• Tidak ada hasil yang ditemukan

Metode Automatic Clustering-Relasi Logka Fuzzy dan Metode Fuzzy Time Series Dalam Meramal Jumlah Peminat Departemen S1 Matematika USU Tahun 2014 Melalui Jalur Tertulis

N/A
N/A
Protected

Academic year: 2016

Membagikan "Metode Automatic Clustering-Relasi Logka Fuzzy dan Metode Fuzzy Time Series Dalam Meramal Jumlah Peminat Departemen S1 Matematika USU Tahun 2014 Melalui Jalur Tertulis"

Copied!
63
0
0

Teks penuh

(1)

METODE AUTOMATIC CLUSTERING-RELASI LOGIKA FUZZY DAN METODE FUZZY TIME SERIES DALAM MERAMAL JUMLAH

PEMINAT DEPARTEMEN S1 MATEMATIKA USU TAHUN 2014 MELALUI JALUR TERTULIS

SKRIPSI

WINDA ASTARY

100803005

DEPARTEMEN MATEMATIKA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

UNIVERSITAS SUMATERA UTARA

(2)

METODE AUTOMATIC CLUSTERING-RELASI LOGIKA FUZZY DAN METODE FUZZY TIME SERIES DALAM MERAMAL JUMLAH

PEMINAT DEPARTEMEN S1 MATEMATIKA USU TAHUN 2014 MELALUI JALUR TERTULIS

SKRIPSI

Diajukan untuk melengkapi tugas dan memenuhi syarat untuk mencapai gelar sarjana

sains

WINDA ASTARY 100803005

DEPARTEMEN MATEMATIKA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA UTARA

(3)

PERSETUJUAN

Judul : Metode Automatic Clustering-Relasi Logka Fuzzy dan

Metode Fuzzy Time Series Dalam Meramal Jumlah Peminat Departemen S1 Matematika USU Tahun 2014 Melalui Jalur

Tertulis

Kategori : Skripsi

Nama : Winda Astary

Nomor Induk Mahasiswa : 100803005

Program Studi : Sarjana (S1) Matematika

Departemen : Matematika

Fakultas : Matematika dan Ilmu Pengetahuan Alam (FMIPA)

Universitas Sumatera Utara

Diluluskan di

Medan, Mei 2014

Komisi pembimbing :

Pembimbing 2, Pembimbing 1,

Drs. Partano Siagian, M.Sc. Dr. Suwarno Ariswoyo, M.Si. NIP. 19511227 198003 1 001 NIP. 19500321 198003 1 001

Disetujui oleh

Departemen Matematika FMIPA USU Ketua,

(4)

PERNYATAAN

METODE AUTOMATIC CLUSTERING-RELASI LOGIKA FUZZY DAN METODE FUZZY TIME SERIES DALAM MERAMAL JUMLAH PEMINAT

DEPARTEMEN S1 MATEMATIKAUSU TAHUN 2014 MELALUI JALUR TERTULIS

SKRIPSI

Saya mengaku bahwa skripsi ini adalah hasil kerja saya sendiri, kecuali beberapa kutipan dan ringkasan yang masing–masing disebutkan sumbernya.

Medan, Juni 2014

(5)

PENGHARGAAN

Assalamu‟alaikum Wr.Wb

Puji dan syukur penulis ucapkan kepada Allah SWT Yang Maha Esa dan Kuasa atas limpahan rahmat dan karuniaNYA sehingga skripsi ini dapat diselesaikan.

Pada skripsi ini, penulis mengambil judul Metode Automatic Clustering-Relasi Logika Fuzzy dan Metode Fuzzy Time Series Dalam Meramal Jumlah Peminat Departemen S1 Matematika USU Tahun 2014 Melalui Jalur Tertulis.

Dalam penyusunan skripsi ini banyak pihak yang membantu, sehingga dengan segala rasa hormat penulis mengucapkan terima kasih kepada:

1. Bapak Dr. Suwarno Ariswoyo, M.Si selaku dosen pembimbing 1 yang berkenan dan rela mengorbankan waktu, tenaga, dan fikiran guna memberikan petunjuk dan bimbingannya dalam penulisan skripsi ini.

2. Bapak Drs. Partano Siagian, M.Sc. selaku dosen pembimbing 2 yang juga berkenan dan rela mengorbankan waktu, tenaga, dan fikiran guna memberikan petunjuk dan bimbingannya dalam penulisan skripsi ini.

3. Bapak Drs.Marihat Situmorang, M.kom. dan Ibu Normalina Napitupulu, M.Sc. selaku komisi penguji atas saran yang talah diberikan demi perbaikan skripsi ini.

4. Bapak Dr. Sutarman, M.Sc selaku dekan FMIPA USU

5. Bapak Prof. Dr. Tulus, M.Si dan Ibu Dr. Mardiningsih, M.Si selaku ketua dan sekretaris Departemen Matematika FMIPA USU.

6. Ibunda tercinta Enyzar, Ayahanda tercinta Alwan dan adikku Mhd.Reza Fahnial tersayang atas segala pengertian, kesabaran, dukungan dan kasih sayang yang telah diberikan kepada penulis selama di bangku perkuliahan hingga akhirnya menyelesaikan skripsi ini.

7. Untuk orang – orang tersayang khususnya Kesebelasan, Reno Sulbakti, Lia Purwanti, Salwa, SATELIT GRADE dan ANAK JENDRAL 2010 yang telah

membantu penulis dengan memberikan semangat dan do‟a dalam menyelesaikan

(6)

8. Untuk semua senior dan junior khususnya Kak isna, Bang romi dan masih banyak lagi yang tak tersebutkan namanya yang telah membantu penulis dengan

memberikan semangat dan do‟a dalam menyelesaikan tulisan ini.

Penulis juga menyadari masih banyak kekurangan dalam skripsi ini, baik dalam teori maupun penulisannya. Oleh karena itu, penulis mengharapkan saran dari pembaca demi perbaikan bagi penulis. Semoga segala bentuk bantuan yang telah diberikan kepada penulis mendapatkan balasan yang lebih baik dari Allah SWT. Akhir kata penulis berharap semoga tulisan ini bermanfaat bagi para pembaca.

Medan, Mei 2014 Penulis,

(7)

METODE AUTOMATIC CLUSTERING-RELASI LOGIKA FUZZY DAN METODE FUZZY TIME SERIES DALAM MERAMAL JUMLAH

PEMINAT DEPARTEMEN S1 MATEMATIKA USU TAHUN 2014 MELALUI JALUR TERTULIS

ABSTRAK

Berbagai jenis model peramalan telah banyak dikembangkan untuk meningkatkan akurasi peramalan yang diukur berdasarkan nilai MSE. Pada tulisan ini diterapkan metode automatic clustering-relasi logika fuzzy untuk meramal jumlah peminat Departemen S1 Matematika USU Tahun 2014 melalui jalur tertulis. Hasil peramalan yang diperoleh, kemudian dibandingkan dengan metode fuzzy time series. Berdasarkan MSE dan rata – rata error dari masing – masing metode dapat disimpulkan bahwa metode automatic clustering-relasi logika fuzzy memiliki tingkat arurasi yang labih tinggi dibandingkan dengan metode fuzzy time series. Dari hasil peramalan dengan menggunakan metode automatic clustering-relasi logika fuzzy didapatkan peramalan jumlah peminat melalui jalur tertulis Departemen S1 Matematika USU adalah sejumlah 614 orang.

(8)

AUTOMATIC CLUSTERING METHODS-RELATION OF FUZZY LOGIC AND FUZZY TIME SERIES METHOD IN FORECASTING TOTAL

INTEREST USU DEPARTMENT OF MATHEMATICS S1 2014 THROUGHT THE WRITTEN PATH

ABSTRACT

Various types of forecasting models have been developed to improve the forecasting accuracy is measured based on the MSE. In this paper applied automatic clustering method-relation fuzzy logic to predict the number of applicants USU Department of Mathematics S1 2014 through written path. Forecasting results obtained, and then compared with the fuzzy time series method. Based on the MSE and average error of each method can be concluded that the method of automatic clustering- fuzzy logic relationship have level higher accuracy rate than the fuzzy time series method. From the results of forecasting by using automatic clustering- fuzzy logic relationship forecasting the number of applicants obtained through written USU Department of Mathematics S1 is the number of 614 people.

(9)

BAB 1 PENDAHULUAN

1.1 Latar Belakang Masalah

Peramalan merupakan hal penting dalam kehidupan sehari-hari. Orang-orang telah

terbiasa berhadapan dengan banyak aktifitas peramalan misal, peramalan cuaca,

peramalan persediaan, peramalan gempa bumi, peramalan harga saham dan sebagainya.

Seiring dengan berbagai aktifitas yang memerlukan peramalan tersebut, maka metode

peramalan banyak dikembangkan oleh para peneliti. Salah satunya adalah metode

automatic clustering-relasi logika fuzzy.

Metode automatic clustering-relasi logika fuzzy pertama kali diperkenalkan oleh Wang, Chen dan Pan (2009). Metode ini mereka gunakan untuk meramalkan jumlah

mahasiswa yang akan mendaftar di Universitas Alabama. Penelitian tersebut

memberikan hasil Mean Square Error (MSE) yang lebih rendah dibanding penelitian sebelumnya yang diterapkan pada kasus yang sama dengan metode yang berbeda.

Selain metode automatic clustering-relasi logika fuzzy, metode peramalan lain yang biasa digunakan adalah metode fuzzy time series. Namun tingkat akurasi hasil peramalan belum optimal. Metode fuzzy time series pertama kali diperkenalkan oleh Song, dkk(1993). Chen (1996) juga memaparkan tentang metode fuzzy time series

menggunakan metode aritmatika sederhana. Metode fuzzy time series ini mampu menangani data fuzzy dan tidak lengkap yang dipresentasikan sebagai nilai-nilai

linguistik dalam keadaan tertentu. Kemudian pada tahun 2006, Chen dan Chung

melakukan peramalan menggunakan metode fuzzy time series dan genetic algorithm,

sehingga diperoleh hasil bahwa dengan menaikkan nilai Dmin 10% dan menurunkan

Dmax 10% mengasilkan kromosom terbaik untuk pembentukan interval, sehingga

(10)

Dalam peramalan, hal terpenting yang akan dicapai adalah hasil peramalan

dengan nilai error yang minimum. Semakin kecil nilai error maka semakin akurat hasil peramalan yang diperoleh. Lee, dkk (2007) menyatakan bahwa hasil peramalan

menggunakan metode fuzzy time series yang sudah ada masih memberikan nilai MSE yang relatif besar sehingga metode peramalan yang sudah ada terus dikembangkan

untuk mendapatkan metode peramalan yang memiliki tingkat akurasi lebih tinggi.

Hingga pada akhirnya, Wang, Chen dan Pan (2009) memperkenalkan sebuah metode

peramalan yaitu metode automatic clustering-relasi logika fuzzy yang memiliki tingkat akurasi lebih tinggi dalam meramalkan data dibanding dengan metode yang telah ada.

Metode ini dapat digunakan untuk data yang relatif sedikit. Hanya saja metode ini tidak

memperhatikan fenomena yang terjadi pada data.

1.2 Rumusan Masalah

Bagaimana menerapkan metode automatic clustering-relasi logika fuzzy dan metode

fuzzy time series dalam meramal jumlah peminat departemen S1 Matematika USU tahun 2014 melalui jalur tertulis.

1.3 Batasan Masalah

Masalah yang diteliti dibatasi dalam perhitungan MSE. Data yang digunakan adalah

data jumlah peminat Departemen S1 Matematika USU melalui jalur tertulis mulai tahun

2006 sampai dengan tahun 2013. Dalam hal ini data hanya sebagai bahan untuk

perhitungannya dan tidak memperhatikan bagaimana pengaruh dan fenomena yang

(11)

1.4 Tinjauan Pustaka

Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang

akan datang. Dalam usaha mengetahui atau melihat perkembangan di masa depan,

peramalan dibutuhkan untuk menentukan kapan suatu peristiwa akan terjadi atau suatu

kebutuhan akan timbul, sehingga dapat dipersiapkan kebijakan atau tindakan-tindakan

yang perlu dilakukan. Peramalan merupakan bagian integral dari kegiatan pengambilan

keputusan menejemen.

Metode peramalan merupakan bagian dari ilmu statistika. Salah satu metode

peramalan adalah deret waktu. Metode ini disebut sebagai metode peramalan deret

waktu karena memiliki karakteristik bahwa data yang di analisis bersifat deret waktu.

Periode deret waktu dapat berupa tahunan, mingguan, bulanan, semesteran, kuartal dan

lain-lain. Jenis pola data sangat penting untuk diketahui karena akan berpengaruh

terhadap hasilan ramalan.

Menurut Assauri (1984), metode peramalan adalah cara memperkirakan secara

kuantitatif apa yang akan terjadi pada masa depan, berdasarkan pada data yang relevan

pada masa lalu. Oleh karena metode peramalan didasarkan atas data yang relevan pada

masa lalu, maka metode peramalan ini dipergunakan dalam peramalan yang objektif.

Metode peramalan fuzzy time series adalah metode peramalan yang menggunakan prinsip-prinsip fuzzy sebagai dasarnya. Konsep dasar fuzzy time series

yang diperkenalkan oleh Song dan Chissom (1993a, 1993b, 1994) dengan nilai fuzzy time series direpresentasikan dengan himpunan fuzzy (Chen 1998) :

Didefenisikan U adalah semesta pembicaraan dengan U = { u1, u2, u3, ... , un}.

Ahmad Amiruddin Anwary (2011) dalam penelitiannya untuk meramal kurs

Rupiah terhadap terhadap Dollar Amerika menggunakan metode fuzzy time series. Dalam peramalan tersebut dilakukan upaya untuk memprediksi besarnya kurs untuk

satu hari ke depan. Permasalahan yang dihadapi adalah cara untuk memprediksi

besarnya kurs yaang menghasilkan nilai prediksi dengan tingkat kesalahan minimal.

(12)

depan. Tingkat keakuratan hasil prediksi diukur dengan nilai AFER (Average Forecasting Error).

Robert Kurniawan pada penelitiannya menggunakan metode automatic clustering-relasi logika fuzzy untuk peramalan data unvariat. Robert Kurniawan menerapkannya untuk Data Kunjungan Wisatawan Mancanegara ke Indonesia melalui

Bandara Ngurah Rai Bali (Januari 1989 – Februari 2009) dan Data Simulasi.

1.5 Tujuan Penelitian

Tujuan dari penelitian ini adalah mengetahui perbandingan metode automatic clustering-relasi logika fuzzy dan metode fuzzy time series dalam meramalkan jumlah peminat Departemen S1 Matematika USU melalui jalur tertulis mulai tahun 2006

sampai dengan tahun 2013.

1.6 Kontribusi Penelitian

1. Memberi informasi tentang jumlah peminat Departemen S1 Matematika USU

melalui jalur tertulis pada tahun 2014.

(13)

BAB 2

LANDASAN TEORI

2.1Metode Peramalan

Peramalan (forecasting) adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang akan datang. Sedangkan ramalan adalah situasi atau kondisi yang

diperkirakan akan terjadi pada masa yang akan datang.

Metode peramalan merupakan cara untuk memperkirakan secara kuantitatif apa

yang akan terjadi pada masa yang akan datang dengan dasar data yang relevan pada

masa lalu. Dengan kata lain metode peramalan yang bersifat objektif. Oleh karena itu,

metode peramalan termasuk dalam kegiatan kuantitatif. Keberhasilan dari suatu

peramalan sangat ditentukan oleh pengetahuan teknik tentang informasi lalu yang

dibutuhkan yaitu informasi yang bersifat kuantitatif serta teknik dan metode

peramalannya.

Baik tidaknya suatu peramalan yang disusun, di samping ditentukan oleh metode yang

digunakan juga ditentukan oleh baik tidaknya informasi maupun data yang digunakan.

Selama data maupun informasi yang digunakan tidak dapat meyakinkan, maka hasil

peramalan yang disusun juga akan sukar dipercaya akan ketepatannya. Dalam

melakukan analisa ekonomi atau analisa kegiatan perusahaan, haruslah di perkirakan

apa yang terjadi dalam bidang ekonomi atau di dalam dunia usaha pada masa yang akan

datang. Kegiatan memperkirakan apa yang akan terjadi pada masa yang akan datang,

dikenal dengan sebutan peramalan.

Kualitas atau mutu dari hasil peramalan yang disusun, sangat ditentukan oleh

(14)

dilakukan dengan mengikuti langkah-langkah atau prosedur penyusunan yang baik.

Pada dasarnya ada tiga langkah peramalan yang penting yaitu :

1. Menganalisa data yang lalu.

Tahap ini berguna untuk pola yang terjadi pada masa yang lalu. Analisa ini

dilakukan dengan cara membuat tabulasi data maka dapat diketahui pola data

tersebut.

2. Menentukan metode yang digunakan.

Masing-masing metode akan memberikan hasil peramalan yang berbeda.

Dimana metode peramalan yang baik adalah metode yang menghasilkan

penyimpangan antara hasil peramalan dengan nilai kenyataan yang sekecil

mungkin.

3. Memproyeksikan data yang lalu dengan menggunakan metode yang

dipergunakan, dan mempertimbangkan adanya beberapa faktor perubahan.

Faktor-faktor perubahan tersebut antara lain terdiri dari perubahan

kebijakan-kebijakan yang mungkin terjadi, termasuk kebijakan-kebijakan pemerintah. Proyeksi

adalah adanya suatu kecendrungan sesuatu hal pada masa yang akan datang yang

masih belum diketahui dan mempunyai nilai pada masa yang akan datang yang

merupakan petunjuk tentang jumlah sesuatu hal tersebut di masa yang akan

datang.

2.1.1 Jenis – jenis Peramalan

Menurut Assauri (1984) peramalan dapat dibedakan dari beberapa segi tergantung dari

cara melihatnya, yaitu dilihat dari jangka waktu ramalan dan dilihat dari sifat ramalan.

Jika dilihat dari jangka waktu ramalan yang disusun, maka ramalan dapat dibedakan

(15)

1. Peramalan jangka panjang

Yaitu peramalan yang dilakukan untuk penyusunan hasil ramalan jangka

waktunya lebih dari satu setengah tahun atau tiga semester. Peramalan jangka

panjang digunakan untuk pengambilan keputusan mengenai perencanaan produk

dan perencanaan pasar, pengeluaran biaya perusahaan, studi kelayakan pabrik,

anggaran, purchase order, perencanaan tenaga kerja serta perencanaan kapasitas kerja.

2. Peramalan jangka pendek

Yaitu peramalan yang dilakukan untuk penyusunan hasil ramalan dalam jangka

waktu yang kurang dari satu setengah tahun atau tiga semester. Peramalan

seperti ini diperlukan dalam penyusunan rencana tahunan, rencana kerja

operasional, dan anggaran contoh penyusunan rencana produksi, rencana

penjualan, rencana persediaan, anggaran produksi, dan anggaran perusahaan.

Berdasarkan dari sifat penyusunnya, maka peramalan dapat dibedakan atas dua

macam, yaitu:

1. Peramalan yang subjektif

Yaitu peramalan yang didasarkan atas perasaan atau intuasi dari orang yang

menyusunnya. Dalam hal ini pandangan atau judgement dari orang yang

menyusunnya sangat menetukan baik tidaknya hasil ramalan tersebut.

2. Peramalan yang objektif

Yaitu peramalan yang didasarkan atas data yang relevan pada masa lalu, dengan

menggunakan teknik-teknik dan metode dalam penganalisaan data tersebut.

Berdasarkan beberapa teknik yang telah dikembangkan dalam peramalan

dibedakan atas dua yaitu:

1. Peramalan kualitatif

Yaitu peramalan yang didasarkan atas dua kualitatif pada masa lalu. Hasil

(16)

penting karena hasil peramalan tersebut ditentukan berdasarkan pemikiran yang

bersifat intuisi, judgement atau pendapat, dan pengetahuan serta pengalaman dari penyusunnya. Biasanya peramalan secara kualitatif ini didasarkan atas hasil

penyelidikan.

2. Peramalan kuantitatif

Yaitu peramalan didasarkan atas data kuantitatif pada masa lalu. Hasil

peramalan dibuat sangat bergantung pada metode yang digunakan dalam

peramalan tersebut. Dengan peramalan yang berbeda akan diperoleh hasil

peramalan yang berbeda.

Hal yang perlu diperhatikan dari penggunaan metode-metode tersebut, adalah

baik tidaknya metode yang dipergunakan, sangat ditentukan oleh perbedaan atau

penyimpangan antara hasil peramalan dengan kenyataan yang terjadi. Metode yang baik

adalah metode yang memberikan nilai-nilai perbedaan atau penyimpangan yang

mungkin terjadi.

Peramalan kuantitatif hanya dapat digunakan apabila terdapat tiga kondisi

sebagai berikut :

1. Adanya informasi tentang keadaan yang lain.

2. Informasi tersebut dapat dikuantifikasikan dalam bentuk data.

3. Dapat diasumsikan bahwa pola yang lalu akan berkelanjutan pada masa yang

akan datang.

(17)

Dalam pemilihan teknik dan metode peramalan, pertama-tama perlu diketahui ciri-ciri

penting yang perlu diperhatikan bagi pengambil keputusan dan analisa keadaan dalam

mempersiapkan peramalan .

Ada enam faktor utama yang diidentifikasi sebagai teknik dan metode paramalan,

yaitu :

1. Horizon waktu

Ada dua aspek dari horizon waktu yang berhubungan dengan masing-masing

metode peramalan. Pertama adalah cakupan waktu di masa yang akan datang.

Aspek kedua adalah periode untuk peramalan yang diinginkan.

2. Pola data

Dasar utama dari metode peramalan adalah anggapan bahwa macam dari pola

yang didapati di dalam data yang diramalkan akan berkelanjutan.

3. Jenis dan model

Model-model merupakan suatu deret dimana waktu digambarkan sebagai unsur

yang penting untuk menentukan perubahan-perubahan dalam pola. Model-model

perlu diperhatikan karena masing-masing model mempunyai kemampuan yang

berbeda dalam analisa keadaan untuk pengambilan keputusan.

4. Biaya yang dibutuhkan

Umumnya ada empat unsur biaya yang tercakup dalam penggunaan suatu

prosedur peramalan yaitu: biaya-biaya pengembangan, penyimpanan (storage) data, operasi pelaksanaan, kesempatan dalam penggunaan teknik-teknik dan

metode peramalan.

5. Ketepatan metode peramalan

Tingkat ketepatan yang dibutuhkan sangat erat kaitannya dengan tingkat

(18)

6. Kemudahan dalam penerapan

Metode-metode yang dapat dimengerti dan mudah diaplikasikan sudah

merupakan suatu prinsip umum bagi pengambil keputusan.

2.1.3 Metode Fuzzy Time Series

Fuzzy time series (FTS) adalah metode peramalan data yang menggunakan prinsip– prinsip fuzzy sebagai dasarnya. Sistem peramalan dengan FTS menangkap pola dari data yang telah lalu kemudian digunakan untuk memproyeksikan data yang akan datang.

Pertama kali dikembangkan oleh Q. Song dan B.S Chissom pada tahun 1993. Metode

ini sering kali digunakan oleh para peneliti untuk menyelesaikan masalah peramalan.

Metode peramalan fuzzy time series adalah metode peramalan yang menggunakan prinsip-prinsip fuzzy sebagai dasarnya. Konsep dasar fuzzy time series

yang diperkenalkan oleh Song dan Chissom (1993a, 1993b, 1994) dengan nilai fuzzy time series direpresentasikan dengan himpunan fuzzy (Chen 1998): Didefenisikan U

adalah semesta pembicaraan dengan U = { u1, u2, u3, ... , un}.

Sebuah himpunan fuzzy dalam semesta pembiracaraan U dapat direpresentasikan

sebagai berikut:

A = fA(u1) / u1 + fA(u2) / u2+ … + fA(un) / un dengan fA adalah fungsi

keanggotaan dari himpunan fuzzy A, fA : U → [0, 1], fA(ui) merupakan tingkat

keanggotan ui dalam himpunan fuzzy A, dan 1≤ i ≤ n.

Ahmad Amiruddin Anwary (2011) dalam penelitiannya untuk meramal kurs

Rupiah terhadap terhadap Dollar Amerika menggunakan metode fuzzy time series. Dalam peramalan tersebut dilakukan upaya untuk memprediksi besarnya kurs untuk

satu hari ke depan. Permasalahan yang dihadapi adalah cara untuk memprediksi

besarnya kurs yaang menghasilkan nilai prediksi dengan tingkat kesalahan minimal.

(19)

Hasilnya berupa data kurs yang terprediksi untuk tiap jenis kurs sampai satu hari ke

depan. Tingkat keakuratan hasil prediksi diukur dengan nilai AFER (Average Forecasting Error).

Algoritma fuzzy time series dalam menyelesaikan masalah prediksi adalah sebagai berikut (Pousen 2009):

1. Menentukan himpunan semesta (universe of discourse) dan membaginya ke dalam interval yang panjangnya sama. Pada tahap ini dicari nilai minimum dan

maksimum dari data aktual [ ] yang akan dijadikan sebagai

himpunan semesta data aktual dan kemudian membaginya ke dalam interval

yang sama panjangnya.

2. Mendefenisikan himpunan fuzzy pada himpunan semesta. Tahap ini mengubah himpunan semesta yang telah terbagi dan masih berupa himpunan bilangan crips

menjadi himpunan fuzzy berdasarkan interval.

3. Melakukan fuzzifikasi pada data historis. Tahap ini menentukan nilai

keanggotaan pada masing-masing himpunan fuzzy dari data historis, dengan nilai keanggotaan 0 sampai 1. Nilai keanggotaan ini diperoleh dari fungsi

keanggotaan yang telah dibuat sebelumnya.

4. Memilih basis model w (orde) yang paling sesuai dan menghitung operasi fuzzy. Tahap ini menentukan nilai hasil inferensi fuzzy berdasarkan basis model w (orde) dengan rumus:

dimana n=w dan m1, m2, ... , mn adalah nilai keanggotaan dari data historis.

(20)

Rahamini (2010) dalam tulisannya memaparkan algoritma metode automatic clustering

relasi logika fuzzy adalah sebagai berikut:

Langkah 1 : Memasukkan data yang akan dilakukan peramalan.

Langkah 2 : Menentukan interval dengan menggunakan algoritma automatic clustering.

Langkah 3 : Membentuk dan menentukan relasi logika fuzzy dari interval yang sudah terbentuk.

Langkah 4 : Menghitung nilai ramalannya dari hasil logika fuzzy.

Langkah 5 : Mencari nilai MSE dari hasil peramalan dibandingkan dengan data

aktual.

2.2Kegunaan Metode Peramalan

Saat ini banyak teknik-teknik peramalan digunakan. Dengan semakin canggihnya

teknik-teknik peramalan yang melibatkan kemampuan komputer, peramalan makin

diterima dan makin mendapat perhatian. Hampir setiap pengambil keputusan saat ini

mempunyai kemampuan menggunakan teknik analisis data dalam kegiatan pramalan,

dan pengertian dari teknik tersebut saat ini menjadi suatu hal terpenting bagi para

pengambil keputusan dalam kegiatan peramalan.

Sejalan dengan semakin diperlukannya proses peramalan dalam berbagai

kegiatan, banyak teknik–teknik baru untuk peramalan juga dikembangkan. Perhatian khusus dalam pengambangan metode peramalan adalah nilai error yang merupakan bagian penting pada setiap prosedur peramalan. Prediksi sebagai output masa depan memang jarang di dapat secara akurat. Peramal hanya dapat berusaha membuat

(21)

Sehubungan dengan ketidak akuratan dalam suatu proses, peramalan sangat

diperlukan karena setiap organisasi bekerja dalam situasi ketidakpastian. Walaupun

demikian keputusan–keputusan harus tetap dibuat untuk keperluan organisasi di masa yang akan datang. Selain itu dalam dunia organisasi seringkali dihadapkan pada

keadaan yang selalu berubah–ubah, sehingga ramalan juga selalu diperlukan.

Metode peramalan merupakan cara memperkirakan apa yang akan terjadi pada

masa depan secara sistimatis dan pragmatis atas dasar data yang relevan pada masa lalu.

Selain itu kegunaan metode peramalan adalah untuk membantu dalam

mengadakan pendekatan analisa terhadap tingkah laku atau pola data yang lalu,

sehingga dapat memberikan cara pemikiran, pengerjaan dan pemecahan yang sistimatis

dan pragmatis serta memberikan tingkat keyakinan atas ketepatan hasil ramalan yang

dibuat.

2.3Keakuratan Metode Peramalan

Seorang perencana tentu menginginkan hasil perkiraan ramalan yang tepat atau paling

tidak dapat memberikan gambaran yang paling mendekati sehingga rencana yang

dibuatnya merupakan rencana yang realistis. Ketepatan atau ketelitian inilah yang

menjadi kriteria performance suatu metode peramalan. Ketepatan atau ketelitian

tersebut dapat dinyatakan sebagai kesalahan peramalan (forecast error). Kesalahan yang kecil memberikan arti ketelitian peramalan yang tinggi, dengan kata lain keakuratan

hasil peramalan tinggi, begitu pula sebaliknya. Ada beberapa perhitungan yang biasa

digunakan untuk membandingkan model peramalan yang berbeda, mengawasi

peramalan, dan untuk memastikan peramalan dengan baik, antara lain:

1. Deviasi absolut rata-rata (mean absolute deviation - MAD) Membagi jumlah total kesalahan absolut dengan jumlah periode.

(22)

∑ | |

2. Persentase deviasi absolut rata-rata (mean absolute precente deviation - MAPD) Membagi jumlah total kesalahan absolut dengan jumlah data aktual yang

ditampilkan dalam bentuk persentase.

Pada umumnya, semakin kecil nilai MAPD maka ramalan semakin akurat.

∑ | |

3. Kesalahan kumulatif (cummulative error - E)

Diperoleh dari total kesalahan. Nilai positif berarti ramalan cenderung lebih

rendah dibandingkan data aktual (mengalami bias rendah). Sebaliknya, nilai

negatif berarti ramalan cenderung lebih tinggi dibandingkan data aktual

(mengalami bias tinggi). Tidak digunakan untuk metode regresi (garis trend

linier), karena nilai E akan mendekati nol.

dimana:

(23)

4. Kesalahan rata-rata (avverage error - ̅ (E bar))

Diperoleh dari total kesalahan dibagi dengan jumlah periode. Nilai positif berarti

ramalan cenderung lebih rendah dibandungkan data aktual (mengalami bias

rendah). Sebaliknya, nilai negatif berarti nilai ramalan cenderung lebih tinggi

dibandingkan data aktual (mengalami bias tinggi). Tinggi digunakan untuk

peramalan Metode regresi (garis tren linier), karena nilai E akan mendekati nol.

̅ ∑

dimana:

E = et = Dt - Ft n = total jumlah periode

5. Kesalahan kuadrat rata-rata (mean square error - MSE)

Diperoleh dari jumlah seluuruh nilai kesalahan setiap periode yang dikuadratkan

lalu dibagi dengan jumlah periode. Pada umumnya, semakin kecil nilai MSE

maka ramalan semakin akurat.

dimana:

et = Dt - Ft

n = total jumlah periode

2.4Data Berkala (Time Series)

Data berkala (time series) adalah data yang dikumpulkan dari waktu ke waktu untuk menggambarkan perkembangan suatu kegiatan atau sekumpulan hasil observasi yang

diatur dan didapat menurut urutan kronoligis waktu. Waktu yang digunakan dapat

(24)

berhubungan dengan data statistik yang dicatat dan diselidiki dalam bats-bats interval

waktu tertentu, seperti perkembangan produksi, harga barang, jumlah penduduk, hasil

penjualan, harga saham, nilai tukar kurs.

Dengan adanya data time series maka pola gerakan data dapat diketahui. Dengan

demikian data time series dapat dijadikan dasar untuk :

1. Pembuatan keputusan pada saat ini

2. Peramalan keadaan perdagangan

3. Perencanaan kegiatan untuk masa depan

2.5Logika Fuzzy

2.5.1 Pengertian Logika fuzzy

Fuzzy secara bahasa diartikan sebagai kabur atau samar-samar. Suatu nilai dapat bernilai besar atau salah secara bersamaan. Dalam fuzzy dikenal derajat keanggotaan yang memiliki rentang nilai 0 (nol) hingga 1 (satu). Berbeda dengan himpunan tegas yang

memiliki nilai 1 atau 0 (ya atau tidak).

Logika fuzzy pertama sekali diperkenalkan oleh Lotfi. A. Zadeh pada thaun 1965. Dasar logika fuzzy adalah teori himpunan fuzzy. Dalam teori himpunan dikenal fungsi karakteristik yaitu fungsi dari himpunan semesta X ke himpunan {0,1}

Defenisi: Himpunan A dalam semesta X dapat dinyatakan dengan fungsi karakteristik

yang didefinisikan dengan aturan:

Logika fuzzy merupakan suatu logika yang memiliki nilai kekaburan atau kesamaran (fuzzyness) antara benar atau salah. Dalam teori logika fuzzy suatu nilai bisa bernilai benar atau salah secar bersama. Namun berapa besar keberadaan dan kesalahan

(25)

derajat keanggotaan dalam rentang 0 hingga 1. Berbeda dengan logika digital yang

hanya memiliki dua nilai 0 atau 1. Logika fuzzy digunakan untuk menterjemahkan suatu besaran yang di ekspresikan menggunakan bahasa (linguistic), misalkan kecepatan laju kendaraan yang diekspresikan dengan pelan, lebih cepat, cepat, dan sangat cepat. Dan

logika fuzzy menunnjukkan sejauh mana suatu nilai itu benar dan sejauh mana suatu nilai itu salah. Tidak seperti logika klasik (crips) atau tegas, suatu nilai hanya mempunyai 2 kemungkinan yaitu merupakan suatu anggota himpunan atau tidak.

Derajat keanggotaan 0 (nol) artinya nilai bukan merupakan anggota himpunan dan 1

(satu) berarti nilai tersebut adalah anggota himpunan.

Sri kusumadewi (2004) mengatakan bahwa logika fuzzy adalah suatu cara yang tepat untuk memetakan suatu ruang input kedalam suatu ruang output, mempunyai nilai kontinu. Fuzzy dinyatakan dalam derajat dari suatu keanggotaan dan derajat dari kebenaran. Oleh sebab itu sesuatu dapat dikatakahn sebagian benar dan sebagian salah

dalam waktu yang sama.

Logika fuzzy memungkinkan nilai keanggotaan antara 0 dan 1, tingkat keabuan

juga hitam dan putih, dan dalam bentuk linguistik, konsep tidak pasti seperti “sedikit”, “lumayan” dan “sangat”. (Zadeh 1995).

Himpunan fuzzy memperluas jangkauan fungsi karakteristik pada himpunan crips sehingga fungsi tersebut mencakup bilangan riil pada interval [0.1]. Fungsi itu

memetakan setiap unsur dalam himpunan semesta X ke suatu nilai pada interval [0,1]

yang selanjutnya disebut dengan derajat keanggotaan dari suatu himpunan kabur A

dalam semesta X adalah pemetaan [ ] Nilai menyatakan derajat

keanggotaan dalam himpunan kabur A.

Misalkan diketahui data IPK mahasiswa pada inteval [0,00, 4,00]. Akan dibuat

himpunan mahasiswa pandai. Kata “pandai” menunjukkan seberapa besar seorang mahasiswa dikatakan pandai.

Dengan menggunakan crips seorang mahasiswa dikatakan Pandai jika memiliki IPK diatas atau sama dengan 3,00 dengan derajat keanggotaan sebaliknya jika

(26)

memiliki IPK 3,01 maka akan dikatakan „Pandai‟. Sedangkan mahasiswa B dengan IPK 2,99 dikatakan „Tidak Pandai‟.

Sedangkan dengan menggunakan fuzzy set, suatu fungsi keanggotaan menjadi bersifat kontinu. Seorang mahasiswa dengan IPK 2,5 dikatakan mendekati Pandai

dengan dan mahasiswa dengan IPK 1,25 memang kurang Pandai dengan

Kelebihan dari teori logika fuzzy adalah kemampuan dalam proses penalaran secara bahasa (linguistic reasoning). Sehingga dalam perancangannya tidak memrlukan persamaan matematik dari objek yang akan dikendalikan.

2.5.2 Notasi Himpunan fuzzy

Himpunan fuzzy memiliki 2atribut, yaitu:

1. Linguistik

Yaitu penamaan suatu grup yang memiliki suatu keadaan atau kondisi

tertentu dengan menggunakan bahasa alami, seperti: MUDA, PAROBAYA,

TUA, PANAS, DINGIN.

2. Numerik

Yaitu suatu nilai (angka) yang menunjukkan ukuran dari suatu variabel,

contoh: 40, 25, 50 dan sebagainya.

Ada beberapa hal yang perlu diketahui dalam memahami sistem fuzzy, yaitu:

a. Variabel fuzzy

Variabel fuzzy merupakan variabel yang hendak dibahas dalam suatu system

fuzzy.

(27)

umur, temperatur, permintaan, dsb.

b. Himpunan fuzzy

Himpunan fuzzy merupakan suatu grup yang mewakili suatu kondisi atau keadaan tertentu dalam suatu variabel fuzzy.

Contoh:

1. Variabel umur, terbagi menjadi 3 himpunan fuzzy, yaitu: MUDA, PAROBAYA, dan TUA.

2. Variabel temperatur, terbagi menjadi 5 himpunan fuzzy, yaitu: DINGIN, SEJUK, NORMAL, HANGAT, dan PANAS.

c. Semesta pembicaraan

Semesta pembicaraan adalah keseluruhan nilai yang diperbolehkan untuk

dioperasikan dalam suatu variabel fuzzy. Semesta pembicaraan merupakan

himpunan bilangan real yang senantiasa naik (bertambah) secara monoton dari kiri ke kanan. Nilai semesta pembicaraan dapat berupa bilangan positif

maupun negatif. Adakalanya nilai semesta pembicaraan ini tidak dibatasi

batas atasnya.

Contoh:

1. Semesta pembicaraan untuk variabel umur: [0 , +∞) 2. Semesta pembicaraan untuk variabel temperatur: [0 , 40]

d. Domain himpunan fuzzy

Domain himpunan fuzzy adalah keseluruhan nilai yang diijinkan dalam semesta pembicaraan dan boleh dioperasikan dalam suatu himpunan fuzzy. Seperti halnya semesta pembicaraan, domain merupakan himpunan bilangan

real yang senantiasa naik (bertambah) secara monoton dari kiri ke kanan.

Nilai domain dapat berupa bilangan positif maupun negatif.

Contoh:

(28)

2. PAROBAYA = [35,55]

3. TUA = [45,+∞] 4. DINGIN = [0,20]

5. SEJUK = [15,25]

6. NORMAL = [20,30]

7. HANGAT = [25,35]

8. PANAS = [30,40]

2.5.3 Fungsi Keanggotaan Fuzzy

Fungsi keanggotaan adalah suatu kurva yang menunjukkan pemetaan titik-titik input

data ke dalam nilai keanggotaannya (derajat keanggotaan) yang memiliki interval antara

0 sampai 1. Salah satu cara yang dapat digunakan untuk mendapatkan nilai keanggotaan

adalah dengan melalui pendekatan fungsi.

Adapun beberapa jenis fungsi yang dapat digunakan untuk mendapat nilai keanggotaan

yaitu:

1. Representasi linier

Pada representasi linier, permukaan digambarkan sebagai suatu garis lurus.

Bentuk ini paling sederhanadan menjadi pilihan yang baik untuk mendekati

konsep yang kurang jelas.

Ada 2 kemungkinan himpunan fuzzy linier: 1) Linier naik

Kenaikan himpunan dimulai pada nilai domain yang memiliki derajat

keanggotaan 0 (nol) bergerak ke kanan menuju domain yang memiliki

(29)

Gambar 2.1 Grafik fungsi keanggotaan representasi linier naik (Sumber: Sri Kusumadewi, 2002)

Fungsi keanggotaan:

{

2) Linier turun

Garis lurus dimulai dari domain dengan derajat keanggotaan tertinggi

pada sisi kiri, kemudian bergerak menurun ke nilai domain yang

memiliki derajat keanggotaan lebih rendah. 0

a b

1

(30)

Gambar 2.2 Grafik fungsi keanggotaan pada representasi linier turun (Sumber: Sri Kusumadewi, 2002)

Fungsi keanggotaan:

{

2. Representasi kurva segitiga

Kurva segitiga pada dasarnya merupakan gabungan antara dua garis (linier) serta

ditandai oleh adanya tiga parameter {a,b,c}yang menentukan koordinat x dari

tiga sudut. 0

a b

1

(31)

Gambar 2.3 Grafik fungsi keanggotaan pada representasi kurva segitiga (Sumber: Sri Kusumadewi, 2002)

{

3. Representasi kurva trapesium

Kurva trapesium pada dasarnya seperti bentuk segitiga, hanya saja ada beberapa

titik yang memiliki nilai keanggotaan 1.

1

a b c

(32)

Gambar 2.4 Grafik fungsi keanggotaan pada representasi kurva trapesium (Sumber: Sri Kusumadewi, 2002)

{

4. Representasi kurva bahu

Suatu kurva yang letak daerahnya terletak ditengah-tengah satu variabel yang di

representasikan dalam bentuk segitiga, pada sisi kanan dan kirinya akan naik dan

turun (misalkan dingin bergerak ke sejuk bergerak ke hangat bergerak ke panas).

Tetapi terkadang satu sisi dari variabel tersebut tidak mengalami perubahan. 1

0

a b c d

(33)

tetap pada kondisi panas. Himpunan fuzzy „bahu‟ bukan segitiga, digunakan

untuk mengakhiri variabel suatu daerah fuzzy. Bahu kiri bergerak dari benar ke salah, demikian juga bahu kanan bergerak dari salah ke benar.

(34)

Normal:

Seperti halnya himpunan konvensional, ada beberapa operasi yang didefinisikan secara

khusus untuk mengkombinasi dan memodifikasi himpunan fuzzy. Nilai keanggotaan sebagai hasil dari operasi 2 himpunan sering dikenal dengan nama fire strengthatau α–

(35)

Ada 3 operator dasar yang diciptakan oleh Zadeh, yaitu:

1. Operator AND

Operator ini berhubungan dengan operasi interseksi pada himpunan. α–predikat sebagai hasil operasi dengan operator AND diperoleh denganmengambil nilai

keanggotaan terkecil antar elemen pada himpunan-himpunan yang bersangkutan.

( )

2. Operator OR

Operator ini berhubungan dengan operasi union pada himpunan. α–predikat sebagai hasil operasi dengan operator OR diperoleh dengan mengambil nilai

keanggotaan terbesar antar elemen pada himpunan-himpunan yang

bersangkutan.

3. Operator NOT

Operator ini berhubungan dengan operasi komplemen pada himpunan. α– predikat sebagai hasil operasi dengan operator NOT diperoleh dengan

mengurangkan nilai keanggotaan elemen pada himpunan yang bersangkutan dari

1.

(36)

BAB 3

METODE PENELITIAN

Metode penelitian yang digunakan untuk memecahkan permasalahan dalam tugas akhir

ini adalah sebagai berikut:

1. Studi literatur.

Tahap ini dilakukan dengan mengidentifikasi permasalahan, mengkaji dan

memahami teori-teori yang dipelajari diantaranya mengenai konsep dasar

metode automatic clustering-relasi logika fuzzy dan metode fuzzy time series

yang menjadi metode peramalan. Penelusuran referensi ini bersumber dari buku,

jurnal maupun penelitian yang telah ada sebelumnya mengenai hal-hal yang

berhubungan dangan metode automatic clustering-relasi logika fuzzy dan metode

fuzzy time series.

2. Pengumpulan data.

Pada tahap ini dilakukan pengambilan data jumlah peminat Departemen S1

Matematika USU melalui jalur tertulis mulai tahun 2006 sampai dengan tahun

2013.

3. Peramalan jumlah peminat dengan metode automatic clustering-relasi logika

fuzzy.

Pada tahap ini dilakukan peramalan jumlah peminat Departemen S1 Matematika

(37)

4. Membandingkan hasil peramalan.

Pada tahap ini dilakukan peramalan dengan metode fuzzy time series kemudian hasil yang diperoleh dibandingkan dengan hasil peramalan metode automatic clustering-relasi logika fuzzy dilihat dari MSE. Jika MSE lebih kecil berarti metode tersebut lebih akurat.

5. Pengambilan kesimpulan.

Pada tahap ini dilakukan penarikan kesimpulan hasil analisa data sekaligus

memberikan saran yang berkaitan dengan pengembangan penellitian

(38)

BAB 4 PEMBAHASAN

4.1 Pengumpulan data

Data yang digunakan adalah data jumlah peminat pada departemen S1 Matematika USU

melalui jalur tertulis yaitu jalur SPMB, SNMPTN dan SBMPTN (tidak termasuk jalur

UMB dan Undangan). Data diperoleh dari Biro Rektor USU Bagian Pendidikan sesuai

dengan izin yang diberikan oleh pihak terkait. Data yang digunakan mulai dari data

jumlah peminat pada tahun 2006 – 2013.

Tabel 4.1 Data Jumlah Peminat S1 Matematika USU Melalui Jalur Tertulis Tahun 2006

– 2013

Tahun Jumlah peminat

2006 466

2007 507

2008 211

2009 320

2010 309

2011 442

2012 536

2013 617

Sumber: Biro Akademik USU

(39)

4.2 Metode Automatic Clustering-Relasi Logika Fuzzy

Pada bagian ini, disajikan metode untuk peramalan jumlah peminat didasarkan pada

metode automatic clustering-relasi logika fuzzy.

Langkah 1: Menerapkan metode automatic clustering untuk klaster data historis menjadi bentuk interval kemudian hitung titik tengah masing-masing intervalnya.

Langkah 2: Mengasumsikan bahwa terdapat n interval , kemudian mendefenisikan setiap fuzzy set , di mana dan .

Langkah 3: Fuzzifikasi setiap data historis, menjadi himpunan fuzzy. Jika data terletak pada interval , dengan , maka data difuzzifikasi ke .

Langkah 4: Membentuk relasi logika fuzzy yang didasarkan pada data historis yang diperoleh dari Langkah 3. Fuzzifikasi data jumlah peminat tahun t dan t+1 adalah dan yang masing-masing kemudian membangun relasi logika fuzzy

dimana dan adalah keadaan sekarang dan keadaan mendatang dari hasil logika

fuzzy. Berdasarkan keadaan saat ini pada relasi logika fuzzy, relasi logika fuzzy dibagi ke dalam kelompok relasi logika fuzzy, di mana relasi logika fuzzy yang memiliki keadaan saat ini yang sama di masukkan ke dalam kelompok relasi logika fuzzy yang sama.

Langkah 5: Menghitung nilai peramalan jumlah peminat, sesuai prinsip berikut:

Prinsip 1: Jika fuzzifikasi jumlah peminatdari tahun t adalah dan hanya ada satu relasi logika fuzzy pada kelompok relasi logika fuzzy yang memiliki keadaan saat ini

ditunjukkan sebagai berikut:

(40)

Prinsip 2: jika fuzzifikasi jumlah peminat dari tahun t adalah Aj dan ada relasi logika

fuzzy yang memiliki keadaan sekarang Aj, yang ditunjukkan sebagai berikut:

( )

Maka nilai peramalan dari tahun t+1 dihitung sebagai berikut:

Dimana xi menggambarkan angka dari Relasi Logika Fuzzy pada kelompok

Relasi Logika fuzzy, adalah titik tengah dari

interval-interval berturut-turut, dan nilai keanggotaan maksimum dari

himpunan fuzzy terjadi pada interval

berturut-turut.

Prinsip 3: jika fuzzifikasi jumlah peminat pada tahun t adalah Aj dn ada relasi logika fuzzy yang memiliki keadaan saat ini Aj yang di ganbarkan seperti berikut:

Dengan simbol “ ≠ “ merupakan sebuah nilai yang tidak diketahui, maka nilai

peramalan pada tahun t+1 adalah mj, dengan mj adalah titik tengah dari interval ui dan nilai keanggotaan maksimal dari himpunan fuzzyAj terjadi pada ui.

4.3 Algoritma automatic clustering

(41)

Langkah 1: Mengurutkan data numerik dalam urutan menaik sehingga memiliki n data yang berbeda. Diasumsikan bahawa data yang telah terurut tanpa data ganda akan

ditampilkan sebagai berikut:

Berdasarkan data yang telah terurut, maka hitung nilai “average_dif” dengan rumus

sebagai berikut:

Langkah 2: Mengambil data angka pertama (data terkecil dalam bariran terurut naik) ke dalam klaster sekarang. Berdasarkan nilai dari “average_diff”, ditentukan apakah data angka mengikuti data pada pengelompokan sekarang pada barisan data terurut naik

dapat diletakkan pada klaster baru berdasarkan pada beberapa prinsip berikut:

Prinsip 1: asumsikan bahwa saat ini klaster pertamanya adalah klaster pertama dan hanya ada satu data d1 di dalamnya dan menganggap bahwa data d2 adalah yang berdekatan dengan d1, ditampilkan sebagai berikut:

JIKA MAKA d2 diletakkan ke dalam klaster sekarang dimana d1termasuk.

Sebaliknya, dibentuk kelompok untuk d2 dan biarkan klaster baru yang baru dibangun

yang mana d2 termasuk ke dalam klaster sekarang.

Prinsip 2: Asumsikan bahwa klaster yang sekarang bukan klaster yang pertama dan ada lebih satu data di klaster saat ini. Diasumsikan bahwa di adalah data terbesar di klaster saat ini dan diasumsikan bahwa dj adalah data yang berdekatan di sebelah di, yang ditampilkan sebagai berikut:

(42)

MAKA dj diletakkan ke dalam klaster yang sama dengan di. Dalam hal ini .

Diberikan rumus mencari nilai cluster_diff:

dimana menunjukkan data dalam klaster sekarang.

Cluster_diff menunjukkan jarak dari average_diff antara elemen – elemen yang berada dalam klaster yang sama. Jika di membentuk sebuah klaster yang memilik

elemen tunggal, maka Prinsip 2 tidak berlaku.

Prinsip 3: Asumsikan bahwa di adalah elemen terakhir dari sebuah klaster, dj adalah

elemen pertama dari klaster berikutnya, dan dk adalah sebuah angka yang mengikuti dj

yang ditampilkan sebagai berikut:

{ }

JIKA DAN MAKA letakkan dk ke dalam klaster yang sama dengan dj.

Langkah 3: Berdasarkan hasil pengklasteran pada Langkah 2, sesuaikan isi klaster menurut beberapa prinsip berikut:

Prinsip 1: Jika sebuah klaster memiliki lebih dari dua elemen, maka di ambil elemen terkecil dan terbesar serta menghapus elemen yang lain.

Prinsip 2: Jika sebuah klaster memiliki tepat dua elemen, maka klaster dibiarkan (tidak berubah)

Prinsip 3: jika sebuah klaster hanya memiliki satu elemen dq, maka letakkan nilai–nilai

dari dan ke dalam klaster dan

(43)

Kondisi 1: jika kondisi terjadi di klaster pertama, maka hapus nilai sebagai ganti dari .

Kondisi 2: jika kondisi terjadi di klaster terakhir, maka nilai dari dihapus sebagai ganti dari dq dari klaster ini.

Kondisi 3: jika nilai dari lebih besar daripada nilai terkecil dalam klaster terdahulu, maka semua tindakan dalam Prinsip 3 dibatalkan.

Langkah 4: Asumsikan bahwa hasil klaster yang diperoleh pada Langkah 3 adalah ditampilkan sebagai berikut:

Kemudian ubah kelompok ini ke dalam interval yang bersebelahan dengan sub-langkah

berikut:

interval sekarang dan biarkan klaster menjadi klaster sekarang.

3. Jika interval sekarang adalah [ ) dan klaster sekarang adalah {dk}, maka

ubahlah interval sekarang [ ) ke dalam [ . Biarkan [ menjadi

interval sekarang dan biarkan klaster selanjutnya menjadi klaster sekarang.

(44)

4.4. Algoritma Metode Fuzzy Time Series

Langkah–langkah peramalan menggunakan metode fuzzy time series adalah:

1. Mendefenisikan semesta pembicaraan U dengan data historis dalam himpunan

fuzzy yang akan didefinisikan. Biasanya ketika mendefinikan semesta, pertama harus ditemukan data peminat tertinggi Dmaks dan terendah Dmin dari data

historis. Berdasarkan pada data Dmin dan Dmaks mendefenisikan semesta U

sebagai [ ] dengan D1 dan D2 adalah dua bilangan positif yang tepat.

2. Membagi semesta U ke dalam beberapa panjang interval.

3. Mendefinisikan himpunan fuzzy pada semesta U. Pertama, menentukan beberapa nilai linguistik. Tidak ada batasan pada angka himpunan fuzzy pada yang didefinisikan. Kedua, mendefinisikan himpunan fuzzy pada U. Semua himpunan

fuzzy akan diberi nama dengan nilai linguistik yang mungkin.

4. Fuzzifikasi data historis, temukan sebuah himpunan fuzzy yang sesuai dengan jumlah peminat setiap tahun.

5. Menghitung nilai peramalan dengan beberapa aturan seperti berikut:

Aturan 1: Jika himpunan fuzzy sekarang adalah Ai, Relasi Logika kelompok

adalah kosong,

Maka nilai peramalannya adalah miyang merupakan titik tengah ui.

Aturan 2: Jika himpunan fuzzy sekarang adalah Ai dan ada relasi logika fuzzy

terhadap Aj,

Maka nilai peramalannya adalah mj dan mj merupakan nilai titik tengah dari uj. Aturan 3: Jika himpunan fuzzy sekarang adalah Ai dan ada Relasi Logika Fuzzy

lebih dari satu,

(45)

4.5 Pengolahan data

4.5.1 Peramalan dengan Metode Automatic Clustering-Relasi Logika Fuzzy

Data setelah terurut naik: 211, 309, 320, 442, 466, 507, 536, 617.

Kemudian cari beda rata – rata dari data dengan menggunakan rumus:

Diperoleh:

[

Selanjutnya pengklasteran menggunakan metode automatic clustering:

Berdasarkan Prinsip 1, diperoleh: Klaster1 = {211}

Klaster2 = {309, 320}

Klaster3 = {442, 446, 507, 536}

Kalster4 = {617}

(46)

Klaster2 = {309, 320}

Klaster3 = {442, 466, 507, 536}

Klaster4 = {617}

Diperiksa kembali berdasarkan Prinsip 3, diperoleh: Klaster1 = {211}

Klaster2 = {309, 320}

Klaster3 = {442, 466}

Klaster4 = {507, 536}

Klaster5 = {617}

Klaster – klaster yang sudah terbentuk diperiksa kembali berdasarkan Langkah 3, diperoleh:

Klaster1 = {211, 269}

Klaster2 = {309, 320}

Klaster3 = {442, 466}

Klaster4 = {507, 536}

Klaster5 = {617}

Kemudian berdasarkan Langkah 4 ubah klaster – klaster tersebut menjadi interval yang bersebelahan diperoleh:

u1 = [211, 269)

u2 = [269, 309)

u3 = [309, 320)

(47)

u6 = [466, 507)

u7 = [507, 536)

u8 = [536, 617)

Setelah interval diperoleh, bagi setiap interval dalam p sub-inteval dengan p ≥ 1.

Diambil p = 10. Sehingga diperoleh interval baru, diperoleh;

u1 = [211,000 , 214,625) u21 = [279,000 , 281.500)

u2 = [214,625 , 218.250) u22 = [281,500 , 284,000)

u3 = [218,250 , 221,875) u23 = [284,000 , 286,500)

u4 = [221,875 , 225,500) u24 = [286,500 , 289,000)

u5 = [225,500 , 229,125) u25 = [289,000 , 291,500)

u6 = [229,125 , 232,750) u26 = [291,500 , 294,000)

u7 = [232,750 , 236,375) u27 = [294,000 , 296,500)

u8 = [236,375 , 240,000) u28 = [296,500 , 299,000)

u9 = [240,000 , 243,625) u29 = [299,000 , 301,500)

u10 = [243,625 , 247,250) u30 = [301,500 , 304,000)

u11 = [247,250 , 250,875) u31 = [304,000 , 306,500)

u12 = [250,875 , 254,500) u32 = [306,500 , 309,000)

u13 = [254,500 , 258,125) u33 = [309,000 , 309,688)

u14 = [258,125 , 261,750) u34 = [309,688 , 310,375)

u15 = [261,750 , 265,375) u35 = [310,375 , 311,063)

u16 = [263,375 , 269,000) u36 = [311,063 , 311,750)

(48)

u18 = [271,500 , 274,000) u38 = [312,438 , 313,125)

u19 = [274,000 , 276,500) u39 = [313,125 , 313,813)

u20 = [276,500 , 279,000) u40 = [313,813 , 314,500)

u41 = [314,500 , 315,188) u61 = [411,500 , 419,125)

u42 = [315,188 , 315,875) u62 = [419,125 , 426,750)

u43 = [315,875 , 316,563) u63 = [426,750 , 434,375)

u44 = [316,563 , 317,250) u64 = [434,375 , 442,000)

u45 = [317,250 , 317,938) u65 = [442,000 , 443,500)

u46 = [317,938 , 318,625) u66 = [443,500 , 445,000)

u47 = [318,625 , 319,313) u67 = [445,000 , 446,500)

u48 = [319,313 , 320,000) u68 = [446,500 , 448,000)

u49 = [320,000 , 327,625) u69 = [448,000 , 449,500)

u50 = [327,625 , 335,250) u70 = [449,500 , 451,000)

u51 = [335,250 , 342,875) u71 = [451,000 , 452,500)

u52 = [342,875 , 350,500) u72 = [452,500 , 454,000)

u53 = [350,500 , 358,125) u73 = [454,000 , 455,500)

u55 = [358,125 , 365,750) u74 = [455,500 , 457,000)

u54 = [365,750 , 373,375) u75 = [457,000 , 458,500)

u56 = [373,375 , 381,000) u76 = [458,500 , 460,000)

u57 = [381,000 , 388,625) u77 = [460,000 , 461,500)

(49)

u59 = [369,250 , 403,875) u79 = [463,000 , 464,500)

u60 = [403,875 , 411,500) u80 = [464,500 , 466,000)

u81 = [466,000 , 468,563) u101= [514,250 , 516,063)

u82 = [468,563 , 471,125) u102 = [516,063 , 517,875)

u83 = [471,125 , 473,688) u103 = [517,875 , 519,688)

u84 = [473,688 , 476,250) u104 = [519,688 , 521,500)

u85 = [476,250 , 478,813) u105 = [521,500 , 523,313)

u86 = [478,813 , 481,375) u106 = [523,313 , 525,125)

u87 = [481,375 , 483,938) u107 = [525,125 , 526,938)

u88 = [483,938 , 486,500) u108 = [526,938 , 528,750)

u89 = [486,500 , 489,063) u109 = [528,750 , 530,563)

u90 = [489,063 , 491,625) u110 = [530,563 , 532,375)

u91 = [491,625 , 494,188) u111 = [532,375 , 534,188)

u92 = [494,188 , 496,750) u112 = [534,188 , 536,000)

u93 = [496,750 , 499,313) u113 = [536,000 , 541,063)

u94 = [499,313 , 501,875) u114 = [541,063 , 546,125)

u95 = [501,875 , 504,438) u115 = [546,125 , 551,188)

u96 = [504,438 , 507,000) u116 = [551,188 , 556,250)

u97 = [507,000 , 508,813) u117 = [556,250 , 561,313)

u98 = [508,813 , 510,625) u118 = [561,313 , 566,375)

(50)

u100 = [512,438 , 514,250) u120 = [571,438 , 576,500)

u121 = [576,500 , 581,563) u125 = [596,750 , 601.813)

u122 = [581,563 , 586,625) u126 = [601,813 , 606,875)

u123 = [586,625 , 591,688) u127 = [606,875 , 611,938)

u124 = [591,688 , 596,750) u128 = [611.938 , 617,000 )

Selanjutnya cari titik tengah dari masing – masing interval, diperoleh:

m1 = 212,813 m21 = 280,250 m41 = 314,844

m2 = 216,438 m22 = 282,750 m42 = 315,531

m3 = 220,063 m23 = 285,250 m43 = 316,219

m4 = 223,689 m24 = 287,750 m44 = 316,906

m5 = 227,313 m25 = 290,250 m45 = 317,594

m6 = 230,938 m26 = 292,750 m46 = 318,281

m7 = 234,563 m27 = 295,250 m47 = 318,969

m8 = 238,188 m28 = 297,705 m48 = 319,656

m9 = 241,813 m29 = 300,250 m49 = 323,813

m10 = 245,438 m30 = 302,750 m50 = 331,438

m11 = 249,063 m31 = 305,250 m51 = 339,063

m12 = 252,688 m32 = 307,750 m52 = 346,688

m13 = 256,313 m33 = 309,344 m53 = 354,313

m14 = 259,938 m34 = 310,031 m54 = 361,938

m15 = 263,563 m35 = 310,719 m55 = 369,563

(51)

m17 = 270,250 m37 = 312,094 m57 = 384,183

m18 = 272,750 m38 = 312,781 m58 = 393,438

m19 = 275,250 m39 = 313,469 m59 = 400,063

m20 =277,750 m40 = 314,156 m60 = 407,688

m61 = 415,313 m85 = 477,531 m109= 529,656

m62 = 422,938 m85 = 480,094 m110= 531,469

m63 = 430,563 m87 = 482,656 m111= 533,281

m64 = 438,188 m88 = 485,219 m112= 535,094

m65 = 442,750 m89 = 487,781 m113= 538,531

m66 = 444,250 m90 = 490,343 m114= 543,594

m67 = 444,750 m91 = 492,906 m115= 548,656

m68 = 447,250 m92 = 495,469 m116= 553,719

m69 = 448,750 m93 = 498,031 m117= 558,781

m70 = 450,250 m94 = 500,599 m118= 563,844

m71 = 451,750 m95 = 503,156 m119= 568,906

m72 = 453,250 m96 = 505,719 m120= 573,969

m73 = 454,750 m97 = 507,906 m121= 579,061

m74 = 456,250 m98 = 509,719 m122= 584,094

m75 = 457,750 m99 = 511,531 m123= 589,156

m76 = 459,250 m100 = 513,344 m124= 594,219

(52)

m78 = 462,250 m102= 516,969 m126= 604,344

m79 = 463,750 m103= 518,781 m127= 609,406

m80 = 465,250 m104= 520,594 m128= 614,469

m81 = 467,281 m105= 522,406

m82 = 469,844 m106= 524,219

m83 = 472,406 m107= 526,031

(53)

Tabel 4.2 Hasil Fuzzifikasi Jumlah Peminat dengan Metode Automatic Clustering -Relasi Logika Fuzzy

Pada Tabel 4.2 dapat dilihat bahwa jumlah peminat pada tahun 2006 adalah 466 yang

berada pada interval u81 = [466.000 , 468.563) maka jumlah peminat pada tahun 2006 difuzzifikasikan ke dalam A81.

Dari Tabel 4.2 dapat ditentukan relasi logika fuzzy. Misalnya, hasil fuzzifikasi pada tahun 2006 adalah A81 dan hasil fuzzifikasi data pada tahun 2007 adalah A97. Maka relasi logika fuzzy antara tahun 2006 dan 2007 adalah . A51 adalah keadaan sekarang dan A61 adalah keadaan mendatang pada relasi logika fuzzy. Maka relasi logika fuzzy setiap tahun jumlah peminat adalah sebagai berikut:

Tahun Jumlah Peminat Fuzzifikasi jumlah peminat

(54)

Karena tidak terdapat relasi logika fuzzy yang sama, maka tidak perlu dilakukan pengelompokan. Selanjutnya perhitungan peramalan, diperoleh:

Tabel 4.3 Hasil Peramalan Jumlah Peminat dengan Metode Automatic Clustering-Relasi Logika Fuzzy

Tahun Jumlah Peminat Hasil Peramalan Error

2006 466 - -

2007 507 508 -1

2008 211 213 -2

2009 320 324 -4

2010 309 309 0

2011 442 443 -1

2012 536 539 -3

2013 617 614 3

2014 - 614 -

Kemudian hitung nilai Mean Square Error (MSE) dari hasil peramalan menggunakan metode automatic clustering-relasi logika fuzzy pada Tabel 4.3, diperoleh :

(55)

Nilai MSE 5.71 menunjukkan bahwa hasil peramalan data tahun 2007 – 2013 tidak jauh berbeda dari data sebenarnya.

4.5.2 Peramalan dengan Metode Fuzzy Time Series

Defenisikan semesta U sebagai [Dmin – D1, Dmax + D2] dengan Dmin = 211 dan Dmax = 617. Dipilih D1 = 11 dan D2 = 3.

Sehingga didefinikan semesta U sebagai [200 , 620]

Kemudian bagi semesta U kedalam p panjang interval.

Dipilih p = 20.

u1 = [200, 221) u11 = [410, 431)

u2 = [221, 242) u12 = [431, 452)

u3 = [242, 263) u13 = [452, 473)

u4 = [263, 284) u14 = [473, 494)

u5 = [284, 305) u15 = [494, 515)

u6 = [305, 326) u16 = [515, 536)

u7 = [326, 347) u17 = [536, 557)

u8 = [347, 368) u18 = [557, 578)

u9 = [368, 389) u19 = [578, 599)

(56)

Kemudian cari titik tengah dari masing – masing interval di atas:

m1 = 210,5 m11 = 420,5

m2 = 231,5 m12 = 441,5

m3 = 252,5 m13 = 462,5

m4 = 273,5 m14 = 483,5

m5 = 294,5 m15 = 504,5

m6 = 315,5 m16 = 525,5

m7 = 336,5 m17 = 546,5

m8 = 357,5 m18 = 567,5

m9 = 378,5 m19 = 588,5

m10 = 399,5 m20 = 609,5

Tabel 4.4 Hasil Fuzzifikasi Jumlah Peminat dengan Metode Fuzzy Time Series

Dari Tabel 4.4 dapat ditentukan relasi logika fuzzy. Misalnya, hasil fuzzifikasi pada

tahun 2006 adalah A13 dan hasil fuzzifikasi data pada tahun 2007 adalah A15. Maka relasi logika fuzzy antara tahun 2006 dan 2007 adalah . A13 adalah keadaan sekarang

Tahun Jumlah Peminat Fuzzifikasi jumlah peminat

2006 466 A13

2007 507 A15

2008 211 A1

2009 320 A6

2010 309 A6

2011 442 A12

2012 536 A17

(57)

dan A15 adalah keadaan mendatang pada relasi logika fuzzy. Maka relasi logika fuzzy

setiap tahun jumlah peminat adalah sebagai berikut:

Karena terdapat relasi logika fuzzy yang sama, maka perlu dilakukan pengelompokan:

Kelompok 1:

Kelompok 2:

Kelompok 3:

Kelompok 4:

Kelompok 5:

Kelompok 6:

Kelompok 7:

Kemudian cari nilai peramalannya, seperti pada Tabel 4.5.

(58)

Kemudian hitung nilai MSE dari nilai error yang didapat dari Tabel 4.5, diperoleh:

Nilai MSE 1293.8 menggambarkan bahwa hasil peramalan data tahun 2007 – 2013 masih jauh dari data sebenarnya.

Perbandingan peramalan menggunakan Metode Automatic Clustering-Relasi Logika

Fuzzy dengan Metode Fuzzy Time Series dapat dilihat pada Tabel 4.6.

Tabel 4.6 Perbandingan Hasil Peramalan Antara Metode Automatic Clustering-Relasi Logika Fuzzy dengan Metode Fuzzy Time Series

Tahun Jumlah Peminat Hasil Peramalan Error

2006 466 - -

2007 507 505 2

2008 211 211 0

2009 320 316 4

2010 309 379 -70

2011 442 379 63

2012 536 547 -11

2013 617 610 7

(59)

Tahun Jumlah peminat

Hasil peramalan dengan Metode Automatic Clustering-Relasi Logika

Fuzzy

Hasil peramalan dengan Metode Fuzzy Time

Series

Ft et Ft et

2006 466 -

2007 507 508 -1 505 2

2008 211 213 -2 211 0

2009 320 324 -4 316 4

2010 309 309 0 379 -70

2011 442 443 -1 379 63

2012 536 539 -3 547 -11

2013 617 614 -3 610 7

2014 - 614 610

(60)

0 100 200 300 400 500 600 700

2006 2007 2008 2009 2010 2011 2012 2013 2014

Data Jumlah Peminat

Hasil peramalan metode automatic clustering-relasi logika fuzzy

Hasil peramalan metode fuzzy time series

Gambar 4.1. Grafik Perbandingan Hasil Peramalan Antara Metode Automatic Clustering-Relasi Logika Fuzzy dengan Metode Fuzzy Time Series

Jumlah Peminat

Gambar

Gambar 2.1 Grafik fungsi keanggotaan representasi linier naik
Gambar 2.2 Grafik fungsi keanggotaan pada representasi linier turun
Gambar 2.3 Grafik fungsi keanggotaan pada representasi kurva segitiga
Gambar 2.4 Grafik fungsi keanggotaan pada representasi kurva trapesium
+7

Referensi

Dokumen terkait

yang telah dideskripsikan oleh Steven, metode fuzzy time series Chen dan Hsu, dan metode automatic clustering dan fuzzy logical relationships dengan p sama dengan 11

Kemudian diteliti kembali oleh Chen (2002) dengan memperkenalkan sebuah model fuzzy time series orde tinggi untuk meramalkan pendaftaran di Universitas Alabama dan mempreoleh

Hasil penelitian yang diperoleh, model yang dikembangkan yaitu automatic clustering-fuzzy time series-Markov chain menghasilkan tingkat akurasi peramalan yang lebih

Oleh karena itu pada penelitian ini akan melakukan peramalan jumlah mahasiswa baru STMIK Duta Bangsa tahun ajaran 2016/2017 menggunakan metode automatic clustering

Judul : Analisis Peramalan Tingkat Kriminal Dengan Menggunakan Metode Automatic Clustering And Fuzzy Logic Relationship Di Provinsi Sumatera Utara

Berdasarkan hasil dari penelitian ini yakni mengimplementasikan Metode Gabungan Metode Multi-Factors High Order Fuzzy Time Series dengan Fuzzy C-Means untuk Peramalan

Manakah metode yang memiliki tingkat akurasi ramalan lebih baik antara average based fuzzy time series dengan automatic clustering fuzzy time series jika dilihat dari MSE

Penggunaan metode automatic clustering dirasa efektif dalam melakukan klasifikasi data sebelumnya, pada metode fuzzy time series untuk menyelesaikan