+00 0.12735268E-01 0.42080000E-02- 0.26591699E-02

0.17364137E-01-0.12493026E+01 0.64809037E-02-0.47793384E-01- 0.64595917E-03

0.62907106E-01-0.17224029E-01 0.11181107E+00 0.99359730E+00 iteration = 20 func evals = 131 llf = 0.40726352E+01

-0.21559681E-01 0.94558204E+00 0.13579963E-01 0.35212257E-02- 0.35345825E-02

0.18744437E-01-0.24484252E+01 0.12579474E-01-0.33214466E-01- 0.30566063E-03

0.95619161E-01-0.16401559E+00 0.15581977E+00 0.97240148E+00 iteration = 25 func evals = 227 llf = 0.44422795E+01

-0.24675025E+00 0.97589627E+00 0.15699989E-01 0.46630049E-02- 0.39807804E-02

0.19055344E-01-0.22291114E+01 0.11831230E-01-0.40507294E-01- 0.96009961E-03

0.93741487E-01-0.22344055E+00 0.16354052E+00 0.98916712E+00 iteration = 30 func evals = 293 llf = 0.58044215E+01

-0.33199809E+00 0.98646285E+00 0.17665257E-01 0.51232054E-02- 0.32474291E-02

0.18141918E-01-0.19511239E+01 0.10574955E-01-0.52281387E-01- 0.15875306E-02

0.91034118E-01-0.29361189E+00 0.17813618E+00 0.99998961E+00 iteration = 35 func evals = 325 llf = 0.61051646E+01

-0.31223201E+00 0.98375614E+00 0.18246998E-01 0.51956703E-02- 0.33614564E-02

0.19137257E-01-0.20256349E+01 0.10601108E-01-0.56344108E-01- 0.15697972E-02

0.95557415E-01-0.31702633E+00 0.18637567E+00 0.99999999E+00 iteration = 40 func evals = 342 llf = 0.61172914E+01

-0.31246885E+00 0.98378091E+00 0.18244492E-01 0.51957021E-02- 0.33600478E-02

64

0.19130315E-01-0.20261833E+01 0.10600200E-01-0.56316967E-01- 0.15699674E-02

0.95468107E-01-0.31685412E+00 0.18628708E+00 0.99999999E+00 pt better than entering pt cannot be found

iteration = 43 func evals = 365 llf = 0.61259472E+01

-0.31362419E+00 0.98398124E+00 0.18232715E-01 0.51958501E-02- 0.33531561E-02

0.19096281E-01-0.20288052E+01 0.10595774E-01-0.56183532E-01- 0.15708011E-02

0.95034667E-01-0.31600791E+00 0.18585744E+00 0.99999999E+00 the final mle estimates are :

coefficient standard-error t-ratio

beta 0 -0.31362419E+00 0.30295409E+00 -0.10352202E+01 beta 1 0.98398124E+00 0.32274261E-01 0.30488111E+02 beta 2 0.18232715E-01 0.18411664E-01 0.99028066E+00 beta 3 0.51958501E-02 0.32860197E-02 0.15811987E+01 beta 4 -0.33531561E-02 0.29705592E-02 -0.11287962E+01 beta 5 0.19096281E-01 0.92125853E-02 0.20728472E+01 delta 0 -0.20288052E+01 0.25094247E+01 -0.80847423E+00 delta 1 0.10595774E-01 0.10318697E-01 0.10268519E+01 delta 2 -0.56183532E-01 0.10998290E+00 -0.51083878E+00 delta 3 -0.15708011E-02 0.88802304E-02 -0.17688743E+00 delta 4 0.95034667E-01 0.92831223E-01 0.10237360E+01 delta 5 -0.31600791E+00 0.62958381E+00 -0.50193144E+00 sigma-squared 0.18585744E+00 0.23041639E+00 0.80661556E+00 gamma 0.99999999E+00 0.24837593E-04 0.40261549E+05 log likelihood function = 0.61259472E+01

LR test of the one-sided error = 0.20372199E+02 with number of restrictions = 7

[note that this statistic has a mixed chi-square distribution] number of iterations = 43

(maximum number of iterations set at : 100) number of cross-sections = 31

number of time periods = 1 total number of observations = 31 thus there are: 0 obsns not in the panel

65

covariance matrix :

0.91781180E-01 0.31233075E-02 -0.15260655E-01 -0.44412118E-03 0.23382548E-02

-0.93683160E-02 0.18395446E+01 -0.18913448E-02 0.77400947E-01 - 0.68585900E-03

-0.69265421E-01 0.45551622E+00 -0.16636349E+00 -0.10745377E-04

0.31233075E-02 0.10416279E-02 0.15705807E-02 0.56262870E-04 - 0.37705190E-03

0.17649807E-02 -0.26617945E+00 0.28431009E-03 -0.11627966E-01 0.96399132E-04

0.11771138E-01 -0.68799616E-01 0.26092704E-01 0.97382024E-06

-0.15260655E-01 0.15705807E-02 0.33898936E-03 -0.57218429E-05 0.72760479E-04

-0.29274208E-03 0.54874634E-01 -0.50033828E-04 0.24472110E-02 - 0.96066603E-05

-0.21914679E-02 0.14083943E-01 -0.52784289E-02 -0.27992463E-06

-0.44412118E-03 0.56262870E-04 -0.57218429E-05 0.10797925E-04 0.55149390E-05

-0.11080427E-04 0.65799066E-04 -0.61198982E-05 0.14041088E-04 0.44781895E-05

-0.74272351E-05 0.24382578E-03 -0.25589262E-04 0.56594986E-08

0.23382548E-02 -0.37705190E-03 0.72760479E-04 0.55149390E-05 0.88242221E-05

0.60274949E-04 -0.10974249E-01 0.71906210E-05 -0.50911036E-03 0.26328492E-05

0.45028102E-03 -0.28679110E-02 0.10812893E-02 0.53788660E-07

-0.93683160E-02 0.17649807E-02 -0.29274208E-03 -0.11080427E-04 0.60274949E-04

0.84871728E-04 0.50806945E-01 -0.49583940E-04 0.21825368E-02 - 0.12763951E-04

-0.19690150E-02 0.12708966E-01 -0.47395031E-02 -0.21903085E-06

0.18395446E+01 -0.26617945E+00 0.54874634E-01 0.65799066E-04 - 0.10974249E-01

0.50806945E-01 0.62972124E+01 0.13807775E-02 -0.35805775E+00 0.73365173E-03

0.28653001E+00 -0.19771981E+01 0.73670775E+00 0.32418689E-04

-0.18913448E-02 0.28431009E-03 -0.50033828E-04 -0.61198982E-05 0.71906210E-05

-0.49583940E-04 0.13807775E-02 0.10647552E-03 0.34355214E-03 - 0.44722244E-04

-0.27711805E-03 0.18531563E-02 -0.69399613E-03 -0.43267213E-07

0.77400947E-01 -0.11627966E-01 0.24472110E-02 0.14041088E-04 - 0.50911036E-03

0.21825368E-02 -0.35805775E+00 0.34355214E-03 0.12096239E-01 0.22739732E-03

66

0.14034232E-01 -0.87283913E-01 0.32448626E-01 0.14116644E-05

-0.68585900E-03 0.96399132E-04 -0.96066603E-05 0.44781895E-05 0.26328492E-05

-0.12763951E-04 0.73365173E-03 -0.44722244E-04 0.22739732E-03 0.78858492E-04

-0.44554059E-04 0.36817777E-03 -0.17667000E-03 -0.57931189E-08

-0.69265421E-01 0.11771138E-01 -0.21914679E-02 -0.74272351E-05 0.45028102E-03

-0.19690150E-02 0.28653001E+00 -0.27711805E-03 0.14034232E-01 - 0.44554059E-04

0.86176359E-02 0.76777503E-01 -0.30057572E-01 -0.24332693E-05

0.45551622E+00 -0.68799616E-01 0.14083943E-01 0.24382578E-03 - 0.28679110E-02

0.12708966E-01 -0.19771981E+01 0.18531563E-02 -0.87283913E-01 0.36817777E-03

0.76777503E-01 0.39637578E+00 0.18793639E+00 0.91028943E-05

-0.16636349E+00 0.26092704E-01 -0.52784289E-02 -0.25589262E-04 0.10812893E-02

-0.47395031E-02 0.73670775E+00 -0.69399613E-03 0.32448626E-01 - 0.17667000E-03

-0.30057572E-01 0.18793639E+00 0.53091712E-01 -0.39470749E-05

-0.10745377E-04 0.97382024E-06 -0.27992463E-06 0.56594986E-08 0.53788660E-07

-0.21903085E-06 0.32418689E-04 -0.43267213E-07 0.14116644E-05 - 0.57931189E-08

-0.24332693E-05 0.91028943E-05 -0.39470749E-05 0.61690605E-09

technical efficiency estimates : firm year eff.-est. 1 1 0.87097583E+00 2 1 0.95643189E+00 3 1 0.99253711E+00 4 1 0.41272841E+00 5 1 0.85281469E+00 6 1 0.99931535E+00 7 1 0.26777644E+00 8 1 0.96718454E+00 9 1 0.84243938E+00 10 1 0.78304226E+00 11 1 0.46486426E+00 12 1 0.76182212E+00 13 1 0.94368377E+00 14 1 0.81560457E+00

67 15 1 0.30720369E+00 16 1 0.47051432E+00 17 1 0.67858938E+00 18 1 0.95001445E+00 19 1 0.47969672E+00 20 1 0.87000158E+00 21 1 0.82172895E+00 22 1 0.62580473E+00 23 1 0.72830440E+00 24 1 0.90056062E+00 25 1 0.86888104E+00 26 1 0.61660313E+00 27 1 0.90609990E+00 28 1 0.92894450E+00 29 1 0.81032441E+00 30 1 0.62540412E+00 31 1 0.76021221E+00 mean efficiency = 0.75097125E+00

68

Lampiran 2 Output Frontier 4.1 Padi Konvensional Output from the program FRONTIER (Version 4.1c) instruction file = terminal

data file = y0-dta.txt

Tech. Eff. Effects Frontier (see B&C 1993) The model is a production function

The dependent variable is logged the ols estimates are :

coefficient standard-error t-ratio

beta 0 0.57548029E+01 0.10047650E+01 0.57275115E+01 beta 1 0.41966444E+00 0.20177852E+00 0.20798271E+01 beta 2 0.45169211E-01 0.18923054E+00 0.23869937E+00 beta 3 0.15823508E+00 0.17063321E+00 0.92734045E+00 beta 4 0.13747306E-01 0.34016826E-01 0.40413253E+00 beta 5 0.54104416E+00 0.28020289E+00 0.19309014E+01 sigma-squared 0.12905423E+00

log likelihood function = -0.89162671E+01 the estimates after the grid search were : beta 0 0.61284841E+01 beta 1 0.41966444E+00 beta 2 0.45169211E-01 beta 3 0.15823508E+00 beta 4 0.13747306E-01 beta 5 0.54104416E+00 delta 0 0.00000000E+00 delta 1 0.00000000E+00 delta 2 0.00000000E+00 delta 3 0.00000000E+00 delta 4 0.00000000E+00 delta 5 0.00000000E+00 sigma-squared 0.24371361E+00 gamma 0.90000000E+00

iteration = 0 func evals = 20 llf = -0.69650813E+01

0.61284841E+01 0.41966444E+00 0.45169211E-01 0.15823508E+00 0.13747306E-01

0.54104416E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00

69 gradient step

iteration = 5 func evals = 48 llf = -0.34684608E+01

0.61277024E+01 0.42706534E+00 0.49717669E-01 0.11947254E+00 0.75710843E-02

0.56310893E+00-0.41112629E-02 0.53086786E-03 0.18624768E+00 0.81538357E-02

-0.69113314E-01-0.94928752E-02 0.24918317E+00 0.88543638E+00 iteration = 10 func evals = 70 llf = -0.24271927E+01

0.61476534E+01 0.44549750E+00 0.10796371E+00-0.88326541E-02 0.15306248E-01

0.69413282E+00-0.20247240E+00 0.40749493E-02 0.19898415E+00 0.84784355E-02

-0.61456551E-01-0.24697002E+00 0.23148798E+00 0.92707271E+00 iteration = 15 func evals = 115 llf = 0.14395224E+01

0.57722451E+01 0.38046799E+00 0.79145815E-01 0.71197268E-01 0.23582682E-01

0.73501779E+00-0.33413041E+01 0.29217643E-01 0.25919119E+00 0.73882444E-02

0.54162523E-02-0.39776438E+00 0.11905019E+00 0.85666810E+00 iteration = 20 func evals = 199 llf = 0.17512154E+01

0.62770540E+01 0.46931798E+00 0.45700601E-01 0.73785521E-01 0.19350564E-01

0.58723748E+00-0.42269701E+01 0.29176968E-01 0.29284262E+00 0.11356372E-01

0.27309826E-01-0.41662675E+00 0.11115370E+00 0.77306497E+00 iteration = 25 func evals = 304 llf = 0.17605991E+01

0.62415083E+01 0.46416338E+00 0.46920500E-01 0.72042299E-01 0.20291385E-01

0.59896268E+00-0.46781267E+01 0.31673594E-01 0.31666103E+00 0.12513385E-01

0.31352442E-01-0.46691424E+00 0.11960380E+00 0.78967666E+00 iteration = 30 func evals = 385 llf = 0.17606866E+01

0.62390768E+01 0.46332205E+00 0.46835273E-01 0.72666789E-01 0.20350067E-01

0.59913925E+00-0.46685952E+01 0.31682458E-01 0.31636583E+00 0.12472950E-01

0.31143110E-01-0.46757892E+00 0.11966069E+00 0.79043443E+00 iteration = 31 func evals = 388 llf = 0.17606866E+01

0.62390768E+01 0.46332205E+00 0.46835273E-01 0.72666789E-01 0.20350067E-01

0.59913925E+00-0.46685952E+01 0.31682458E-01 0.31636583E+00 0.12472950E-01

0.31143110E-01-0.46757892E+00 0.11966069E+00 0.79043443E+00 the final mle estimates are :

70

beta 0 0.62390768E+01 0.91893459E+00 0.67894677E+01 beta 1 0.46332205E+00 0.18772087E+00 0.24681435E+01 beta 2 0.46835273E-01 0.13322406E+00 0.35155266E+00 beta 3 0.72666789E-01 0.12181173E+00 0.59655002E+00 beta 4 0.20350067E-01 0.27187305E-01 0.74851359E+00 beta 5 0.59913925E+00 0.25756876E+00 0.23261332E+01 delta 0 -0.46685952E+01 0.38862149E+01 -0.12013219E+01 delta 1 0.31682458E-01 0.27666913E-01 0.11451389E+01 delta 2 0.31636583E+00 0.20978584E+00 0.15080419E+01 delta 3 0.12472950E-01 0.14717494E-01 0.84749139E+00 delta 4 0.31143110E-01 0.52715952E-01 0.59077204E+00 delta 5 -0.46757892E+00 0.49780366E+00 -0.93928383E+00 sigma-squared 0.11966069E+00 0.85919792E-01 0.13927023E+01 gamma 0.79043443E+00 0.21202359E+00 0.37280494E+01 log likelihood function = 0.17606866E+01

LR test of the one-sided error = 0.21353907E+02 with number of restrictions = 7

[note that this statistic has a mixed chi-square distribution] number of iterations = 31

(maximum number of iterations set at : 100) number of cross-sections = 31

number of time periods = 1 total number of observations = 31 thus there are: 0 obsns not in the panel covariance matrix :

0.84444079E+00 0.16708876E+00 -0.56949746E-01 -0.36428144E-01 - 0.16056019E-01

-0.19438671E+00 -0.13567754E+00 -0.99033603E-02 0.12939376E-01 0.54619007E-02

0.17047755E-01 0.38156771E-01 -0.88263362E-02 -0.49850153E-01

0.16708876E+00 0.35239125E-01 -0.12132502E-01 -0.71355852E-02 - 0.35256190E-02

-0.38273110E-01 -0.54789076E-01 -0.18203160E-02 0.41904330E-02 0.12230017E-02

0.34530486E-02 0.64916530E-02 -0.18376506E-02 -0.11504648E-01

-0.56949746E-01 -0.12132502E-01 0.17748650E-01 -0.59938769E-02 0.11758226E-02

0.11096201E-01 -0.31226786E-01 0.10752744E-02 0.15124748E-02 - 0.39946622E-03

-0.14398185E-02 -0.87560435E-03 0.29791693E-02 0.10865055E-01

-0.36428144E-01 -0.71355852E-02 -0.59938769E-02 0.14838097E-01 - 0.33456191E-04

-0.26179637E-02 0.68378713E-01 -0.22189282E-03 -0.41180797E-02 - 0.22587160E-03

71 -0.43034682E-03 -0.25516033E-03 -0.32473834E-02 -0.97154111E-02

-0.16056019E-01 -0.35256190E-02 0.11758226E-02 -0.33456191E-04 0.73914954E-03

0.54946030E-02 0.29449935E-02 0.26142784E-03 -0.47075754E-03 - 0.17126582E-03

-0.36127962E-03 -0.42720072E-03 0.29668629E-03 0.15510344E-02

-0.19438671E+00 -0.38273110E-01 0.11096201E-01 -0.26179637E-02 0.54946030E-02

0.66341666E-01 0.70114226E-01 0.25907780E-02 -0.53991333E-02 - 0.16288453E-02

-0.51352080E-02 -0.12734173E-02 0.39652414E-02 0.21743376E-01

-0.13567754E+00 -0.54789076E-01 -0.31226786E-01 0.68378713E-01 0.29449935E-02

0.70114226E-01 0.15102667E+02 -0.80917832E-01 -0.78704939E+00 - 0.37973171E-01

-0.14495516E+00 0.14665386E+01 -0.24734462E+00 -0.32543898E+00

-0.99033603E-02 -0.18203160E-02 0.10752744E-02 -0.22189282E-03 0.26142784E-03

0.25907780E-02 -0.80917832E-01 0.76545806E-03 0.38850886E-02 0.54891589E-04

0.28186388E-03 -0.71226369E-02 0.15271263E-02 0.29823686E-02

0.12939376E-01 0.41904330E-02 0.15124748E-02 -0.41180797E-02 - 0.47075754E-03

-0.53991333E-02 -0.78704939E+00 0.38850886E-02 0.44010100E-01 0.23392969E-02

0.69540821E-02 -0.81546758E-01 0.13877829E-01 0.18542553E-01

0.54619007E-02 0.12230017E-02 -0.39946622E-03 -0.22587160E-03 - 0.17126582E-03

-0.16288453E-02 -0.37973171E-01 0.54891589E-04 0.23392969E-02 0.21660464E-03

0.45477087E-03 -0.41284458E-02 0.55385463E-03 0.30441542E-03

0.17047755E-01 0.34530486E-02 -0.14398185E-02 -0.43034682E-03 - 0.36127962E-03

-0.51352080E-02 -0.14495516E+00 0.28186388E-03 0.69540821E-02 0.45477087E-03

0.27789716E-02 -0.16669509E-01 0.14896165E-02 -0.35138672E-04

0.38156771E-01 0.64916530E-02 -0.87560435E-03 -0.25516033E-03 - 0.42720072E-03

-0.12734173E-02 0.14665386E+01 -0.71226369E-02 -0.81546758E-01 - 0.41284458E-02

-0.16669509E-01 0.24780848E+00 -0.24522486E-01 -0.28380310E-01

-0.88263362E-02 -0.18376506E-02 0.29791693E-02 -0.32473834E-02 0.29668629E-03

0.39652414E-02 -0.24734462E+00 0.15271263E-02 0.13877829E-01 0.55385463E-03

0.14896165E-02 -0.24522486E-01 0.73822106E-02 0.14416520E-01

-0.49850153E-01 -0.11504648E-01 0.10865055E-01 -0.97154111E-02 0.15510344E-02

72

0.21743376E-01 -0.32543898E+00 0.29823686E-02 0.18542553E-01 0.30441542E-03

-0.35138672E-04 -0.28380310E-01 0.14416520E-01 0.44954004E-01 technical efficiency estimates :

firm year eff.-est. 1 1 0.93495591E+00 2 1 0.69493004E+00 3 1 0.40155498E+00 4 1 0.91955770E+00 5 1 0.75011469E+00 6 1 0.87493621E+00 7 1 0.85550249E+00 8 1 0.77246798E+00 9 1 0.58305863E+00 10 1 0.30451612E+00 11 1 0.91090402E+00 12 1 0.89043643E+00 13 1 0.75381712E+00 14 1 0.84771178E+00 15 1 0.75040028E+00 16 1 0.91794346E+00 17 1 0.56730374E+00 18 1 0.66246270E+00 19 1 0.85799073E+00 20 1 0.76105689E+00 21 1 0.53314085E+00 22 1 0.92924150E+00 23 1 0.81503409E+00 24 1 0.75293363E+00 25 1 0.95078462E+00 26 1 0.82621860E+00 27 1 0.92280810E+00 28 1 0.89492116E+00 29 1 0.89269443E+00 30 1 0.93445151E+00 31 1 0.95846349E+00 mean efficiency = 0.78781658E+00

73 Lampiran 3 Output Minitab dan Frontier 4.1 Padi Semi Organik dalam ha

Regression Analysis: y versus LnBenih; LnN; LnP; LnK; LnPO; LnPsO; LnTK

The regression equation is

y = 6,73 - 0,071 LnBenih - 0,0647 LnN + 0,0516 LnP - 0,0023 LnK - 0,00827 LnPO + 0,0018 LnPsO + 0,470 LnTK

Predictor Coef SE Coef T P VIF Constant 6,7333 0,5612 12,00 0,000 LnBenih -0,0706 0,2055 -0,34 0,734 2,2 LnN -0,06472 0,02560 -2,53 0,019 4,2 LnP 0,05156 0,02029 2,54 0,018 3,2 LnK -0,00226 0,01300 -0,17 0,864 1,8 LnPO -0,008271 0,009016 -0,92 0,368 1,5 LnPsO 0,00177 0,01875 0,09 0,925 1,3 LnTK 0,4703 0,1327 3,54 0,002 1,8 S = 0,282445 R-Sq = 48,9% R-Sq(adj) = 33,3% Analysis of Variance Source DF SS MS F P Regression 7 1,75408 0,25058 3,14 0,018 Residual Error 23 1,83482 0,07977 Total 30 3,58891 Source DF Seq SS LnBenih 1 0,21884 LnN 1 0,05349 LnP 1 0,47800 LnK 1 0,00000 LnPO 1 0,00212 LnPsO 1 0,00011 LnTK 1 1,00152 Unusual Observations

Obs LnBenih y Fit SE Fit Residual St Resid 15 3,22 7,6009 8,2766 0,1059 -0,6757 -2,58R R denotes an observation with a large standardized residual. Durbin-Watson statistic = 2,42112

74

Regression Analysis: y versus LnP; LbPO; LnPsO; LnTK

The regression equation is

y = 7,03 + 0,0136 LnP + 0,00438 LnPO + 0,0153 LnPsO + 0,340 LnTK Predictor Coef SE Coef T P VIF

Constant 7,0267 0,4819 14,58 0,000 LnP 0,01362 0,01348 1,01 0,321 1,2 LnPO 0,004382 0,008131 0,54 0,595 1,1 LnPsO 0,01526 0,01926 0,79 0,435 1,2 LnTK 0,3400 0,1128 3,01 0,006 1,1 S = 0,305169 R-Sq = 32,5% R-Sq(adj) = 22,2% Analysis of Variance Source DF SS MS F P Regression 4 1,16758 0,29189 3,13 0,031 Residual Error 26 2,42133 0,09313 Total 30 3,58891 Source DF Seq SS LnP 1 0,26841 LnPO 1 0,03704 LnPsO 1 0,01615 LnTK 1 0,84598 Unusual Observations

Obs LnP y Fit SE Fit Residual St Resid 7 2,89 7,6962 8,3792 0,1536 -0,6830 -2,59R 15 2,89 7,6009 8,2726 0,0929 -0,6717 -2,31R 16 -6,91 7,7551 8,3629 0,1461 -0,6078 -2,27R R denotes an observation with a large standardized residual. Durbin-Watson statistic = 1,81900

75

Output from the program FRONTIER (Version 4.1c) (dalam ha)

Padi Semi Organik

instruction file = terminal data file = semiha-dta.txt

Tech. Eff. Effects Frontier (see B&C 1993) The model is a production function

The dependent variable is logged the ols estimates are :

coefficient standard-error t-ratio

beta 0 0.70266935E+01 0.48185729E+00 0.14582520E+02 beta 1 0.13620164E-01 0.13475137E-01 0.10107625E+01 beta 2 0.43817832E-02 0.81309282E-02 0.53890319E+00 beta 3 0.15263758E-01 0.19255226E-01 0.79270730E+00 beta 4 0.34004624E+00 0.11282298E+00 0.30139802E+01 sigma-squared 0.93127921E-01

log likelihood function = -0.44671793E+01 the estimates after the grid search were : beta 0 0.73633812E+01 beta 1 0.13620164E-01 beta 2 0.43817832E-02 beta 3 0.15263758E-01 beta 4 0.34004624E+00 delta 0 0.00000000E+00 delta 1 0.00000000E+00 delta 2 0.00000000E+00 delta 3 0.00000000E+00 delta 4 0.00000000E+00 delta 5 0.00000000E+00 sigma-squared 0.19146591E+00 gamma 0.93000000E+00

iteration = 0 func evals = 20 llf = -0.18968660E+01

0.73633812E+01 0.13620164E-01 0.43817832E-02 0.15263758E-01 0.34004624E+00

0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00

0.00000000E+00 0.19146591E+00 0.93000000E+00 gradient step

iteration = 5 func evals = 42 llf = 0.16650853E+01

0.73697031E+01-0.48600984E-02 0.58289646E-03 0.21715986E-01 0.34863951E+00

76

-0.29288894E-02 0.48087714E-02-0.67616559E-01-0.10015268E-01 0.25257362E-01

-0.26937665E-02 0.18050045E+00 0.95179059E+00 pt better than entering pt cannot be found

iteration = 10 func evals = 74 llf = 0.28468029E+01

0.73805337E+01-0.78800074E-02 0.16488010E-02 0.17539617E-01 0.33978104E+00

-0.69697230E-02 0.47514907E-02-0.77311415E-01-0.14160378E-01 0.36940115E-01

-0.62807939E-02 0.16953985E+00 0.99787633E+00 the final mle estimates are :

coefficient standard-error t-ratio

beta 0 0.73805337E+01 0.97033721E+00 0.76061534E+01 beta 1 -0.78800074E-02 0.13172271E+00 -0.59822695E-01 beta 2 0.16488010E-02 0.18408801E-01 0.89565911E-01 beta 3 0.17539617E-01 0.27796442E-01 0.63100224E+00 beta 4 0.33978104E+00 0.25781116E+00 0.13179454E+01 delta 0 -0.69697230E-02 0.99973683E+00 -0.69715577E-02 delta 1 0.47514907E-02 0.70490338E-01 0.67406268E-01 delta 2 -0.77311415E-01 0.19914807E+00 -0.38821072E+00 delta 3 -0.14160378E-01 0.22661159E-01 -0.62487440E+00 delta 4 0.36940115E-01 0.23012458E+00 0.16052225E+00 delta 5 -0.62807939E-02 0.99788282E+00 -0.62941197E-02 sigma-squared 0.16953985E+00 0.86713073E+00 0.19551821E+00 gamma 0.99787633E+00 0.42117542E+00 0.23692654E+01 log likelihood function = 0.28468029E+01

LR test of the one-sided error = 0.14627964E+02 with number of restrictions = 7

[note that this statistic has a mixed chi-square distribution] number of iterations = 10

(maximum number of iterations set at : 100) number of cross-sections = 31

number of time periods = 1 total number of observations = 31 thus there are: 0 obsns not in the panel covariance matrix :

77 0.94155430E+00 0.25430871E-01 0.51419589E-02 0.11628991E-01 - 0.22141617E+00

-0.35438456E-04 0.14369023E-01 -0.39495110E-01 0.41166530E-02 - 0.39437059E-01

0.39223780E-02 -0.48827085E-01 0.56673251E-02

0.25430871E-01 0.17350872E-01 0.23677810E-02 0.21377783E-02 - 0.21119873E-01

-0.16958455E-02 0.86808489E-03 -0.25164095E-01 0.25502720E-02 - 0.20270276E-01

0.44490757E-02 0.10862141E+00 -0.53713189E-01

0.51419589E-02 0.23677810E-02 0.33888395E-03 0.29979780E-03 - 0.32718530E-02

0.38240328E-03 0.10586838E-03 -0.34446000E-02 0.34244635E-03 - 0.27048878E-02

-0.41658781E-04 0.14664507E-01 -0.72041192E-02

0.11628991E-01 0.21377783E-02 0.29979780E-03 0.77264219E-03 - 0.40008564E-02

-0.75202791E-03 0.12473332E-02 -0.36851835E-02 0.33696242E-03 - 0.51084214E-02

-0.18208161E-02 0.90897250E-02 -0.62243369E-02

-0.22141617E+00 -0.21119873E-01 -0.32718530E-02 -0.40008564E-02 0.66466593E-01

0.17235070E-02 -0.34815447E-02 0.30927559E-01 -0.32089808E-02 0.25866625E-01

0.35828126E-02 -0.91198806E-01 0.48088611E-01

-0.35438456E-04 -0.16958455E-02 0.38240328E-03 -0.75202791E-03 0.17235070E-02

0.99947374E+00 -0.12282606E-01 -0.15872233E-01 -0.46742194E-02 0.10633963E-02

-0.77741916E-03 0.33891173E-02 0.11443852E-01

0.14369023E-01 0.86808489E-03 0.10586838E-03 0.12473332E-02 - 0.34815447E-02

-0.12282606E-01 0.49688878E-02 -0.35194501E-02 0.32457115E-03 - 0.12570487E-01

-0.28038031E-01 -0.35703644E-02 -0.45652694E-02

-0.39495110E-01 -0.25164095E-01 -0.34446000E-02 -0.36851835E-02 0.30927559E-01

-0.15872233E-01 -0.35194501E-02 0.39659952E-01 -0.35459250E-02 0.35552860E-01

-0.42802144E-02 -0.15492361E+00 0.78957569E-01

0.41166530E-02 0.25502720E-02 0.34244635E-03 0.33696242E-03 - 0.32089808E-02

-0.46742194E-02 0.32457115E-03 -0.35459250E-02 0.51352813E-03 - 0.33528988E-02

-0.47542813E-02 0.15478520E-01 -0.80659782E-02

-0.39437059E-01 -0.20270276E-01 -0.27048878E-02 -0.51084214E-02 0.25866625E-01

78

0.10633963E-02 -0.12570487E-01 0.35552860E-01 -0.33528988E-02 0.52957321E-01

0.49236662E-01 -0.10989679E+00 0.69344228E-01

0.39223780E-02 0.44490757E-02 -0.41658781E-04 -0.18208161E-02 0.35828126E-02

-0.77741916E-03 -0.28038031E-01 -0.42802144E-02 -0.47542813E-02 0.49236662E-01

0.99577012E+00 0.17869227E-01 0.21350350E-01

-0.48827085E-01 0.10862141E+00 0.14664507E-01 0.90897250E-02 - 0.91198806E-01

0.33891173E-02 -0.35703644E-02 -0.15492361E+00 0.15478520E-01 - 0.10989679E+00

0.17869227E-01 0.75191570E+00 -0.35445184E+00

0.56673251E-02 -0.53713189E-01 -0.72041192E-02 -0.62243369E-02 0.48088611E-01

0.11443852E-01 -0.45652694E-02 0.78957569E-01 -0.80659782E-02 0.69344228E-01

0.21350350E-01 -0.35445184E+00 0.17738873E+00 technical efficiency estimates :

firm year eff.-est. 1 1 0.91079699E+00 2 1 0.70017965E+00 3 1 0.98422390E+00 4 1 0.47458560E+00 5 1 0.64063204E+00 6 1 0.98818604E+00 7 1 0.38480930E+00 8 1 0.97990834E+00 9 1 0.94552242E+00 10 1 0.51616221E+00 11 1 0.64987163E+00 12 1 0.91631284E+00 13 1 0.91565889E+00 14 1 0.63995234E+00 15 1 0.38130064E+00 16 1 0.32957753E+00 17 1 0.61922043E+00 18 1 0.92756517E+00 19 1 0.55611751E+00 20 1 0.86040197E+00 21 1 0.80305513E+00 22 1 0.71225744E+00 23 1 0.78914826E+00 24 1 0.83190606E+00 25 1 0.77129052E+00

79 26 1 0.88806759E+00 27 1 0.84689089E+00 28 1 0.76049408E+00 29 1 0.70810966E+00 30 1 0.80701427E+00 31 1 0.97529335E+00 mean efficiency = 0.74885525E+00

80

Lampiran 4 Hasil Restriksi Padi Semi Organik

Number of Observations Read 31 Number of Observations Used 31 Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F Model 6 0.66928 0.11155 0.92 0.5000 Error 24 2.91962 0.12165

Corrected Total 30 3.58891

Root MSE 0.34879 R-Square 0.1865 Dependent Mean 8.40564 Adj R-Sq -0.0169 Coeff Var 4.14942

Parameter Estimates Parameter Standard

Variable DF Estimate Error t Value Pr > |t| Intercept 1 4.86669 0.29912 16.27 <.0001 LnBenih 1 0.50987 0.16316 3.12 0.0046 LnN 1 -0.08812 0.03062 -2.88 0.0083 LnP 1 0.05470 0.02503 2.19 0.0389 LnK 1 -0.00635 0.01599 -0.40 0.6950 LnPO 1 -0.00533 0.01109 -0.48 0.6352 LnPsO 1 0.01383 0.02280 0.61 0.5498 LnTK 1 0.52139 0.16300 3.20 0.0039 RESTRICT -1 -1.74346 0.58384 -2.99 0.0012* * Probability computed using beta distribution.

81 Lampiran 5 Output Minitab dan Frontier 4.1 Padi Konvensional dalam ha

Regression Analysis: y versus LnBenih; LnN; LnP; LnK; LnPO; LnPK; LnTK

The regression equation is

y = 6,06 - 0,028 LnBenih + 0,253 LnN - 0,0121 LnP - 0,0139 LnK - 0,0039 LnPO - 0,032 LnPK + 0,339 LnTK

Predictor Coef SE Coef T P VIF Constant 6,0594 0,9591 6,32 0,000 LnBenih -0,0280 0,1877 -0,15 0,883 1,8 LnN 0,2529 0,2017 1,25 0,223 1,6 LnP -0,01208 0,02724 -0,44 0,662 1,6 LnK -0,01387 0,01978 -0,70 0,490 1,3 LnPO -0,00387 0,02913 -0,13 0,895 1,2 LnPK -0,0316 0,1040 -0,30 0,764 1,4 LnTK 0,3388 0,2020 1,68 0,107 2,5 S = 0,374923 R-Sq = 30,9% R-Sq(adj) = 9,9% Analysis of Variance Source DF SS MS F P Regression 7 1,4474 0,2068 1,47 0,227 Residual Error 23 3,2330 0,1406 Total 30 4,6804 Source DF Seq SS LnBenih 1 0,4815 LnN 1 0,2955 LnP 1 0,1660 LnK 1 0,0217 LnPO 1 0,0766 LnPK 1 0,0107 LnTK 1 0,3954 Unusual Observations

Obs LnBenih y Fit SE Fit Residual St Resid 3 3,91 7,4674 8,1612 0,1982 -0,6938 -2,18R 10 2,93 7,3132 8,2633 0,1327 -0,9500 -2,71R 25 3,00 8,9872 8,2628 0,1641 0,7244 2,15R R denotes an observation with a large standardized residual. Durbin-Watson statistic = 1,85363

82

Regression Analysis: y versus LnN; LnTK

The regression equation is

y = 6,39 + 0,179 LnN + 0,321 LnTK

Predictor Coef SE Coef T P VIF Constant 6,3853 0,6941 9,20 0,000 LnN 0,1793 0,1595 1,12 0,270 1,1 LnTK 0,3207 0,1264 2,54 0,017 1,1 S = 0,345706 R-Sq = 28,5% R-Sq(adj) = 23,4% Analysis of Variance Source DF SS MS F P Regression 2 1,3341 0,6670 5,58 0,009 Residual Error 28 3,3463 0,1195 Total 30 4,6804 Source DF Seq SS LnN 1 0,5645 LnTK 1 0,7696 Unusual Observations

Obs LnN y Fit SE Fit Residual St Resid 3 3,62 7,4674 8,2401 0,1355 -0,7728 -2,43R 10 4,23 7,3132 8,2557 0,0725 -0,9425 -2,79R 25 3,85 8,9872 8,3104 0,1093 0,6768 2,06R R denotes an observation with a large standardized residual. Durbin-Watson statistic = 1,76543

83

Output from the program FRONTIER (Version 4.1c)

Padi Konvensional

instruction file = terminal data file = O2K-dta.txt

Tech. Eff. Effects Frontier (see B&C 1993) The model is a production function

The dependent variable is logged the ols estimates are :

coefficient standard-error t-ratio

beta 0 0.63853357E+01 0.69406680E+00 0.91998863E+01 beta 1 0.17928017E+00 0.15945798E+00 0.11243098E+01 beta 2 0.32067090E+00 0.12636910E+00 0.25375738E+01 sigma-squared 0.11951244E+00

log likelihood function = -0.94822719E+01 the estimates after the grid search were : beta 0 0.67421218E+01 beta 1 0.17928017E+00 beta 2 0.32067090E+00 delta 0 0.00000000E+00 delta 1 0.00000000E+00 delta 2 0.00000000E+00 delta 3 0.00000000E+00 delta 4 0.00000000E+00 delta 5 0.00000000E+00 sigma-squared 0.23524303E+00 gamma 0.85000000E+00

iteration = 0 func evals = 20 llf = -0.80475761E+01

0.67421218E+01 0.17928017E+00 0.32067090E+00 0.00000000E+00 0.00000000E+00

0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.23524303E+00

0.85000000E+00 gradient step

iteration = 5 func evals = 46 llf = -0.44476416E+01

0.67471833E+01 0.14914680E+00 0.34103209E+00-0.46105253E-02- 0.11507486E-01

0.18895882E+00 0.12387840E-01-0.48082323E-01-0.10014016E-01 0.23059602E+00

0.84339531E+00

84

0.77702097E+01-0.64130275E-01 0.32761491E+00-0.15632033E+01- 0.12094167E-01

0.25493332E+00 0.23011072E-01 0.54482950E-02-0.24272990E+00 0.12236895E+00

0.85931749E+00

iteration = 15 func evals = 140 llf = 0.79199150E+00

0.72709944E+01 0.53196582E-01 0.31588913E+00-0.31224779E+01 0.14742046E-01

0.24178676E+00 0.12030651E-01 0.29758948E-01-0.25933911E+00 0.97422408E-01

0.74801018E+00

iteration = 20 func evals = 243 llf = 0.94306767E+00

0.71543139E+01 0.74587764E-01 0.30892240E+00-0.38088751E+01 0.15644857E-01

0.27922132E+00 0.15501432E-01 0.40301794E-01-0.35400954E+00 0.91794194E-01

0.63440354E+00

iteration = 25 func evals = 348 llf = 0.95808580E+00

0.71513038E+01 0.70614776E-01 0.31396740E+00-0.42177382E+01 0.17061381E-01

0.30267999E+00 0.17039833E-01 0.45063450E-01-0.39967183E+00 0.10028172E+00

0.68055411E+00

iteration = 28 func evals = 390 llf = 0.95808586E+00

0.71514124E+01 0.70595935E-01 0.31396263E+00-0.42179292E+01 0.17064753E-01

0.30267988E+00 0.17038292E-01 0.45066215E-01-0.39966610E+00 0.10028023E+00

0.68055567E+00

the final mle estimates are :

coefficient standard-error t-ratio

beta 0 0.71514124E+01 0.53873525E+00 0.13274447E+02 beta 1 0.70595935E-01 0.12325597E+00 0.57275876E+00 beta 2 0.31396263E+00 0.92289990E-01 0.34019142E+01 delta 0 -0.42179292E+01 0.30260554E+01 -0.13938705E+01 delta 1 0.17064753E-01 0.18487723E-01 0.92303165E+00 delta 2 0.30267988E+00 0.16471816E+00 0.18375623E+01 delta 3 0.17038292E-01 0.13381555E-01 0.12732670E+01 delta 4 0.45066215E-01 0.45157734E-01 0.99797334E+00 delta 5 -0.39966610E+00 0.41370045E+00 -0.96607604E+00 sigma-squared 0.10028023E+00 0.61572142E-01 0.16286624E+01 gamma 0.68055567E+00 0.29798548E+00 0.22838552E+01 log likelihood function = 0.95808586E+00

85 LR test of the one-sided error = 0.20880715E+02

with number of restrictions = 7

[note that this statistic has a mixed chi-square distribution] number of iterations = 28

(maximum number of iterations set at : 100) number of cross-sections = 31

number of time periods = 1 total number of observations = 31 thus there are: 0 obsns not in the panel covariance matrix :

0.29023567E+00 -0.52092464E-01 -0.12013665E-01 0.81241513E-01 - 0.15189122E-02

-0.14476014E-02 0.54015428E-03 -0.12997311E-02 0.59772384E-01 0.42071209E-02

0.34967275E-01

-0.52092464E-01 0.15192033E-01 -0.43923041E-02 0.48909398E-01 0.22970652E-03

-0.38476604E-02 -0.43137930E-03 -0.58030250E-03 -0.23811272E-02 - 0.25513624E-02

-0.14820307E-01

-0.12013665E-01 -0.43923041E-02 0.85174422E-02 -0.33278910E-01 0.14022316E-04

0.25067209E-02 0.20290755E-03 0.35405538E-03 -0.68270816E-02 0.18853199E-02

0.10535856E-01

0.81241513E-01 0.48909398E-01 -0.33278910E-01 0.91570111E+01 - 0.37421715E-01

-0.47024451E+00 -0.27298791E-01 -0.11713904E+00 0.91809715E+00 - 0.11664083E+00

-0.35873553E+00

-0.15189122E-02 0.22970652E-03 0.14022316E-04 -0.37421715E-01 0.34179589E-03

0.14583188E-02 0.70612870E-05 0.33151486E-03 -0.29125622E-02 0.34557214E-03

0.10359025E-02

-0.14476014E-02 -0.38476604E-02 0.25067209E-02 -0.47024451E+00 0.14583188E-02

0.27132072E-01 0.18192455E-02 0.56459731E-02 -0.52306183E-01 0.70210886E-02

86

0.54015428E-03 -0.43137930E-03 0.20290755E-03 -0.27298791E-01 0.70612870E-05

0.18192455E-02 0.17906602E-03 0.33752416E-03 -0.34623708E-02 0.46873040E-03

0.15200211E-02

-0.12997311E-02 -0.58030250E-03 0.35405538E-03 -0.11713904E+00 0.33151486E-03

0.56459731E-02 0.33752416E-03 0.20392210E-02 -0.13346434E-01 0.12028759E-02

0.31569188E-02

0.59772384E-01 -0.23811272E-02 -0.68270816E-02 0.91809715E+00 - 0.29125622E-02

-0.52306183E-01 -0.34623708E-02 -0.13346434E-01 0.17114807E+00 - 0.10867214E-01

-0.24914437E-01

0.42071209E-02 -0.25513624E-02 0.18853199E-02 -0.11664083E+00 0.34557214E-03

0.70210886E-02 0.46873040E-03 0.12028759E-02 -0.10867214E-01 0.37911286E-02

0.15482938E-01

0.34967275E-01 -0.14820307E-01 0.10535856E-01 -0.35873553E+00 0.10359025E-02

0.22682898E-01 0.15200211E-02 0.31569188E-02 -0.24914437E-01 0.15482938E-01

0.88795345E-01

technical efficiency estimates : firm year eff.-est. 1 1 0.92089176E+00 2 1 0.71097830E+00 3 1 0.38626081E+00 4 1 0.90611798E+00 5 1 0.74818317E+00 6 1 0.89937255E+00 7 1 0.82690958E+00 8 1 0.64389820E+00 9 1 0.63906336E+00 10 1 0.32077842E+00 11 1 0.91356041E+00 12 1 0.89322253E+00 13 1 0.66136865E+00 14 1 0.83935967E+00 15 1 0.71975025E+00 16 1 0.91765217E+00 17 1 0.58566245E+00 18 1 0.70200804E+00

87 19 1 0.91397301E+00 20 1 0.83154548E+00 21 1 0.58673749E+00 22 1 0.94326271E+00 23 1 0.85554281E+00 24 1 0.83429867E+00 25 1 0.94641707E+00 26 1 0.90894869E+00 27 1 0.92028388E+00 28 1 0.86034405E+00 29 1 0.87246650E+00 30 1 0.94008304E+00 31 1 0.96077282E+00 mean efficiency = 0.79386176E+00

88

Lampiran 6 Hasil Restriksi Padi Konvensional

Number of Observations Read 31 Number of Observations Used 31 Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F Model 6 0.54462 0.09077 0.53 0.7824 Error 24 4.13581 0.17233

Corrected Total 30 4.68044

Root MSE 0.41512 R-Square 0.1164 Dependent Mean 8.38058 Adj R-Sq -0.1045 Coeff Var 4.95337

Parameter Estimates Parameter Standard

Variable DF Estimate Error t Value Pr > |t| Intercept 1 4.24762 0.70789 6.00 <.0001 LnBenih 1 0.07721 0.20274 0.38 0.7067 LnN 1 0.49941 0.19568 2.55 0.0175 LnP 1 -0.00782 0.03010 -0.26 0.7973 LnK 1 -0.02201 0.02161 -1.02 0.3187 LnPO 1 0.01071 0.03162 0.34 0.7378 LnPK 1 -0.02156 0.11508 -0.19 0.8530 LnTK 1 0.46406 0.21689 2.14 0.0428 RESTRICT -1 -1.81402 0.79255 -2.29 0.0185* * Probability computed using beta distribution.

89

RIWAYAT HIDUP

Penulis dilahirkan di Karanganyar, Propinsi Jawa Tengah pada tanggal 4 Mei 1988. Penulis merupakan anak pertama dari Bapak Surono dan Ibu Sri Wahyuningsih.

Tahun 2000 penulis lulus dari SD Negeri IV Citeureup, kemudian pada tahun 2003 penulis menyelesaikan studi di SMP Negeri 1 Cibinong. Selanjutnya penulis lulus dari SMA Negeri 3 Bogor pada tahun 2005. Tahun 2005 penulis diterima di IPB melalui USMI. Penulis menyelesaikan studi di Departemen Agronomi dan Hortikultura, Fakultas Pertanian pada tahun 2009. Tahun 2010- 2011 penulis bekerja di salah satu perusahan milik negara sebagai staf pupuk dan pestisida.

Tahun 2011 penulis diterima di IPB sebagai mahasiswa pascasarjana Magister Sains Agribisnis, Fakultas Ekonomi dan Manajemen.

Dokumen terkait