BAB V KESIMPULAN DAN SARAN
5.2 Saran
Saran yang dapat diberikan untuk penelitian selanjutnya adalah:
1. Disarankan untuk mengkaji penggunaan ulang katalis abu biji pepaya untuk mengetahui kemampuan katalis.
2. Disarankan mengkaji bagaimana viskositas campuran reaksi mempengaruhi konversi metil ester.
3. Disarankan mengkaji lebih lanjut bagaimana penambahan waktu reksi terhadap yield metil ester.
4. Disarankan untuk selalu menyimpan katalis abu biji pepaya dalam wadah kedap udara untuk mencegah terjadinya leaching.
DAFTAR PUSTAKA
Abba E. C., Nwakuba N. R., Obasi S. N., Enem J. I. Effect of Reaction Time on the Yield of Biodiesel from Neem Seed Oil. American Journal of Energy Science 2017; 4(2): 5-9.
Adesuyi, A.O. and Ipinmoroti, K.O. (2011) The nutritional and functional properties of the seed flour of three Varieties of Carica papaya. Curr. Res. Chem., 3(1):
70-75.
Akinnawo, Christianah Aarinola., Ndzondelelo Bingwa., Reinout Meijboom.
Surface Properties vs Activity of Meso-ZrO2 Catalyst in Chemoselective Meerwein-Ponndorf-Verley Reduction of Citral: Effect of Calcination Temperature. Microporous and Mesoporous Materials. 311 (2021) 110693 Amini., Zeynab., Zul Ilham., Hwai Chyuan Ong., Hoora Mazahecri., Wei-Hsin Chen.
State of The Art And Prospective of Lipase-Catalyzed Transesterification Reaction for Biodiesel Production. Energy Conversion and Management xx (2016)xx xxx.
Balajii, Muthusamy, Subramaniapillai Niju. Banana peduncle e A green and renewable heterogeneous base catalyst for biodiesel production from Ceiba pentandra oil. Renewable Energy. 146 (2020) 2255e2269
Castro, Luciene da Silva., Audrei Giménez Baranano, Christiano Jorge Gomes Pinheiro, Luciano Menini and Patrícia Fontes Pinheiro. Biodiesel production from cotton oil using heterogeneous CaO catalysts from eggshells prepared at different calcination temperatures. Green Process Synth 2019; 8: 235–244 Casas. Abraham., María Jesús Ramos., Ángel Pérez. Production Of Biodiesel
Through Interesterification of Triglycerides With Methyl Acetate.
Department of Chemical Engineering, Institute For Chemical And Environmental Technologies (Itquima), University Of Castilla-La Mancha. ISBN: 978-1-62808-565-5 (2013).
Chakraborty, R., S. Bepari., A. Banerjee. Transesterification of Soybean Oil Catalyzed by Fly Ash and Egg Shell Derived Solid Catalysts. Chemical Engineering Journal 65 (2010) 798–805.
Chen, Jinshe., Lijun Zhu, Yuzhi Xiang and Daohong Xia. E_ect of Calcination Temperature on Structural Properties and Catalytic Performance of Novel Amorphous NiP/H_ Catalyst for n-Hexane Isomerization. Catalysts. 2020, 10, 811.
Etim, A.O. Andrew C. Eloka-Eboka, P. Musonge. Potential of Carica papaya peels as effective biocatalyst in the optimized parametric transesterification of used vegetable oil. Environ. Eng. Res. 2021; 26(4): 200299
Fan, M. H. Wu, M. Shi, P. Zhang, P. Jiang, Well-dispersive K2O-KCl alkaline catalyst derived from waste banana peel for biodiesel synthesis, Green Energy & Environment (2018),doi: https://doi.org/10.1016/j.gee.2018.09.004 Farooq, M., Ramli, A., Naeem, A., ahmad, S., Islam, M.G.U.,Biodiesel Producti on
from Date Seed Oil (Phoenix dactylifera L) via Egg Shell Derived Heterogeneous Catalyst, Chemical Engineering Research and Design (2018https://doi.org/10.1016/j.cherd.2018.02.002
Gashaw, Alemayehu., Tewodros Getachew And Abileteshita. A Review On Biodiesel Production As Alternative Fuel. Journal Of Forest Products &
Industries, (2015) 4(2), 80-85 ISSN: 2325–4513.
Gohain, Minakshi., Khairujjaman Laskar, Atanu Kumar Paul, Niran Daimary, Mrutyunjay Maharana, Imon Kalyan Goswami, Anil Hazarika, Utpal Bora, Dhanapati Deka. Carica papaya stem: A Source of Versatile Heterogeneous Catalyst for Biodiesel Production and CeC Bond Formation. Renewable Energy 147 (2020) 541-555.
Gohain, Minakshi, Anuchaya Devi, Dhanapati Deka. Musa balbisiana Colla peel as highly effective renewable heterogeneous base catalyst for biodiesel production. Industrial Crops & Products. Industrial Crops & Products 109 (2017) 8–18
Gonzalez, Juan P Castillo., Peggy E. Álvarez Gutiérrez., Manuel Adam Medina., Betty Y. López Zapata., Gerardo V. Ramírez Guerrero., and Luis G. Vela Valdés. Effects on Biodiesel Production Caused by Feed Oil Changes in a Continuous Stirred-Tank Reactor. Applied Sciences. (2020), 10, 992.
Guldhe, Abhishek., Poonam Singh., Faiz Ahmad Ansari., Bhaskar Singh., Faizal Bux. Biodiesel Synthesis from Microalgal Lipids Using Tungstated
Zirconia As A Heterogeneous Acid Catalyst And Its Comparison With Homogeneous Acid And Enzyme Catalysts. Fuel 187 (2017) 180–188.
Hakim, Azizul. Mohd. Ambar Yarmo., Tengku Sharifah Marliza1., Maratun Najiha Abu Tahari., Wan Zurina Samad., Muhammad Rahimi Yusop., Mohamed Wahab Mohamed Hisham., Norliza Dzakaria. The Influence Of Calcination Tempera re On Iron O ide (Α-Fe2O3) Towards CO2 Adsorption Prepared By Simple Mixing Method. Malaysian Journal of Analytical Sciences, Vol 20 No 6 (2016): 1286 – 1298
Hsiao, Ming-Chien., Jui-Yang Kuo., Shu-An Hsieh., Pei-Hsuan Hsie., Shuhn-Shyurng Hou. Optimized Conversion of Waste Cooking Oil to Biodiesel Using Modified Calcium Oxide As Catalyst Via A Microwave Heating System. Fuel. 266 (2020) 117114
Http://sispk.bsn.go.id/SNI/DetailSNI/10147 : SNI 7182:2015.
Jagadale S. S., Jugulkar L. M. Review of Various Reaction Parameters and Other Factors Affecting on Production of Chicken Fat Based Biodiesel.
International Journal of Modern Engineering Research (IJMER) Vol 2, Issue 2, (2012) PP-407-411 ISSN: 2249-6645.
Laila, Lia, Listiani Oktavia. 2017. Eksperiment Study of Total Acid Number and Viscosity of Palm Oil Based Biodiesel From Smart TBK. Jurnal Teknologi Proses dan Inovasi Industri. Vol 2, No 1
Lani, Nurul Saadiah., Norzita Ngadi., Mohd Rozainee Taib. Parametric Study on the Transesterification Reaction by Using CaO/Silica Catalyst. Chemical Engineering Transactions. Vol. 56 (2017).
Laskar, Ikbal Bahar . Kalyani Rajkumari, Rajat Gupta, Sushovan Chatterjee, Bappi Paul b and Lalthazuala Rokhum. Waste snail shell derived heterogeneous catalyst for biodiesel production by the transesterification of soybean oil. The Royal Society of Chemistry 2018. 20131–20142
Li, Yu-Ru., Meei-Fang Shue., Yi-Chyun Hsu., Wen-Liang Lai., Jen-Jeng Chen.
Application of factorial design methodology for optimization of transesterification reaction of microalgae lipids. Energy Procedia 52 (2014) 377 – 382.
Liu, Yang., Qingshi Tu., Gerhard Knothe., Mingming Lu. Direct Transesterification of Spent Coffee Grounds for Biodiesel Production. Fuel 199 (2017) 157–161.
Mendonca, Iasmin M. Orlando A.R.L. Paes, Paulo J.S. Maia, Mayane P. Souza, Richardson A. Almeida, Cláudia C. Silva, Sérgio Duvoisin, Flávio A. de Freitas, New heterogeneous catalyst for biodiesel production from waste tucumã peels (Astrocaryum aculeatum Meyer): Parameters optimization study, Renewable Energy (2018), doi: 10.1016/j.renene. 2018.06.059
Manique, Márcia Cardoso., Luciane Venturini Lacerda., Annelise Kopp Alves., Carlos Pérez Bergmann. Biodiesel Production Using Coal Fly Ash-Derived Sodalite as A Heterogeneous Catalyst. Fuel xxx (2016) xxx–xxx.
Margaretha, Yosephine Yulia., Henry Sanaga Prastyo., Aning Ayucitra., Suryadi Ismadji. Calcium Oxide From Pomacea Sp. Shell as A Catalyst for Biodiesel Production. International Journal of Energy and Environmental Engineering (2012).
Marinkovic, Dalibor M., Miro lav V.S anković, AnaV. Veličković, Jelena M.
Avramović, Marija R. Miladinović., Olivera O. S amenković., Vlada B.
Veljković., D šan M. Jovanović. Calci m o ide a a promi in Heterogeneous Catalyst for Biodiesel Production: Current State and Perspectives. Renewable and Sustainable Energy Reviews 56(2016)1387–
140.
Maisarah, A.M., Asmah, R. and Fauziah, O. (2014) Proximate analysis, antioxidant and antiproliferative activities of different parts of Carica papaya. J. Nutr.
Food Sci., 4(2): 267.
Miladinovic, Marija R., Miodrag V. Zdujic., Djordje N. Veljovic., Jugoslav B.
Krstic., Ivana B. Bankovic-Ilic., Vlada B. Veljkovic., Olivera S., Stamenkovic. Valorization of Walnut Shell Ash as A Catalyst for Biodiesel Production. Journal of Volcanology and Geothermal Research 377 (2019) 43–52.
Moses, M.O. and Olanrewaju, M.J. (2018) Proximate and selected mineral composition of ripe pawpaw (Carica papaya) seeds and skin. J. Sci.
Innov. Res., 7(3): 75-77.
Musa, Idris Atadashi. The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egyptian Journal of Petroleum. (2016) xxx, xxx–xxx
Novita, Sri Aulia., Musdar Effy Djinis., Sandra Melly., Sri Kembaryanti Putri.
Processing Coconut Fiber and Shell to Biodiesel. International Journal Advanced Science Engineering Information Technology Vol.4 No. 5 ISSN:
2088-5334 (2014).
Panchal, Balaji., Tao Chang., Shenjun Qin., Yuzhuang Sun., Jinxi Wang., Kai Bian..
Optimization of Soybean Oil Transesterification Using An Ionic Liquid and Methanol for Biodiesel Synthesis. Energy Reports (2019).
Pandiangan, Kamisah D. Novesar Jamarun, Syukri Arief, Wasinton Simanjuntak and Mita Rilyanti. The Effect of Calcination Temperatures on the Activity of CaO and CaO/SiO
2 Heterogeneous Catalyst for Transesterification of Rubber Seed Oil In the Presence of Coconut Oil as a Co-reactant. Oriental Journal Of Chemistry. ISSN: 0970-020X.CODEN: OJCHEG. 2016, Vol. 32, No. (6): Pg. 3021-3026
Pullen, James., Khizer Saeed. Investigation of The Factors Affecting The Progress of Base-Catalyzed Transesterification of Rapeseed Oil to Biodiesel FAME. Fuel Processing Technology 130 (2015) 127–135.
Ramirez, J.L. Aleman, Joel Moreira, S. Torres Arellano, Adriana Longoria, Patrick U. Okoye, P.J. Sebastian. Preparation of a heterogeneous catalyst from moringa leaves as a sustainable precursor for biodiesel production. Fuel 284 (2021) 118983
Rashid, Umer., Sorous Soltani., Saud Ibrahim., Al Resayes., Imedeline Arbi Nehdi., Metal Oxide Catalyst for Biodiesel Production. Metal Oxide In Energy Technologies. 2018. 303-319.
Refaat, A. A. Biodiesel production using solid metal oxide catalysts. Int. J. Environ.
Sci. Tech., 8 (1), 203-221, Winter 2011 ISSN: 1735-1472
Santosa, Nidya., Pradana, Ferdy dan Rachimoellah Dipl. EST, Prof. Dr. Ir. H. M., Pembuatan Biodiesel dari Minyak Biji Kapuk Randu (Ceiba pentandra) melalui Proses Transesterifikasi dengan Menggunakan CaO Sebagai Katalis, Institut Teknologi Sepuluh November, 2012.
Shan, Rui., Guanyi Chen., Beibei Yan., Jiafu Shi., Changye Liu. Porous Cao-Based Catalyst Derived From PSS-Induced Mineralization for Biodiesel Production Enhancement. Energy Conversion and Management 106 (2015) 405–413.
Sivaramakrishnan, K., P. Ravikumar. Determination of Cetana Number of Biodiesel and I ’ Infl ence On P y ical Proper ie . ARPN Journal of Engineering and Applied Sciences. Vol 7 No 2. 2012. ISSN 1819-6608
Sinaga, Mersi Suriani. Setiaty Pandia, Trio F Tarigan and Wika G Tiffani.
Utilization of cacao peel waste to K2O heterogeneous catalyst in biodiesel synthesis by waste cooking oil: effect of catalyst calcination temperature.
International Conference on Agribussines, Food and Agro-Technology IOP Conf. Series: Earth and Environmental Science 205 (2018) 012031
Suchamalawong, Phorndranrat., Suthasenee Pengnarapat., Prasert Reubroycharoen Tharapong Vitidsant. Biofuel Preparation from Waste Chicken Fat Using Coal Fly Ash as a Catalyst: Optimization and Kinetics Study In A Batch Reactor. Journal of Environmental Chemical Engineering. 103155 (2019).
Supardan, Muhammad Dan, Satriana Esterification of Free Fatty Acid in crude Palm Oil Off Grade. Jurnal Rekayasa Kimia dan Lingkungan Vol. 7, No. 2, hal. 70-74, (2009) ISSN:1412-5064.
Sugiharto. Papaya (Carica papaya L.) seed as a potent functional feedstuff for poultry – A review. Department of Animal Science, Faculty of Animal and Agricultural Sciences, Diponegoro. Veterinary World. Vol.13/August-2020/18. EISSN: 2231-0916
Tang, Zo-Ee., Steven Lim, Yean-Ling Pang, Hwai-Chyuan Ong, Keat-Teong Lee.
Synthesis of Biomass As Heterogeneous Catalyst for Application In Biodiesel Production: State of The Art And Fundamental Review. Renewable and Sustainable Energy Reviews 92 (2018) 235–253.
Taslim, B. A. Sinaga, M. N. Sihaloho, Iriany, dan O. Bani. 2019a. Biodiesel Production from Waste Cooking Oil Using Heterogeneous Catalyst from Corn Cob Ash Impregnated with KOH. IOP Conf. Series: Journal of Physics: Conf.
Series, 1175, 012281
Taslim, O. Bani, Iriany, S. Lestari, dan L. Ginting. 2019b. Biodiesel Production using Heterogeneous Catalyst Based on Volcanic Ash of Mout Sinabung. AIP
Conference Proceedings, 2085, 020062.
Taslim, Ferry Irawan, Iriany. 2020. Moringa Leaves (Moringa Oleifera) Potential as Green Catalyst for Biodiesel Production. IOP Conferece Series Materials Science and Engineering. Vol: 1003
Verma, Puneet., M.P.Sharma. Review of process parameters for biodiesel production from different feedstocks. Renewable and Sustainable Energy Reviews 62(2016)1063–1071
Veljković, Vlada B. Milan O. Biberdžić, Ivana B. Banković-Ilića, Ivica G. Djalović, Marija B. Ta ić, Zvonko B. Nježićd, Olivera S. S amenković. Biodie el Production from Corn Oil: Renewable and Sustainable Energy Reviews (2018) 531–548
Venkateswarulu, T.C., Cherukuwada. V. Raviteja., Kodali. V. Prabhaker., D. John Babu., A. Ranganadha Reddy., M. Indira., A Review on Methods of Transesterification of Oils and Fats in Biodiesel Formation. International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN : 0974-4290 Vol.6, No.4, PP 2568-2576 (2014).
Vinukumar, K., A. Azhagurajan., S.C. Vettivel., N. Vedaraman., A. Haiter Lenin.
2018. Biodiesel with Nano Additives from Coconut Shell for Decreasing Emissions In Diesel Engines. Fuel 222 (2018) 180–18484
Vujicic, Dj. D. Comic., A. Zarubica., R. Micic., G. Boskovic. Kinetics of Biodiesel Synthesis from Sunflower Oil Over CaO Heterogeneous Catalyst. Fuel 89 (2010) 2054–2061.
Wendi, Valentinoh Cuaca, and Taslim. Effect of Reaction Temperature and Catalyst Concentration for Producing Biodiesel from Waste Beef Tallow Using Heterogeneous Catalyst CaO from Waste Eggshell. Department of Chemical Engineering, University of Sumatera Utara. 2014
Yodsuwan, Natthawut., Pitiya Kamonpatana., Yusuf Chisti., Sarote Sirisansaneeyakul. Ohmic Heating Pretreatment of Algal Slurry for Production of Biodiesel. Journal of Biotechnology. S01681656(2017)31780-7.
Zhang, X., S. Yan., R. D. Tyagi., R. Y. Surampalli. Biodiesel Production By Transesterification. Biodiesel Production (2019).
LAMPIRAN A DATA BAHAN BAKU
A.1 KOMPOSISI FFA MINYAK SAWIT
Komposisi FFA minyak sawit ditunjukkan pada Tabel A.1. Dari Tabel A.1, didapat BM rata-rata FFA minyak sawit adalah 272,10 g/mol.
Tabel A.1. Komposisi Asam Lemak Minyak Sawit
Asam Lemak Komposisi
Asam Palmitat (C16:0) 37,0699 256,43 95,06 Asam Palmitoleat (C16:1) 0,1555 254,41 0,40
Asam Stearat (C18:0) 3,2619 284,48 9,28
Asam Oleat (C18:1) 47,0248 282,47 132,83
Asam Linoleat (C18:2) 10,8267 280,45 30,36
Asam Linolenat (C18:3) 0,1746 278,43 0,49
Asam Arakidat (C20:0) 0,2854 312,53 0,89
Asam Eikosenoat ((C20:1) 0,1369 310,54 0,43
Jumlah 100 272,10
A.2 KOMPOSISI TRIGLISERIDA MINYAK SAWIT
Komposisi trigliserida minyak sawit ditunjukkan pada Tabel A.2. Dari Tabel A.2, didapat BM rata-rata minyak sawit adalah 854,37 g/mol.
Tabel A.2. Komposisi Trigliserida Minyak Sawit Trigliserida Komposisi
(% berat) BM (g/mol) % x BM (g/mol)
Tri Laurin (C12:0) 0,2319 639,02 1,48
Tri Miristin (C14:0) 0,8323 723,16 6,02
Tri Palmitin (C16:0) 37,0699 807,34 299,28
Tri Palmitolein (C16:1) 0,1555 801,27 1,25
Tri Stearin (C18:0) 3,2619 891,51 29,08
Tri Olein (C18:1) 47,0248 885,51 416,41
Tri Linolein (C18:2) 10,8267 879,43 95,21
Tri Linolenin (C18:3) 0,1746 873,507 1,53
Tri Arakhidatin (C20:0) 0,2854 975,669 2,78
Tri Eikosenin ((C20:1) 0,1369 969,669 1,33
Jumlah 100,0000 854,37
A.3 KADAR FFA MINYAK SAWIT
Untuk analisis kadar FFA minyak sawit, digunakan minyak sawit sebanyak 20 gram dan larutan NaOH dengan normalitas 0,1 N. Volume NaOH yang terpakai adalah 6,4 mL. Dari perhitungan, didapat kadar FFA minyak sawit adalah 0,58 %.
% FFA = V NaOH x N NaOH x BM FFA g sampel x 10 %
% FFA = 4,2 x 0,1 x 272,10 20 x 10 %
% FFA = 0,57 %
A.4 KADAR AIR MINYAK SAWIT DAN BIODIESEL
Data untuk perhitungan kadar air minyak sawit dan biodiesel dapat dilihat pada Tabel A.4. Dari perhitungan, didapat kadar air minyak sawit adalah 0,2 % dan kadar air biodiesel adalah 0 % atau 0 mg air/1 kg biodiesel.
Tabel A.3 Data Perhitungan Kadar Air Minyak sawit dan Biodiesel Bahan Massa Basah (g) Massa Kering (g)
Minyak sawit 10,00 9,98
Biodiesel 10,00 10,00
Kadar air = berat minyak basah - berat minyak kering
x 100 % berat minyak kering
Kadar air = 10,00 - 9,98
x 100 % 9,98
Kadar air = 0,2 %
Kadar air = berat biodiesel basah - berat biodiesel kering x 100 %
Kadar air = 10,00 - 10,00
x 100 % 10,00
Kadar air = 0 %
berat biodiesel kering
LAMPIRAN B DATA PENELITIAN
B.1 DATA DENSITAS BIODIESEL
Hasil perhitungan densitas biodiesel yang didapat ditunjukkan pada Tabel B.1.
Tabel B.1 Hasil Analisis Densitas Biodiesel Run Densitas (kg/m3)
1 865
2 867
3 882
4 870
5 876
6 867
7 869
8 878
9 876
10 885
11 870
12 876
13 875
14 872
15 876
16 880
17 879
B.2 DATA VISKOSITAS KINEMATIK BIODIESEL
Hasil perhitungan viskositas kinematik biodiesel yang didapat ditunjukkan pada Tabel B.2.
Tabel B.2 Hasil Analisis Viskositas Kinematik Biodiesel Run Viskositas Kinematik (cSt)
1 3,969
2 4,206
3 4,312
4 4,237
5 4,467
6 4,206
7 4,149
8 4,323
9 4,467
10 4,678
11 4,105
12 4,467
13 3,958
14 4,343
15 4,467
16 4,413
17 4,323
B.3 DATA YIELD BIODIESEL
Hasil perhitungan yield biodiesel yang didapat ditunjukkan pada Tabel LB.3.
Tabel B.3 Pengaruh Suhu Reaksi Terhadap Yield Biodiesel Run Kadar Ester (%) Yield (%)
1 98,05 89,39
2 96,55 95,30
3 97,95 92,64
4 96,25 90,05
5 98,75 98,06
6 96,55 95,30
7 96,89 93,11
8 97,41 93,22
9 98,75 98,06
10 96,92 90,24
11 97,61 94,59
12 98,75 98,06
13 96,92 92,37
14 97,29 90,13
15 98,75 98,06
16 97,63 92,67
17 97,33 91,22
LAMPIRAN C
CONTOH PERHITUNGAN
C.1 PERHITUNGAN KEBUTUHAN METANOL
Gambar C.1 Reaksi Transesterifikasi dengan Metanol
Massa minyak = 50 g Minyak : metanol = 1 : 12
BM minyak = 854,37 g/mol
Mol minyak = ma a minyak BM minyak
= 5
854,3
= 0,06 mol
Mol metanol = 12 x 0,06 = 0,70 mol Massa metanol = Mol metanol x BM Metanol
= 0,7 x 32
= 22,473 g
Volume metanol =
= 22,4 3 , 2
= 28,37 mL
Perhitungan kebutuhan metanol lainnya analog dengan cara di atas.
C.2 PERHITUNGAN KEBUTUHAN KATALIS Massa minyak = 50 g
% katalis = 3 % massa minyak Massa katalis = 3 % x 50 g
= 1,5 g
Perhitungan kebutuhan katalis lainnya analog dengan cara di atas.
C.3 PERHITUNGAN DENSITAS BIODIESEL
Pengukuran data untuk densitas dilakukan pada suhu 40 °C Massa piknometer kosong = 14,6 g
Massa piknometer + air = 24,4 g
Massa air = 9,8 g
Densitas air = = 0,98 g/mL = 980 kg/m3
massa metanol densitas metanol
9,8 10
Massa piknometer + biodiesel = 23,25 g
Massa biodiesel = 8,65 g
Densitas biodiesel = x densitas air
= x 0,98
= 0,865 g/mL = 865 kg/m3 Perhitungan densitas lainnya analog dengan cara di atas.
C.4 PERHITUNGAN VISKOSITAS KINEMATIK BIODIESEL Pengukuran data untuk viskositas kinematik dilakukan pada suhu 40 °C Specific gravity (sg) =
Viskositas sampel = k x sg x t
Kalibrasi air:
Vi ko i a air (4 ˚C) = 0,656 x 10-3 kg/m.s
tair = 57,4 detik
sgair = 1
Viskositas air = k x sg x t 0,656 x 10-3 = k x 1 x 57,4
k = 1,1428 x 10-5
massa biodiesel massa air 8,65
9,8
densitas sampel densitas air
Viskositas biodiesel:
trata-rata biodiesel = 340,4 s
sgbiodiesel =
= = 0,882
Viskositas biodiesel = k x sg x t
= 1,1428 x 10-5 x 0,882 x 340,4
= 3,434 x 10-3
Viskositas kinematik = = 3,969 x 10-6 m2/s
= 3,969 mm2/s = 3,969 cSt
Perhitungan viskositas kinematik lainnya analog dengan cara di atas.
C.5 PERHITUNGAN YIELD BIODIESEL
Yield = x %kemurnian
= x 98,0531 %
= 89,39 %
Perhitungan yield lainnya analog dengan cara di atas.
densitas biodiesel densitas air
865 980
3,434 x 10-3 865
massa biodiesel praktek massa bahan baku 45,58
50
LAMPIRAN D HASIL ANALISIS
D.1 HASIL ANALISIS KOMPOSISI ASAM LEMAK MINYAKSAWIT
Gambar D.1 Hasil Analisis GC Komposisi Asam Lemak Minyak Sawit
D-2
D.2 HASIL ANALISIS GUGUS FUNGSI ABU BIJI PEPAYA
Gambar D.2 Hasil Analisis FTIR Abu Bji Pepaya
D.3 HASIL ANALISIS MORFOLOGI SERBUK BIJI PEPAYA DAN ABU BIJI PEPAYA
(a) (b)
Gambar D.3 Hasil Analisis SEM (a) Serbuk Bji Pepaya (b) Abu Biji Pepaya
10 µm10 µm 10 µm 10 µm
10 µm 10 µm10 µm10 µm10 µm10 µm
Universitas Sumatera Utara
D.4 HASIL ANALISIS KOMPOSISI UNSUR SERBUK BIJI PEPAYA
Gambar D.4 Hasil Analisis EDX Serbuk Biji Pepaya
ZAF Method Standardless Quantitative Analysis
0.00 3.00 6.00 9.00 12.00 15.00 18.00 21.00
keV
Counts CKaOKa MgKa PKaSKaSKbClKaClKb KKa KKb
CuLlCuLa CuKa CuKb
ZnLlZnLaZnLb ZnKa ZnKb
D.5 HASIL ANALISIS KOMPOSISI UNSUR SERBUK BIJI PEPAYA DAN ABU BIJI PEPAYA
Gambar D.5 Hasil Analisis EDX Abu Biji Pepaya
0.00 3.00 6.00 9.00 12.00 15.00 18.00 21.00
keV
Counts CKaOKa NaKaMgKa PKa SKaSKbClKaClKb KKaKKbCaKaCaKb
CuLlCuLa CuKa CuKb
LAMPIRAN E
DOKUMENTASI PENELITIAN
Minyak sawit yang digunakan pada penelitian ini ditampilkan pada Gambar E.1. Serbuk biji pepaya sebelum kalsinasi dan abu biji pepaya hasil kalsinasi yang digunakan sebagai katalis ditampilkan pada Gambar E.2. Proses transesterifikasi, pemisahan metil ester dan gliserol, pencucian metil ester, dan produk akhir biodiesel ditampilkan pada Gambar E.3.
Gambar E.1 Minyak Sawit
(a) (b)
Gambar E.2 (a) Serbuk Biji Pepaya Sebelum Kalsinasi dan (b) Abu Biji Pepaya Hasil Kalsinasi
(a) (b)
(c) (d)
Gambar E.3 (a) Proses Transesterifikasi, (b) Proses Pemisahan Metil Ester dan Gliserol, (c) Proses Pencucian Metil Ester, dan (d) Produk Akhir Biodiesel