• Tidak ada hasil yang ditemukan

Hasil Analisis Waktu Pengukuran (Operating Time)

BAB IV HASIL DAN PEMBAHASAN

4.2 Hasil Pengujian Aktivitas Antioksidan

4.2.2 Hasil Analisis Waktu Pengukuran (Operating Time)

Waktu stabil

Gambar 4.2 Hasil Grafik Analisis Waktu Pengukuran (operating time).

Waktu kerja bertujuan untuk mengetahui waktu pengukuran yang stabil.

Ditentukan dengan mengukur hubungan antara waktu pengukuran dengan absorbansi larutan (Gandjar dan Rohman, 2007). Hasil analisis pengukuran waktu kerja (operating time) dengan menggunakan larutan DPPH 0,5 mM dalam metanol dengan konsentrasi 40 μg/ml diukur selama 80 menit, sudah menunjukkan kestabilan pada menit ke 60 sampai dengan menit ke 63. Lama pengukuran metode DPPH (1,1-diphenyl-2-picrylhydrazyl) menurut beberapa

23

literatur yang direkomendasikan adalah selama 60 menit, tetapi dalam beberapa penelitian waktu yang digunakan sangat bervariasi dari 1 menit hingga 240 menit (Marinova dan Batchvarov, 2011). Hasil analisis waktu pengukuran (operating time) dapat dilihat pada Lampiran 5 halaman 36-37.

4.2.3 Hasil Analisis Aktivitas Antioksidan Jus Buah Naga Merah (JBNM) dan jus Buah Naga Putih (JBNP)

Pada hasil analisis aktivitas antioksidan masing-masing konsentrasi larutan uji jus buah naga merah dan jus buah naga putih terlihat adanya penurunan nilai absorbansi DPPH (1,1-diphenyl-2-picrylhydrazyl) sebanding dengan peningkatan konsentrasi masing-masing jus buah naga merah dan jus buah naga putih.

Penurunan absorbansi DPPH (1,1-diphenyl-2-picrylhydrazyl) dan persen pemerangkapan dengan penambahan masing-masing jus buah naga merah dan jus buah naga putih dapat dilihat pada Tabel 4.1 berikut:

Tabel 4.1 Penurunan absorbansi dan persen pemerangkapan DPPH oleh masing masing jus buah naga merah (JBNM) dan jus buah naga putih (JBNP).

Penurunan nilai absorbansi menunjukkan peningkatan aktivitas antioksidan. Penurunan nilai absorbansi terjadi karena jus buah naga merah dan

24

jus buah naga putih mampu menetralisir DPPH (1,1-diphenyl-2-picrylhydrazyl) dengan memberikan elektron kepada DPPH (1,1-diphenyl-2-picrylhydrazyl) sehingga atom dengan elektron yang tidak berpasangan mendapat pasangan elektron dan tidak lagi menjadi radikal (Silalahi, 2006).

Penangkap radikal bebas menyebabkan elektron menjadi berpasangan yang kemudian menyebabkan penghilangan warna yang sebanding dengan jumlah elektron yang diambil. Setelah bereaksi dengan senyawa antioksidan DPPH (1,1-diphenyl-2-picrylhydrazyl) tersebut akan tereduksi dan warnanya akan berubah.

Perubahan tersebut dapat diukur dengan spektrofotometer dan diplotkan terhadap konsentrasi penurunan intensitas warna yang terjadi disebabkan oleh berkurangnya ikatan rangkap yang terkonjugasi pada DPPH (1,1-diphenyl-2-picrylhydrazyl). Hal ini dapat terjadi apabila adanya penangkapan satu elektron oleh zat antioksidan, menyebabkan tidak adanya kesempatan elektron tersebut untuk beresonansi. Peredaman warna DPPH (1,1-diphenyl-2-picrylhydrazyl) terjadi disebabkan oleh adanya senyawa yang bisa memberikan radikal hidrogen kepada radikal DPPH (1,1-diphenyl-2-picrylhydrazyl) sehingga direduksi menjadi DPPH-H (1,1-diphenyl-2-picrylhydrazin) (Sayuti dan Yenrina, 2015).

Pada metode ini absorbansi yang diukur adalah absorbansi larutan DPPH (1,1-diphenyl-2-picrylhydrazyl) yang tidak bereaksi dengan senyawa antioksidan, secara teoritis panjang gelombang maksimum untuk larutan DPPH (1,1-diphenyl-2-picrylhydrazyl) dalam metanol adalah 515-517 nm. Untuk membuktikan bahwa absorbansi yang terukur adalah sisa DPPH (1,1-diphenyl-2-picrylhydrazyl) maka dilakukan pengukuran panjang gelombang maksimum larutan sampel tanpa DPPH (1,1-diphenyl-2-picrylhydrazyl) sehingga disimpulkan bahwa absorbansi yang

25

terukur adalah sisa DPPH (1,1-diphenyl-2-picrylhydrazyl) yang tidak ditangkap oleh senyawa uji (Salamah dan Widyasari, 2015).

Contoh perhitungan persen pemerangkapan dan nilai IC50 dapat dilihat pada Lampiran 7 halaman 39-52. Hubungan antara konsentrasi dengan persen pemerangkapan radikal bebas DPPH (1,1-diphenyl-2-picrylhydrazyl) oleh masing-masing jus buah naga merah dan jus buah naga putih dapat dilihat pada gambar berikut ini:

Gambar 4.3 Grafik Hasil Uji Aktivitas Antioksidan JBNM

Gambar 4.4 Grafik Hasil Uji Aktivitas Antioksidan JBNP

26

Hasil analisis persamaan regresi linier dan hasil analisis nilai IC50 (μg/ml) yang diperoleh dari larutan uji JBNM dan JBNP dapat dilihat pada Tabel 4.2 dibawah ini:

Tabel 4.2 Hasil persamaan regresi linier dan hasil analisis IC50 (μg/ml) yang diperoleh dari jus buah naga merah (JBNM) dan jus buah naga putih (JBNP)

Hasil perbandingan analisis IC50 (μg/ml) pada larutan uji JBNM dan JBNP dapat dilihat pada Gambar 4.5 dibawah ini:

Gambar 4.5 Grafik Hasil Analisis IC50 (μg/ml)

Dari Tabel 4.2 menunjukkan aktivitas antioksidan larutan uji jus buah naga merah (JBNM) memiliki IC50 sebesar 128,3764 μg/ml dan termasuk dalam kategori sedang sedangkan jus buah naga putih (JBNP) memiliki IC50 sebesar 94,7983 μg/ml dan termasuk dalam kategori kuat. Aktivitas antioksidan diperoleh berbeda karena kandungan gizi pada masing-masing buah naga yaitu vitamin C.

27

Perbedaannya dapat dilihat pada Tabel 4.3 dibawah ini:

Tabel 4.3 Kandungan Gizi Buah Naga

Kandungan Per 100 gram Daging Buah

Hylocereus polyrhizus (Buah Naga Merah)

Hylocereus undatus (Buah Naga Putih)

Air (g) 82,5-83,00 89,40

Rhiboflavin (mg) Sangat sedikit -

Niasin (mg) 1,29-1,20 0,20

Vitamin C (mg) 8,00-9,00 25,00

Tingkat kemanisan (brix) 13,00-15,00 10,00-13.00

Nilai pH Tidak diketahui 4,70-5,10

Sumber: Warisno dan Dahana, 2010.

Penelitian lain yang dilakukan oleh Umayah dan Amrun (2007), yaitu uji aktivitas antioksidan buah naga putih ekstrak metanol diperoleh IC50 sebesar 2,98

% dan pada ekstrak air 1,80 %, sedangkan pada penelitian yang dilakukan Nur Khaidah Siregar (2012), yaitu uji aktivitas antioksidan ekstrak etanol buah naga putih diperoleh IC50 sebesar 975,501 μg/ml dan sari buah naga putih sebesar 4751,427 μg/ml.

Tabel 4.4 Kategori nilai IC50 sebagai antioksidan

No. Kategori Konsentrasi (μg/ml)

1. Sangat kuat ≤50

2. Kuat 50 – 100

3. Sedang 101 – 150

4. Lemah 151 – 200

Sumber: Winarsi, 2014.

28 BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil penelitian yang telah dilakukan dapat disimpulkan:

a. Jus buah naga merah dan jus buah naga putih memiliki aktivitas antioksidan.

b. Kategori aktivitas antioksidan jus buah naga merah termasuk kategori yang sedang dengan IC50 sebesar 128,3764 μg/ml dan jus buah naga putih termasuk kategori kuat dengan IC50 sebesar 94,7983 μg/ml

5.2 Saran

a. Disarankan kepada masyarakat untuk mengkonsumsi jus buah naga sebagai minuman sumber antioksidan.

b. Disarankan kepada peneliti selanjutnya untuk melakukan pengujian aktivitas antioksidan dari buah lain dan metode selain metode pemerangkapan DPPH (1,1-diphenyl-2-picrylhydrazyl).

29

DAFTAR PUSTAKA

Anonim. (2009). Buah Naga. http://buahnaga.us/. Tanggal Akses: 20 Desember 2010.

Cahyono, B. (2009). Sukses Bertanam Buah Naga. Jakarta: Pustaka Mina.

Halaman 14-16, 22-32, 35-45.

Depkes RI. (1979). Farmakope Indonesia. Edisi Ketiga. Jakarta: Departemen Kesehatan RI. Halaman 33.

Gandjar, I. G., dan Rohman, A. (2008). Kimia Farmasi Analisis. Cetakan Ketiga.

Yogyakarta: Pustaka Pelajar. Halaman 222, 254-255.

Gunasena, H.P.M., dan Pushpakumara, D.K.N.G. (2006). Dragon Fruit (Hylocereus undatus Haw. Britton and Rose). Halaman 118. Diakses:

http://www.worldagroforestry.org.

Ionita, P. (2005). Is DPPH Stable Free Radical a Good Scavenger for Oxygen Active Species?. Bucharest. Chemical Paper. 59(1): 11-16.

Kristanto, D. (2003). Buah Naga Pembudidayaan di Pot dan di Kebun. Cetakan Pertama. Jakarta: Penebar Swadaya. Halaman 10-15.

Marinova, G. dan V. Batchvarov. (2011). Evaluation of the Methods for Determination of the Free Radical Scavenging Activity by DPPH.

Bulgarian Journal of Agricultural Science. 17(1): 11-24.

Molyneux, P. (2004). The Use of the Stabl e Free Radical Diphenylpicrylhydrazyl (DPPH) for Estimating Antioxidant Activity. Songklanakarin J. Sci.

Technol. 26(2): 211-219.

Prakash, A. (2001). Antioxidant Activity. Analytical Progress. 19(2): 1-4.

Pranata, R., Wahdaningsih, S., dan Fahrurroji, A. (2016). Uji Aktivitas Antioksidan Fraksi kloroform Kulit Buah Naga Merah (Hylocereus lemairei Britton and Rose) Menggunakan Metode DPPH (1,1-diphenyl-2-picrylhydrazyl). Program Studi Farmasi Fakultas Kedokteran, Universitas Tanjungpura. Halaman 1-10.

Rosidah, Yam, M. F., Sadikun, A., dan Asmawi, M. Z. (2008). Antioxidant Potential of Gynura procumbens. Pharmaceutical Biology. 46(9): 616-625.

Salamah, N., dan Widyasari, E. (2015). Aktivitas Antioksidan Ekstrak Metanol Daun Kelengkeng (Euphoria longan (L) Steud.) Dengan Metode Penangkapan Radikal 2,2’-difenil-1-pikrilhidrazil. Fakultas Farmasi

30

Universitas Ahmad Dahlan, Yogyakarta. Pharmaciana, vol 5, No. 1, 2015:

25-34.

Sayuti, K., dan Yenrina, R. (2015). Antioksidan Alami dan Sintetik. Padang:

Andalas University Press. Halaman 38-47; 61-65; 76.

Silalahi, J. (2006). Makanan Fungsional. Yogyakarta: Kanisius. Halaman 41, 47-48, 121.

Siregar, K. N. (2012) Karakterisasi Simplisia dan Skrining Fitokimia Serta Uji Aktivitas Antioksidan Ekstrak Etanol Buah Naga (Hylocereus undatus (Haw.) Britton & Rose). Skripsi. Medan: Fakultas Farmasi Universitas Sumatera Utara.

Triyati, E. (1985). Spektrofotometri Ultraviolet dan Sinar Tampak serta Aplikasinya dalam Oseanologi. Jurnal Oseana. 10(1): 1877.

Umayah, U. E., dan Amrun, H. M. (2007). Uji Aktivitas Antioksidan Ekstrak Buah Naga (Hylocereus Undatus (Haw.) Britt. & Rose) Staf Pengajar Program Studi Farmasi Universitas Jember. Jurnal Ilmu Dasar Vol. 8 No. 1.

Halaman 83-90.

Warisno, dan Dahana, K. (2010). Buku Pintar Bertanam Buah Naga Di Kebun, Pekarangan dan Dalam Pot. Jakarta: Gramedia Pustaka Utama. Halaman 3.

Winarsi, H. (2007). Antioksidan Alami dan Radikal Bebas. Yogyakarta: Kanisius.

Halaman 12, 17.

Winarsi, H. (2014). Antioksidan Daun Kapulaga. Yogyakarta: Graha Ilmu.

Halaman 38, 42-43.

31

Ditimbang 25 mg

Dimasukkan kedalam labu 25 ml

Dicukupkan volumenya dengan air sampai garis tanda

Dipipet sebanyak 1,25 ml, 2,5 ml, 3,75 ml, 5 ml

Dimasukkan masing-masing ke dalam labu tentukur 25 ml

Dicukupkan volumenya dengan metanol sampai garis tanda

Diperoleh konsentrasi 50 µg/ml, 100 µg/ml, 150 µg/ml, 200 µg/ml

Dipipet masing-masing konsentrasi sebanyak 0,5 ml

Dimasukkan kedalam tabung reaksi Ditambahkan 5 ml larutan DPPH 0,5 mM konsentrasi 40 µg/ml

Dihomogenkan dengan vortex

Digunakan larutan DPPH tanpa penambahan larutan uji sebagai kontrol Didiamkan selama 60 menit

Diukur menggunakan alat spektrofotometer UV-Visible dengan panjang gelombang 516 nm

Ditimbang ± 1,2 kg

Dibersihkan dengan air mengalir lalu ditiriskan

Dikeringan menggunakan tisu Dibagi menjadi dua bagian

Dipisahkan kulit dari daging buahnya Dipotong kecil-kecil

Dihaluskan dengan blender Lampiran 1. Bagan Kerja

Disaring

Buah Naga Segar

Filtrat Sampel yang telah dihaluskan

Larutan induk jus buah naga konsentrasi 1000 µg/ml

Hasil Residu

32 Lampiran 2. Hasil Identifikasi Tumbuhan

1. Buah Naga Merah (Hylocereus polyrhizus (Haw.) Britton & Rose)

33

2. Buah Naga Putih (Hylocereus undatus (Haw.) Britton & Rose)

34 Lampiran 3. Gambar Sampel Buah Naga

Gambar 1. Buah Naga Merah

Gambar 2. Buah Naga Putih

35

Lampiran 4. Gambar Seperangkat Alat Spektrofotometer UV-Visibel (UV 1800 - Shimadzu)

Gambar 3. Gambar seperangkat alat spektrofotometer UV - Visibel (UV 1800 - Shimadzu).

36 Lampiran 5. Hasil Pengukuran Operating Time

Time

37

38 Lampiran 6. Hasil Uji Aktivitas Antioksidan.

39

Lampiran 7. Contoh Perhitungan Persen Pemerangkapan dan Perhitungan Nilai IC50

7.1 Perhitungan persen pemerangkapan JBNM

• Tabel data absorbansi DPPH pengukuran 1

No. Konsentrasi Larutan Uji (μg/ml) Absorbansi

1 0 0,84691

2 50 0,56689

3 100 0,46085

4 150 0,36689

5 200 0,26085

Keterangan : Akontrol = Absorbansi tidak mengandung sampel Asampel = Absorbansi sampel

1. Konsentrasi 50 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,84691 0,56689

-0,84691

= 33,0637

2. Konsentrasi 100 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,84691 0,46085

-0,84691

= 45,5845

3. Konsentrasi 150 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,84691 0,36689

-0,84691

= 56,6789

4. Konsentrasi 200 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,84691 0,26085

-0,84691

= 69,1997

Aktivitas pemerangkapan (%) = x 100%

kontrol

40

• Tabel data absorbansi DPPH pengukuran 2

No. Konsentrasi Larutan Uji (µg/ml) Absorbansi

1 0 0,84422

2 50 0,58060

3 100 0,49429

4 150 0,38060

5 200 0,29429

Keterangan : Akontrol = Absorbansi tidak mengandung sampel Asampel = Absorbansi sampel

1. Konsentrasi 50 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,84422 0,58060

-0,84422

= 31,2264

2. Konsentrasi 100 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,84422 0,49429

-0,84422

= 41,4500

3. Konsentrasi 150 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,84422 0,38060

-0,84422

= 54,9169

4. Konsentrasi 200 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,84422 0,29429

-0,84422

= 65,1406

Aktivitas pemerangkapan (%) = x 100%

kontrol

41

• Tabel data absorbansi DPPH pengukuran 3

No. Konsentrasi Larutan Uji (μg/ml) Absorbansi

1 0 0,84135

2 50 0,56967

3 100 0,41460

4 150 0,36967

5 200 0,26460

Keterangan : Akontrol = Absorbansi tidak mengandung sampel Asampel = Absorbansi sampel

1. Konsentrasi 50 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,84135 0,56967

-0,84135

= 32,2909

2. Konsentrasi 100 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,84135 0,41460

-0,84135

= 50,7220

3. Konsentrasi 150 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,84135 0,36967

-0,84135

= 56,0622

4. Konsentrasi 200 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,84135 0,26460

-0,84135

= 68,5505

Aktivitas pemerangkapan (%) = x 100%

kontrol

42

• Tabel data absorbansi DPPH pengukuran 4

No. Konsentrasi Larutan Uji (μg/ml) Absorbansi

1 0 0,83026

2 50 0,55730

3 100 0,45570

4 150 0,35730

5 200 0,25570

Keterangan : Akontrol = Absorbansi tidak mengandung sampel Asampel = Absorbansi sampel

1. Konsentrasi 50 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,83026 0,55730

-0,83026

= 32,8764

2. Konsentrasi 100 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,83026 0,45570

-0,83026

= 45,1135

3. Konsentrasi 150 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,83026 0,35730

-0,83026

= 56,9652

4. Konsentrasi 200 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,83026 0,25570

-0,83026

= 69,2024

Aktivitas pemerangkapan (%) = x 100%

kontrol

43

• Tabel data absorbansi DPPH pengukuran 5

No. Konsentrasi Larutan Uji (μg/ml) Absorbansi

1 0 0,82977

2 50 0,54420

3 100 0,45474

4 150 0,34420

5 200 0,25474

Keterangan : Akontrol = Absorbansi tidak mengandung sampel Asampel = Absorbansi sampel

1 Konsentrasi 50 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,82977 0,54420

-0,82977

= 34,4155

2. Konsentrasi 100 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,82977 0,45474

-0,82977

= 45,1968

3. Konsentrasi 150 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,82977 0,34420

-0,82977

= 58,5186

4. Konsentrasi 200 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,82977 0,25474

-0,82977

= 69,2999

Aktivitas pemerangkapan (%) = x 100%

kontrol

44

• Tabel data absorbansi DPPH pengukuran 6

No. Konsentrasi Larutan Uji (μg/ml) Absorbansi

1 0 0,82687

2 50 0,53535

3 100 0,44565

4 150 0,33535

5 200 0,25535

Keterangan : Akontrol = Absorbansi tidak mengandung sampel Asampel = Absorbansi sampel

1. Konsentrasi 50 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,82687 0,53535

-0,82687

= 35,2558

2. Konsentrasi 100 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,82687 0,44565

-0,82687

= 46,1035

3. Konsentrasi 150 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,82687 0,33535

-0,82687

= 59,4434

4. Konsentrasi 200 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,82687 0,25535

-0,82687

= 69,1184

Aktivitas pemerangkapan (%) = x 100%

kontrol

45 Perhitungan nilai IC50

Tabel IC50 dari JBNM

Keterangan: X = Konsentrasi (μg/ml) Y = % Pemerangkapan

Jadi, persamaan garis regresi Y = 0,3214x +8,7398 Nilai IC50 = Y = 0,3214x +8,7398

50 = 0,3214x +8,7398 X = 128,3764

IC50 = 128,3764 µg/ml

46 7.2 Perhitungan persen pemerangkapan JBNP

• Tabel data absorbansi DPPH pengukuran 1

No. Konsentrasi Larutan Uji (μg/ml) Absorbansi

1 0 0,80736

2 50 0,49730

3 100 0,39795

4 150 0,29460

5 200 0,19460

Keterangan : Akontrol = Absorbansi tidak mengandung sampel Asampel = Absorbansi sampel

1. Konsentrasi 50 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,80736 0,49730

-0,80736

= 38,4041

2. Konsentrasi 100 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,80736 0,39795

-0,80736

= 50,7097

3. Konsentrasi 150 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,80736 0,29460

-0,80736

= 63,5107

4. Konsentrasi 200 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,80736 0,19460

-0,80736

= 75,8967

Aktivitas pemerangkapan (%) = x 100%

kontrol

47

• Tabel data absorbansi DPPH pengukuran 2

No. Konsentrasi Larutan Uji (µg/ml) Absorbansi

1 0 0,82019

2 50 0,47502

3 100 0,31436

4 150 0,21648

5 200 0,11648

Keterangan : Akontrol = Absorbansi tidak mengandung sampel Asampel = Absorbansi sampel

1. Konsentrasi 50 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,82019 0,47502

-0,82019

= 42,0841

2. Konsentrasi 100 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,82019 0,31436

-0,82019

= 61,6722

3. Konsentrasi 150 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,82019 0,21648

-0,82019

= 73,6061

4. Konsentrasi 200 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,82019 0,11648

-0,82019

= 85,7984

Aktivitas pemerangkapan (%) = x 100%

kontrol

48

• Tabel data absorbansi DPPH pengukuran 3

No. Konsentrasi Larutan Uji (μg/ml) Absorbansi

1 0 0,82959

2 50 0,41275

3 100 0,31346

4 150 0,21277

5 200 0,11277

Keterangan : Akontrol = Absorbansi tidak mengandung sampel Asampel = Absorbansi sampel

1. Konsentrasi 50 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,82959 0,41275

-0,82959

= 50,2465

2. Konsentrasi 100 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,82959 0,31346

-0,82959

= 62,2150

3. Konsentrasi 150 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,82959 0,21277

-0,82959

= 74,3523

4. Konsentrasi 200 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,82959 0,11277

-0,82959

= 86,4065

Aktivitas pemerangkapan (%) = x 100%

kontrol

49

• Tabel data absorbansi DPPH pengukuran 4

No. Konsentrasi Larutan Uji (μg/ml) Absorbansi

1 0 0,83418

2 100 0,47880

3 200 0,37508

4 300 0,27650

5 400 0,17650

Keterangan : Akontrol = Absorbansi tidak mengandung sampel Asampel = Absorbansi sampel

1. Konsentrasi 50 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,83418 0,47880

-0,83418

= 42,6023

2. Konsentrasi 100 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,83418 0,37508

-0,83418

= 55,0360

3. Konsentrasi 150 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,83418 0,27650

-0,83418

= 66,8536

4. Konsentrasi 200 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,83418 0,17650

-0,83418

= 78,8414

Aktivitas pemerangkapan (%) = x 100%

kontrol

50

• Tabel data absorbansi DPPH pengukuran 5

No. Konsentrasi Larutan Uji (μg/ml) Absorbansi

1 0 0,84079

2 50 0,44009

3 100 0,31421

4 150 0,21146

5 200 0,11146

Keterangan : Akontrol = Absorbansi tidak mengandung sampel Asampel = Absorbansi sampel

1. Konsentrasi 50 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,84079 0,44009

-0,84079

= 47,6575

2. Konsentrasi 100 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,84079 0,31421

-0,84079

= 62,6291

3. Konsentrasi 150 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,84079 0,21146

-0,84079

= 74,8498

4. Konsentrasi 200 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,84079 0,11146

-0,84079

= 86,7434

Aktivitas pemerangkapan (%) = x 100%

kontrol

51

• Tabel data absorbansi DPPH pengukuran 6

No. Konsentrasi Larutan Uji (μg/ml) Absorbansi

1 0 0,84395

2 50 0,40218

3 100 0,30437

4 150 0,20238

5 200 0,10238

Keterangan : Akontrol = Absorbansi tidak mengandung sampel Asampel = Absorbansi sampel

1. Konsentrasi 50 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,84395 0,40218

-0,84395

= 52,3455

2. Konsentrasi 100 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,84395 0,30437

-0,84395

= 63,9350

3. Konsentrasi 150 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,84395 0,20238

-0,84395

= 76,0199

4. Konsentrasi 200 µg/ml

Aktivitas pemerangkapan (%) = x 100%

0,84395 0,10238

-0,84395

= 87,8689

Aktivitas pemerangkapan (%) = x 100%

kontrol

52 Perhitungan nilai IC50

Tabel IC50 dari JBNP

Keterangan: X = Konsentrasi (μg/ml) Y = % Pemerangkapan

Jadi, persamaan garis regresi Y = 0.3863x+13,3794 Nilai IC50 = Y = 0,3863x+13,3794

50 = 0,3863x+13,3794 X = 94,7983

IC50 = 94,7983 µg/ml

Dokumen terkait