• Tidak ada hasil yang ditemukan

BAB 2 TINJAUAN PUSTAKA 2.1 Anatomi Telinga

N/A
N/A
Protected

Academic year: 2017

Membagikan "BAB 2 TINJAUAN PUSTAKA 2.1 Anatomi Telinga"

Copied!
22
0
0

Teks penuh

(1)

BAB 2

TINJAUAN PUSTAKA

2.1 Anatomi Telinga

Secara umum telinga terbagi atas telinga luar, telinga tengah dan telinga dalam. Telinga luar sendiri terbagi atas daun telinga, liang telinga dan bagian lateral dari membran timpani (Lee K.J,1995; Mills JH et al, 1997).

Daun telinga di bentuk oleh tulang rawan dan otot serta ditutupi oleh kulit. Ke arah liang telinga lapisan tulang rawan berbentuk corong menutupi hampir sepertiga lateral, dua pertiga lainnya liang telinga dibentuk oleh tulang yang ditutupi kulit yang melekat erat dan berhubungan dengan membran timpani. Bentuk daun telinga dengan berbagai tonjolan dan cekungan serta bentuk liang telinga yang lurus dengan panjang sekitar 2,5 cm, akan menyebabkan terjadinya resonansi bunyi sebesar 3500 Hz (Mills JH et al, 1997).

Telinga tengah berbentuk seperti kubah dengan enam sisi. Telinga tengah terbagi atas tiga bagian dari atas ke bawah, yaitu epitimpanum terletak di atas dari batas atas membran timpani, mesotimpanum disebut juga kavum timpani terletak medial dari membran timpani dan hipotimpanum terletak kaudal dari membran timpani (Liston SL et al,1989; Pickles JO,1991).

Organ konduksi di dalam telinga tengah ialah membran timpani, rangkaian tulang pendengaran, ligamentum penunjang, tingkap lonjong dan tingkap bundar (Liston SL et al,1989; Pickles JO,1991; Mills JH et al, 1997).

(2)

energi suara yang masuk dibatasi (Liston SL et al,1989; Pickles JO,1991; Mills JH et al, 1997).

Fungsi dari telinga tengah akan meneruskan energi akustik yang berasal dari telinga luar kedalam koklea yang berisi cairan. Sebelum memasuki koklea bunyi akan diamplifikasi melalui perbedaan ukuran membran timpani dan tingkap lonjong, daya ungkit tulang pendengaran dan bentuk spesifik dari membran timpani. Meskipun bunyi yang diteruskan ke dalam koklea mengalami amplifikasi yang cukup besar, namun efisiensi energi dan kemurnian bunyi tidak mengalami distorsi walaupun intensitas bunyi yang diterima sampai 130 dB (Mills JH et al, 1997).

(3)

Gambar 2.1. Anatomi Telinga (Dhingra PL., 2007)

Telinga dalam terdiri dari organ kesimbangan dan organ pendengaran. Telinga dalam terletak di pars petrosus os temporalis dan disebut labirin karena bentuknya yang kompleks. Telinga dalam pada waktu lahir bentuknya sudah sempurna dan hanya mengalami pembesaran seiring dengan pertumbuhan tulang temporal. Telinga dalam terdiri dari dua bagian yaitu labirin tulang dan labirin membranosa. Labirin tulang merupakan susunan ruangan yang terdapat dalam pars petrosa os temporalis ( ruang perilimfatik) dan merupakan salah satu tulang terkeras. Labirin tulang terdiri dari vestibulum, kanalis semisirkularis dan kohlea (Santi PA, 1993; Lee KJ, 1995; Wright A, 1997; Mills JH et al, 1998).

Vestibulum merupakan bagian yang membesar dari labirin tulang dengan ukuran panjang 5 mm, tinggi 5 mm dan dalam 3 mm. Dinding medial menghadap ke meatus akustikus internus dan ditembus oleh saraf. Pada dinding medial terdapat dua cekungan yaitu spherical recess untuk sakulus dan eliptical recess untuk utrikulus. Di bawah eliptical recess terdapat lubang kecil akuaduktus vestibularis yang menyalurkan duktus endolimfatikus ke fossa kranii posterior diluar duramater (Santi PA, 1993; Lee KJ, 1995; Wright A, 1997; Mills JH et al, 1998).

(4)

lubang ke kanalis semisirkularis dan dinding anterior ada lubang berbentuk elips ke skala vestibuli kohlea (Mills JH et al, 1998; Santi PA, 1993).

Gambar 2.2 Anatomi Telinga Dalam (Dhingra PL., 2007)

Ada tiga buah semisirkularis yaitu kanalis semisirkularis superior, posterior dan lateral yang terletak di atas dan di belakang vestibulum. Bentuknya seperti dua pertiga lingkaran dengan panjang yang tidak sama tetapi dengan diameter yang hampir sama sekitar 0,8 mm. Pada salah satu ujungnya masing-masing kanalis ini melebar disebut ampulla yang berisi epitel sensoris vestibular dan terbuka ke vestibulum (Wright A., 1997).

Ampulla kanalis superior dan lateral letaknya bersebelahan pada masing-masing ujung anterolateralnya, sedangkan ampulla kanalis posterior terletak dibawah dekat lantai vestibulum. Ujung kanalis superior dan inferior yang tidak mempunyai ampulla bertemu dan bersatu membentuk crus communis yang masuk vestibulum pada dinding posterior bagian tengah. Ujung kanalis lateralis yang tidak memiliki ampulla masuk vestibulum sedikit dibawah cruss communis (Ballenger, 1996).

(5)

orang berdiri. Kanalis lainnya letaknya tegak lurus terhadap kanal ini sehingga kanalis superior sisi telinga kiri letaknya hampir sejajar dengan posterior telinga kanan demikian pula dengan kanalis posterior telinga kiri sejajar dengan kanalis superior teling kanan (Mills JH, 1998).

Koklea membentuk tabung ulir yang dilindungi oleh tulang dengan panjang sekitar 35 mm dan terbagi atas skala vestibuli, skala media dan skala timpani. Skala timpani dan skala vestibuli berisi cairan perilimfa dengan konsentrasi K+ 4 mEq/l dan Na+ 139 mEq/l. Skala media berada dibagian tengah, dibatasi oleh membran reissner, membran basilaris, lamina spiralis dan dinding lateral, berisi cairan endolimfa dengan konsentrasi K+ 144 mEq/l dan Na+ 13 mEq/l. Skala media mempunyai potensial positif (+ 80 mv) pada saat istirahat dan berkurang secara perlahan dari basal ke apeks (Ballenger JJ, 1996).

Gambar 2.3 Kohklea (Dhingra PL., 2007)

(6)

Hensen’s, Claudiu’s, membran tektoria dan lamina retikularis (Santi PA, 1993; Wright A, 1997; Mills JH et al, 1998).

Sel-sel rambut tersusun dalam 4 baris, yang terdiri dari 3 baris sel rambut luar yang terletak lateral terhadap terowongan yang terbentuk oleh pilar-pilar Corti, dan sebaris sel rambut dalam yang terletak di medial terhadap terowongan. Sel rambut dalam yang berjumlah sekitar 3500 dan sel rambut luar dengan jumlah 12000 berperan dalam merubah hantaran bunyi dalam bentuk energi mekanik menjadi energi listrik (Ballenger JJ, 1996).

Gambar 2.4 Organ Corti (Dhingra PL., 2007)

2.1.1 Vaskularisasi telinga dalam

(7)

memperdarahi sakulus, sebagian besar kanalis semisirkularis dan ujung basal kohlea. Cabang kohlear memperdarahi ganglion spiralis, lamina spiralis ossea, limbus dan ligamen spiralis. A. Kohlearis berjalan mengitari N. Akustikus di kanalis akustikus internus dan didalam kohlea mengitari modiolus (Santi PA, 1993; Lee K.J, 1995).

Vena dialirkan ke V.Labirintin yang diteruskan ke sinus petrosus inferior atau sinus sigmoideus. Vena-vena kecil melewati akuaduktus vestibularis dan kohlearis ke sinus petrosus superior dan inferior (Santi PA, 1993 ; Lee K.J, 1995).

2.1.2 Persarafan telinga dalam

N.Vestibulokohlearis (N.akustikus) yang dibentuk oleh bagian kohlear dan vestibular, didalam meatus akustikus internus bersatu pada sisi lateral akar N.Fasialis dan masuk batang otak antara pons dan medula. Sel-sel sensoris vestibularis dipersarafi oleh N.Kohlearis dengan ganglion vestibularis (scarpa) terletak didasar dari meatus akustikus internus.

Sel-sel sensoris pendengaran dipersarafi N.Kohlearis dengan ganglion spiralis corti terletak di modiolus (Santi PA,1993; Wright A, 1997; Mills JH et al,1998).

2.2 Fisiologi Pendengaran

(8)

stereosilia yang lebih rendah, sehingga pada saat terjadi defleksi gabungan stereosilia akan mendorong gabungan-gabungan yang lain, sehingga akan menimbulkan regangan pada rantai yang menghubungkan stereosilia tersebut. Keadaan tersebut akan mengakibatkan terbukanya kanal ion pada membran sel, maka terjadilah depolarisasi. Gerakan yang berlawanan arah akan mengakibatkan regangan pada rantai tersebut berkurang dan kanal ion akan menutup. Terdapat perbedaan potensial antara intra sel, perilimfa dan endolimfa yang menunjang terjadinya proses tersebut. Potensial listrik koklea disebut koklea mikrofonik, berupa perubahan potensial listrik endolimfa yang berfungsi sebagai pembangkit pembesaran gelombang energi akustik dan sepenuhnya diproduksi oleh sel rambut luar (May, Budelis, & Niparko, 2004).

(9)

Gambar 2.5. Skema Fisiologi Pendengaran (Hall, J. 1998)

(10)

2.3 Jenis Gangguan Pendengaran

Ada tiga jenis gangguan pendengaran yang dapat dikenali dengan uji pendengaran yakni : gangguanuan konduktif, gangguan sensorineural dan gabungan keduanya atau tipe campuran.

Tuli konduktif terjadi akibat tidak sempurnanya fungsi organ yang berperan menghantarkan bunyi dari luar ke telinga dalam. Gangguan telinga luar dan telinga tengah dapat menyebabkan tuli konduktif.

Tuli sensorineural disebabkan oleh kerusakan pada koklea atupun retrokoklea. Tuli sensorineural dapat bersifat akut (acute sensorineural deafness) yakni tuli sensorineural yang terjadi tiba-tiba dimana penyebab tidak diketahui dengan pasti dan chronic sensorineural deafness tuli sensorineural yang terjadi secara perlahan (Cody, 1992).

2.4 Faktor-Faktor Yang Berpengaruh Terhadap Gangguan Pendengaran

Terdapat beberapa faktor yang dapat menyebabkan penurunan ambang dengar akibat bising, yakni lama paparan bising, frekuensi paparan bising, tingkatan/besaran paparan, usia dan jenis kelamin dari penderita (Dobie RA, 1998).

Lama paparan bising lebih dari 10 tahun akan menyebabkan peningkatan NIPTS (Noise Induce Permanen Treshold Shift) terutama pada frekuensi 4 KHz. Tingkatan/besaran paparan bising diatas 85 dBA pada frekuensi tinggi lebih cepat menyebabkan gangguan dengar dibandingkan pada frekuensi rendah (Dobie RA, 1998).

(11)

bising maupun tingkatan/besar paparan bising. Semakin lama dan semakin tinggi tingkatan/besar paparan bising akan menimbulkan peningkatan NIPTS pada frekuensi percakapan (Dobie RA, 1998).

Derajat gangguan pendengaran berdasarkan International Standard Organization (ISO) adalah normal (0 – 25 dB), tuli ringan (26 – 40 dB), tuli sedang (41 – 60 dB), tuli berat (61 – 90 dB), dan tuli sangat berat (>90 dB) (Bashiruddin, 2002).

Penelitian oleh Karl D. Kryter pada tahun 1965 menunjukkan bahwa perbedaan jenis bising yang diterima oleh pekerja juga mempengaruhi besarnya pergeseran ambang dengar.

Penelitian Coles (1963), menyatakan bahwa tingkat tekanan suara dari senjata otomatis sebesar 174 dB. Glorig dan Wheeler (1955) menyatakan bahwa bising yang di timbulkan senjata genggam sebesar 180 dB. Yarington (1968) menemukan tekanan suara akibat ledakan meriam Howitzer 105 sebesar 190 dB dan anti tank sebesar 185,6 dB (Alberti P.W, 1997).

Keputusan Menteri Tenaga Kerja No.51 tahun 1999 tentang nilai ambang batas faktor bising dalam lingkungan kerja adalah sebagia berikut.

Tabel 2.1 Paparan Bising yang Diperkenankan Sound Level dBA Lama Paparan (jam per hari)

85 16

90 8

92 6

95 4

100 2

105 1

110 0,5

(12)

Pfander (1975) menyebutkan bahwa tekanan suara sebesar 165 dB hanya diijinkan paparan selama 0.23 detik per hari dan untuk 145 dB hanya 0.3 detik per hari. Sebuah penelitian terhadap 1073 prajurit arteleri Kroasia, menunjukkan hasil bahwa 907 (84.25%) orang mengalami peningkatan ambang dengar (fatique) pada tingkatan yang berbeda segera setelah melakukan tembakan (Spirov A,1982).

2.5 Bunyi

Bunyi adalah gelombang yang timbul dari getaran moleku-molekul benda yang saling beradu sama lain dan terkoordinasi. Gelombang tersebut akan meneruskan energi dan sebagian dipantulkan kembali. Dalam perambatannya bunyi memerlukan media. Media tempat gelombang bunyi merambat harus mempunyai massa dan elastisitas. Pada umumnya medianya adalah udara. Gelombang bunyi tidak di rambatkan di ruang hampa. Kecepatan rambatan bunyi melalui udara sebesar ±340 meter/detik. Pada medium yang berbeda, kecepatan bunyi dapat meningkat. Melalui air kecepatan bunyi dapat meningkat ±4 kali, dan melalui besi menjadi ±14 kali lebih besar (Bashiruddin J, 2002).

(13)

berhenti. Jenis getaran bunyi dapat di bedakan menjadi getaran selaras dan getaran tak selaras (Bashiruddin J, 2002).

Getaran selaras adalah getaran harmonik sederhana atau di kenal juga dengan getaran sinusoidal. Contohnya adalah garpu tala yang bergetar. Sedangkan contoh getaran tidak selaras dikenal sebagai bunyi bising, desis, gemeretak, desir atau detakan. Bunyi yang dapat didengar memiliki periode 1/20 sampai 1/15.000 detik, tergantung dari frekuensi getarannya (Dobie R , 1998).

Frekuensi adalah jumlah getaran per detik. Jika suatu periode berakhir selama 1/100 detik, maka berarti terdapat 100 getaran (cycle/siklus). Di Eropa, satuan ini di sebut Hertz dan di singkat Hz, untuk menghormati ahli fisika Jerman yang bernama Heinrich Hertz. Selanjutnya terminologi ini di berlakukan oleh Badan Standar Internasional (International Standard Association) untuk dibakukan. Frekuensi merupakan suatu besaran fisik yang

dapat diukur dengan pasti (Ballenger, 1996).

Bila dua garpu tala mempunyai frekuensi yang sama kita bunyikan dengan kekuatan yang berbeda, maka akan terdengar bahwa salah satu akan berbunyi lebih keras. Garpu tala yang dipukul lebih keras akan terjadi gerakan maksimum yang berkaitan dengan perubahan tekanan udara yang lebih tinggi. Secara sederhana keadaan ini disebut Amplitudo-nya lebih besar. Perbedaan tekanan udara inipun dapat diukur secara tepat karena juga merupakan besaran fisik. Satuan tekanan udara = 1 dyne/cm2

Bunyi dapat dibedakan dalam 3 rentang frekuensi yaitu 0-20 Hz (infrasonik), 20-18.000 Hz (sonik), dan >20-18.000 Hz (ultrasonik). Infrasonik tidak dapat dideteksi oleh telinga manusia, biasanya ditimbulkan oleh getaran tanah, bangunan maupun truk

(14)

dan kendaraan besar. Bila getaran dengan frekuensi infra mengenai tubuh akan menyebabkan resonansi dan akan terasa nyeri pada beberapa bagian tubuh. Frekuensi dari 20-18.000 Hz merupakan frekuensi yang dapat dideteksi telinga manusia. Frekuensi di atas 20.000 Hz, dalam bidang kedokteran digunakan dalam 3 hal yaitu pengobatan, penghancuran dan diagnosis (P.W.Alberti, 1997).

Untuk membuat udara bergetar dibutuhkan energi. Energi sebanding dengan tekanan per satuan luas. Daya yang di butuhkan untuk menghasilkan bunyi yang mulai terdengar adalah 10-16 watt/cm2 (Wright A., 1997).

2.5.1 Sifat gelombang suara

Bila gelombang suara membentur suatu rintangan atau dinding maka kemungkinan yang terjadi adalah gelombang tersebut dipantulkan, dilenturkan, dibiaskan, diabsorpsi atau diteruskan. Fenomena ini tergantung pada hubungan antara panjang gelombang suara, ukuran rintang beberapa jenis dinding dan sudut datang. Permukaan gelombang didefinisikan sebagai suatu prmukaan di mana seluruh partikelnya bergetar satu fase. Sebagai contoh, bila suatu titik sumber memancar, gelombang akan menyebar secara seragam ke segala arah dan permukaan gelombang berbentuk lengkung. Tetapi bila seseorang yang berada cukup jauh, maka permukaan gelombang yang ditangkapnya akan berbentuk relatif lebih datar. Apabila tidak terdapat permukaan yang memantul, maka gelombang akan merambat secara bebas.

(15)

dirambatkan. Oleh karena telinga kita memiliki respon yang kurang lebih logaritmis terhadap energi bunyi, maka bila menginginkan suatu sekat suara yang baik, penting sekali untuk menurunkan energi ke tingkat di bawah 1/1000 kali (Wright A., 1997).

2.5.2 Intensitas bunyi: Desibel (dB)

Cakupan tekanan suara yang dapat diterima oleh telinga normal sangat luas sehingga sulit untuk mengetahui angkanya. Dekat ambang dengar, bunyi mempunyai tekanan sebesar kira-kira 2/10.000 dyne/cm2

Tidak akan ada artinya membicarakan desibel bila titik awalnya tidak ditentukan. Suatu bunyi dengan tekanan tertentu dapat mempunyai beberapa nilai desibel, tergantung dari tekanan mana yang dipilih sebagai angka nol untuk titik awal pada skala. Pada prakteknya, ada 3 titik awal yang sering dipakai pada skala desibel. Pertama yakni 0.0002 dyne/cm

. Tekanan ini harus dikalikan 10 juta kali untuk dapat menyebabkan rasa nyeri di telinga. Skala desibel (dB) dipakai agar angka-angka dalam cakupan frekuensi itu dapat diikuti. Hal ini dilakukan dengan memilih satu titik tertentu pada skala penekanan sebagai dasar, dan menyatakan titik-titik lain pada skala sebagai rasio dari dasar ini, mengambil angka logaritma dari rasio ini, kemudian angka logaritma tersebut dikalikan 20 (Bashiruddin, 2002).

2

, yang dipilih karena dulu angka ini dianggap sebagai tekanan suara yang sesuai dengan pendengaran yang terbaik manusia. Titik awal lain adalah ambang rata-rata pendengaran normal. Yang terakhir, 1 dyne/cm2

Skala dengan titik awal 0.0002 dyne/cm

(1 mikrobar) sering dipakai sebagai tekanan pembanding, terutama untuk kalibrasi mikrofon.

2

(16)

dengar (Hearing Treshold Level) atau skala ambang dengar (Hearing Level= HL). Jadi 60 dBHL berarti tekanan 60 desibel diatas ambang tekanan standar pembanding yang sesuai dengan pendengaran normal rata-rata frekuensi ini (Keith, 1989).

Perbedaan penting antara kedua skala ini adalah skala SPL berdasarkan suatu titik awal fisika (0.0002 dyne/cm2

Tanda desibel pada angka gangguan pendengaran suatu audiometer mengikuti skala ambang dengar (HL). Titik nol pada angka gangguan frekuensi tertentu adalah sebenarnya, tingkat suara yang sesuai dengan rata-rata ambang dengar tersebut, seperti yang ditetapkan oleh American National Standard Institute (ANSI) (Dobie R. A., 2009)

), sedangkan skala HL berdasarkan titik awal ukuran psikologik atau perilaku, yakni pendengaran normal rata-rata.

2.6. Audiometri Nada Murni

Audiometri nada murni adalah suatu cara pemeriksaan untuk mengukur sensivitas pendengaran dengan alat audiometer yang menggunakan nada murni (pure tone). Ambang nada murni diukur dengan intensitas minimum yang dapat didengar selama satu atau dua detik melalui antaran udara ataupun hantaran tulang. Frekwensi yang dipakai berkisar antara 125 – 8000 Hz dan diberikan secara bertingkat (Feldman dan Grimes, 1997).

Audiometri harus memenuhi 3 persyaratan untuk mendapatkan keabsahan pemeriksaan yaitu (1) audiometri yang telah dikalibrasi, (2) suasana/ruangan sekitar pemeriksa harus tenang, dan (3) pemeriksa yang terlatih.

Komponen yang ada pada audiometri yaitu:

(17)

3. Interuptor/pemutus : alat pemutus nada 4. Atteneurator: alat mengukurintensitas suara

5. Earphone: alat merubah sinyal listrik yang ditimbulkan audiometer menjadi sinyal suara yang dapat didengar

6. Masking noise generator: untuk penulian telinga yang tidak diperiksa

Cara pemeriksaan audiometri adalah headphone dipasang pada telinga untuk mengukur ambang nada melalui konduksi udara. Tempat pemeriksaan harus kedap udara. Pasien diberitahu supaya menekan tombol bila mendengar suara walaupun kecil. Suara diberi interval 2 detik, biasanya dimulai dengan frekwensi 1000 Hz sampai suara tidak terdengar. Kemudian dinaikkan 5 dB sampai suara terdengar. Ini dicatat sebagai audiometri nada murni (pure tone audiometry) (Keith, 1989).

Biasanya yang diperiksa terlebih dahulu adalah telinga yang dianggap normal (tidak sakit) pendengarannya melalui hantaran udara, kemudian diperiksa melalui hantara tulang. Kalau perbedaan kekurangan pendengaran yang diperiksa 50 dB atau lebih dari telinga lainnya, maka telinga yang tidak diperiksa harus ditulikan (masking). Ketika memeriksa satu telinga pada intensitas tertentu, suara akan terdengar pada telinga yang satu lagi. Hal ini disebut “cross over” yang dapat membuat salah interpretasi pada pemeriksaan audiometer.

Ada beberapa ketentuan yang praktis bila masking diperlukan yakni:

1. Masking untuk hantaran udara (AC) diperlukan bila terdapat perbedaan kehilangan pendengaran sebesar 45 dB atau lebih pada waktu percobaan.

(18)

a. Apabila treshold hantaran tulang (BC) pada telinga yang dites lebih sensitif dari treshold hantaran tulang yang tidak diperiksa.

b. Apabila tidak ada respon pada hantaran tulang setelah mempengaruhi maksimum output dari audiometer (Keith, 1989)

Gambar 2.6. Gambaran audiometri normal

(19)

Gambar 2.9. Gambaran audiometri tuli campuran

Gambar 2.10. Gambaran audiometri tuli akibat bising

2.7 Perlindungan Fungsi Pendengaran

Perlindungan fungsi pendengaran dapat dilakukan dengan rekayasa lingkungan (enviromental engineering) dan proteksi perorangan pada individu-individu yang terpapar trauma akustik. Tujuan program konservasi pendengaran yang ideal adalah mengurangi efek paparan trauma akustik.

Terdapat 2 macam pelindung telinga, yakni:

1. Bentuk sumbat (plug), yang dimasukkan ke dalam liang telinga secara tepat sesuai ukuran masing-masing.

(20)

Brenda L (1993) pada penelitiannya mendapati bahwa ear plug dapat menurunkan efek bising di telinga tengah sebesar 15 sampai 30 dB. Sedangkan ear muff merupakan protektif yang lebih baik, khususnya pada frekuensi 500 Hz dan 1 KHz. Pada tingkat kebisingan yang tinggi pengguanaan ear plug saja tidak begitu baik dan disarankan menggunakan kombinasi ear plug dan ear muff .

Penting juga diketahui bahwa tekanan suara (sound energy) berhubungan dengan tingkatan bising yang tinggi (high noise level) yang dapat mencapai telinga dalam melalui pergetaran tulang serta struktur-struktur disekitarnya. Sehingga konduksi melalui tulang dan jaringan disekitarnya dapat dibatasi dengan pemakaian alat pelindung pendengaran. Suatu pelindung pendengaran yang ideal (infinite protector) seharusnya dapat menurunkan efek bising sebesar 20 -30 dB (Bashiruddin J, 2002).

2.8 Jenis Senjata

Senjata yang biasa digunakan oleh prajurit Batalyon Infanteri 100 Raider Kodam I Bukit Barisan ada 2 macam, yaitu Pistol FN US 45 dan Senapan Serbu (SS) 1 R5.

1. Pistol FN US 45

Senjata pistol ini diproduksi oleh pabrikan Amscor dari Amerika Serikat pada tahun 1958. Kaliber dari senjata ini adalah 11 mm dengan panjang pistol 219 mm. Jarak tembak efektif dari pistol ini adalah 50 meter dengan jarak tembak maksimal 1500 meter. 2. Senapan Serbu (SS) 1 R5

(21)

dan apabila popor direntangkan 771 mm. Jarak tembak efektif senjata ini 375 meter dan jarak tembak maksimal 5000 meter.

2.9 Kerangka Konsep

Kerangka konsep kaitan antara paparan bising dan gangguan pendengaran akibat bising pada prajurit Batalyon Infanteri 100 Raider Kodam I Bukit Barisan dapat dilihat pada gambar 2.11 berikut.

Gambar 2.11. Kerangka Konsep Kaitan antara Paparan Bising dan Gangguan Pendengaran Akibat Bising pada Prajurit Batalyon Infanteri 100 Raider Kodam I Bukit Barisan

Gangguan Pendengaran Paparan

Bising

Kerusakan pada sel-sel rambut

(22)

2.10 Kerangka Kerja

Gambar 2.12. Kerangka Kerja Anamnesis dan Pemeriksaan Audiometri pada Parajurit Batalyon Infanteri 100 Raider Kodam I Bukit Barisan

Anamnesis

THT Rutin

Normal Abnormal

Pemeriksaan Audiometri

Eksklusi Eksklusi

Gambar

Gambar 2.2 Anatomi Telinga Dalam (Dhingra PL.,  2007)
Gambar 2.3 Kohklea (Dhingra PL.,  2007)
Gambar 2.4  Organ Corti (Dhingra PL.,  2007)
Gambar 2.5.  Skema Fisiologi Pendengaran (Hall, J. 1998)
+6

Referensi

Dokumen terkait

 pada 'anita. Ganggan insfisiensi kelen)ar hipofisis, tertama #agian anterior. Ganggan ini menye#a#kan mnlnya masalah dan manifestasi klinis yang ini

Asas domisili atau disebut juga asas kependudukan (domicile/residence principle), berdasarkan Asas domisili atau disebut juga asas kependudukan (domicile/residence

Dari hasil uji menunjukan bawa F hitung > F tabel (3,763>2,37) dan nilai sig (0,004<0,05), sehingga dapat disimbulkan bahwa nilai variabel Dewan Direksi, Komisaris

PIHAK KESATU dan PIHAK KEDUA dalam kedudukannya sebagaimana tersebut di atas, telah sepakat untuk mengadakan Serah Terima Pengelolaan, Pengoperasian, Pemeliharaan dan

Peningkatan koordinasi antar lembaga dan kesbangpol.. Strategi dan Kebijakan Badan Kesatuan Bangsa dan Politik. Sebagai wujud derivasi tujuan dan sasaran untuk rentang waktu

Hormon-hormon pada masa kehamilan (progesterone dan kortisol yang meningkat tinggi) dapat memblok insulin untuk bekerja memproses karbohidrat. Ketika hal ini terjadi, maka kadar

Namun demikian kateter ini diperlukan saat kateter tersumbat dan kateter tidak ingin demikian kateter ini diperlukan saat kateter tersumbat dan kateter tidak ingin diganti