• Tidak ada hasil yang ditemukan

Analisis Data Medan Listrik Dengan Metode Bayangan Dan Persamaan Karakteristik Impedansi Di Bawah Andongan Jaringan Transmisi Sutt 150 KV

N/A
N/A
Protected

Academic year: 2017

Membagikan "Analisis Data Medan Listrik Dengan Metode Bayangan Dan Persamaan Karakteristik Impedansi Di Bawah Andongan Jaringan Transmisi Sutt 150 KV"

Copied!
59
0
0

Teks penuh

(1)

LAMPIRAN

Program Menghitung Medan Listrik dengan Metode Bayangan #Menentukan diameter N konduktor

d=0.0088 n=4

r=11.75*10^-3

da=d (n*r/d)^(1/n)

#Menentukan Kerapatan Muatan Konduktor

da=0.0133779

e=8.854187817*10^12

f[h_]=(1/2Pi*e)*Log[(2*h/da)]

#Menentukan muatan N konduktor

MatrixForm[P={{115.987,90.561,100.201,99.2418,100.996

={{80.60} ,{-43.30},{-43.30} ,{80.60},{-43.30},{-43.30}}]

MatrixForm[Inverse[P]] MatrixForm[p]

MatrixForm[p.V]

#Menghitung Medan Listrik dengan Metode Bayangan y=19

e=8.854187817*10^-12

f[a,x]=(a/2Pi*e)*(2y/(x^2+y^2))

(2)

DAFTAR PUSTAKA

Andry. 2009. Perhitungan Kuat Medan Listrik di Bawah Saluran Transmisi. Medan: Universitas Sumatera Utara.

Bandri, S. 2013. Studi Perhitungan Pengaruh Intensitas Medan Listrik Kabel 150 kV yang Berada Dalam Terowongan Terhadap Manusia. Jurnal Momentum. Vol. 15. No. 2

Effendi, Rustam; Slamet Syamsudin; Wilson S. Sinambela; Soemarto. 2007, Medan Elektromagnetika Terapan’ Jakarta: Erlangga.

Fauzi, Akhmad. 2006. Studi Analisis Pemilihan Tegangan Optimal Untuk Saluran Transmisi Daya Listrik. Semarang: Universitas Diponegoro.

Halliday, David; Robert Resnick, Fisika, Edisi Ketiga, Jilid 2, diterjemahkan oleh: Pantur Silaban Ph.D dan Drs. Erwin Sucipto., Jakarta: Erlangga.

Jr. William H. Hayt; John A. Buck. 2006, Elektromagnetika, Edisi ketujuh, diterjemahkan oleh: Irzam Harmein, ST., Jakarta: Erlangga.

Lukmantono, Widen. 2011. Studi Perencanaan Saluran Transmisi 150 kV Bambe Incomer. Surabaya: Institute Teknologi Sepuluh November

L., R. Zimmerman and Fredrick I.O. 2002. Mathematica for Physics, second Edition. New York: Addison Wesley

Nugroho, Dedi. 2011. Pengaruh Perubahan Konfigurasi Saluran Jaringan SUTET 500 kV Terhadap Medan Magnet. Semarang: Universitas Islam Sultan Agung

Ramadan, Syafril; Hendra Zulkarnain, Perbandingan Kuat Medan Listrik di Bawah Saluran Transmisi 150 kV antara G.I. T.Kuning dan G.I. Berastagi Berdasarkan Pengukuran dan Perhitungan dengan Menggunakan Metode Bayangan, Medan: Universitas Sumatera Utara.

Sitepu, M. Dan Susilawati. 2008. Solusi Vektor Potensial Hertz Menggunakan Pendekatan Bayangan Kompleks. Jurnal Penelitian MIPA. Vol. 2 No. 1

(3)

Tobing, Bonggas L.. 2003, Dasar Teknik Pengujian Tegangan Tinggi, Jakarta: PT Gramedia Pustaka Umum.

T., Tam P. A Physicist’s Guide to Mathematica, Second Edition. California: Elsevier

(4)

BAB 3

METODOLOGI PENELITIAN

3.1 Analisis Masalah

Data medan listrik akan dihitung dengan rumus medan listrik menggunakan metode bayangan, yaitu:

  

 

 2 2

) (

2

2 xi x yi

yi Qi

E

 (3.1)

Dengan: Dengan:

E = Medan Listrik

i

Q ` = muatan konduktor i (C)

ε = permisivitas udara (8.85 x 10-12 C2 N-1 m2)

x = koordinat titik tinjau xi, yi = koordinat konduktor i

(5)

d = diameter untuk satu konduktor (m) N = jumlah sub konduktor

r = jari-jari sub konduktor (m)

Dari persamaan 3.2 kemudian kita dapat menentukan kerapatan konduktor untuk N konduktor dengan persamaan:

 Ha : tinggi konduktor dari atas tanah da : diameter untuk N konduktor La : Tinggi bayangan konduktor a Lab : Tinggi bayangan konduktor a ke b

Karena V dapat diketahui dari data spesifikasi menara, sebagai tegangan dari phasa ke phasa, maka dapatlah kita ketahui muatan konduktor i dengan persamaan:

(6)

Dengan:

Q : muatan konduktor P : kerapatan konduktor V : tegangan konduktor

Selanjutnya program bantu yang akan dibuat dirancang menggunakan metode lain, yaitu persamaan karakteristik impedansi. Jika pilihan menggunakan metode yang kedua ini medan listrik dihitung dengan persamaan:

0 0

h w B Z

Eyz

(3.6)

Dengan:

Ey = kuat medan listrik pada sumbu y (V/m)

0

 = Permeabilitas udara (4.10-7 H/m)

Bz = Medan magnet pada sumbu z (T) Z0 = Karakteristik impedansi () h = Tinggi konduktor dari tanah (m)

(7)

3.2 Wolframe Mathematica versi 10.01

Mathematica adalah software program komputer yang dikembangkan oleh Stepen Wolfram melalui lembaga Wolfram Research di Champaign, Illionis, Amerika Serikat untuk keperluan bidang matematika, statistika, dan ilmu pengetahuan teknik yang dirilis pertama kali pada 23 Juni 1988. Mathematica merupakan software yang sangat handal dengan fasilitas terintegrasi lengkap untuk menyelesaikan beragam masalah matematika. Mathemamatica memiliki fasilitas fungsi matematica terpasang (built-in mathematica function) lebih dari 750 buah yang menjadikan sintaks programnya dapat dinyatakan hanya dalam beberapa baris program.

Bilamana Mathematica telah diinstalasi pada komputer, maka kita dapat mengoperasikannya dengan cara:

 double klik ikon Mathematica pada layar monitor, atau

 pada menu start, program, Mathematica

Berikut tampilan halaman kerja Wolfram Mathematica versi 10.01:

(8)

Adapun dalam penggunaan Wolfram Mathematica, ada beberapa hal yang perlu diperhatikan, yaitu:

 gunakan kurung siku [] untuk variabel suatu fungsi

 nama fungsi selalu dimulai dengan huruf besar

 gunakan spasi sebagai pengganti *

 pangkat menggunakan ^

 untuk membuat komentar selalu diapit dengan tanda “(*Komentar*)” (Tanpa tanda kutip)

 koma ditandai dengan tanda titik (.)

 perintah “;” (tanpa tanda titik) memerintahkan program untuk tidak menampilkan hasilnya.

3.3 Perancangan Diagram Alir

Proses perancangan program bantu dalam laporan tugas akhir ini dirancang melalui tahapan-tahapan berikut:

1. Perancangan diagram alir dan algoritma penghitungan medan listrik dengan metode bayangan dan persamaan karakteristik impedansi

(9)

Dalam merancang suatu program yang terstruktur dan terkendali dengan baik, terlebih dahulu perlu dilakukan perancangan diagram alir (Flowchart) serta algoritma program sehingga dapat memperjelas langkah-langkah dalam membuat program secara utuh. Rancangan diagram alir dapat dilihat sebagai berikut:

Gambar 3.2 diagram alir penelitian Mulai

(10)

Adapun langkah-langkah algoritma program bantu yang digunakan dalam penyelesaian perhitungan medan lisrtik dengan metode bayangan dan persamaan karakteriktik impedansi adalah sebagai berikut:

a. Persiapan penjabaran secara matematik perhitungan medan listrik

b. Penjabaran solusi matematik diameter N konduktor (da) dengan rumus

c. Penjabaran solusi matematik penyelesaian metode bayangan kerapatan medan konduktor ρ

d. Penjabaran solusi matematik penyelesaian muatan Q dengan metode bayangan

e. Membuat program komputer dan mendapatkan hasil numerik untuk penyelesaian medan listrik dengan metode bayangan

f. Pengujian hasil numerik solusi matematik medan listrik dengan metode bayangan

g. Memperbaiki solusi matematik dan program komputer dengan memperhatikan parameter dan syarat batas

h. Membuat program komputer untuk menghitung medan listrik dengan karakteristik impedansi

i. Membandingan hasil yang diperoleh dengan metode bayangan dan karakteristik impedansi

(11)

BAB 4

HASIL DAN PEMBAHASAN

4.1 Data Pengukuran dan Spesifikasi Menara SUTT 150 kV

Perhitungan dilakukan dengan mengambil data-data SUTT 150 kV dari G.I Titi Kuning - G.I Berastagi di desa Ujung Jati, kecamatan Berastagi, kabupaten Karo. Nomor menara 39 dan 40.

Berikut merupakan informasi data dari menara tersebut:

 Tipe menara : Saluran Ganda

 Konduktor Fasa : 1 x 240 mm2 ACSR

 GMR : 0.0289 ft (0.0088 m)

 Konduktor tanah : 1 x 50 mm2 GSW

 Diameter : 0.0262 ft (0.008 m)

 Andongan : 3.5 m

 Jumlah sub konduktor (phasa): 4

 Diameter sub konduktor : 23.55 mm

 Tegangan operasi line to line : 156.5 kV

(12)

Gambar 4.1 Konstruksi menara transmisi 150 kV antara G.I titi Kuning dan G.I Berastagi

Untuk melakukan perhitungan ini diambil beberapa asumsi yaitu:

 Sistem dianggap dalam keadaan seimbang

 Tidak dipengaruhi kondisi sekitarnya

 Distribusi muatan di permukaan saluran seragam

Dari gambar 4.1 dapat diketahui kedudukan koordinat masing-masing konduktor:

 x1 = x2 = x3 = x4 = x5 = x6 = jarak titik lengan menara terhadap konduktor = 8.4 m

 y1 = y4 = jarak ketinggian konduktor 1 dan 5 terhadap tanah = 28 m

(13)

Tabel 4.1. Hasil Pengukuran Medan Listrik dan Medan Magnet di menara 39-40 G.I Titi Kuning – G.I Berastagi

No

Jarak Pengukuran

(m)

Kuat Medan Listrik (KV/m)

Induksi Medan Magnet (µT) / (A/m)

1 -20 0,0010 0,1

2 -18 0,0009 0,2

3 -16 0,0012 0,3

4 -14 0,002 0,4

5 -12 0,06 0,4

6 -10 0,7 0,53

7 -8 1,4 0,6

8 -6 3,0 0,64

9 -4 4,5 0,67

10 -2 6,3 0,7

11 0 6,3 0,77

12 0 6,3 0,77

13 2 8,0 0,76

14 4 7,5 0,96

15 6 7,4 0,8

16 8 6,0 0,73

17 10 5,0 0,65

18 12 3,76 0,57

19 14 3,0 0,47

20 16 2,15 0,39

21 18 1,7 0,30

(14)

4.2 Perhitungan Medan Listrik dengan Metode Bayangan

Berdasarkan data-data yang ada mula-mula kita hitung harga da dengan menggunakan persamaan 3.2, sehingga:

m x

da0.0088(4*11.75 103/0.0088)1/4 0.0133779

Setelah harga da diketahui maka digunakan persamaan 3.3 dan 3.4 dengan

memasukkan koefisien 1/2πε ke matriks P. Sehingga kita peroleh matriks P sebagai berikut:

Sedangkan Matriks V di peroleh dari tegangan phasa ke phasa: V1 = V4 = 86.60 kV ∟00 = 86.60 + j0.0 kV

V2 = V5 = 43.30 kV ∟-1200 = 43.30 - j49.9985 kV V3 = V6 = 43.30 kV ∟1200 = 43.30 + j49.9985 kV

(15)
(16)

4.3 Perhitungan Kuat Medan Listrik dengan Persamaan Karakteristik Impedansi

Dengan menggunakan data kuat medan magnet (B) pada tabel 4.1 dan memasukkan data-data berikut ini,maka medan listrik (E) dapat dihitung ulang menggunakan persamaan 3.6:

 Diameter ACSR = 0.008 m

 Z0 = 120π w h

 π = 3,14

 w = 2πr = πd = 3,14 x 0,008 m = 0,02512 m

(17)

Selanjutnya hasil perhitungan ulang medan listrik dengan Karakteristik Impedansi disajikan pada tabel 4.3 berikut:

(18)

4.4 Perbandingan Hasil Perhitungan menggunakan Metode Bayangan dan Persamaan Karakteristik Impedansi

Berdasarkan hasil yang didapat dengan perhitungan metode bayangan dan persamaan karakteristik impedansi pada tabel 4.2 dan 4.3, maka dapat kita bandingkan hasil perhitungan yang didapat dengan kedua metode seperti disajikan pada tabel 4.4 berikut:

Tabel 4.4. Perbandingan Medan Listrik Perhitungan dengan Metode Bayangan dan Persamaan Karakteristik Impedansi

(19)

Hasil pada tabel 4.4 di atas dapat disajikan dalam bentuk grafik seperti ditunjukkan pada gambar 4.1 berikut ini:

Gambar 4.1. Grafik 2D Perbandingan Hasil Perhitungan Medan Listrik dengan Metode Bayangan dan Karakteristik Impedansi

Dari grafik di atas dapat kita lihat terdapat perbedaan yang sangat signifikan pada kedua metode, walaupun grafik masih menunjukkan lengkungan yang layak untuk grafik Medan Listrik. Perbedaan ini disebabkan persamaan karakteristik Impedansi sangat bergantung pada hasil pengukuran Medan magnet di lapangan. Berikut ini dasjikan pula grafik dalam bentuk 3 dimensi:

20 10 0 10 20

0 2 4 6 8

E kV

Perbandingan metode bayangan dan karakteristik impedansi

Metode Bayangan

(20)

Gambar 4.2. Grafik 3D Perbandingan Hasil Perhitungan Medan Listrik dengan Metode Bayangan dan Karakteristik Impedansi

4.5 Perbandingan Hasil Pengukurandengan Perhitungan

(21)

Tabel 4.5. Perbandingan Hasil Pengukuran Medan Listrik dengan Perhitungan Menggunakan Metode Bayangan

(22)

data pada tabel 4.5 di atas dapat pula disajikan dalam grafik seperti ditunjukkan pada gambar 4.3 berikut:

Gambar 4.3. Grafik 2D Perbandingan Medan Listrik Pengukuran dengan Perhitungan menggunakan Metode Bayangan

Dari grafik di atas dapat kita lihat terdapat perbedaan yang sangat signifikan pada pengukuran dan metode bayangan, walaupun grafik masih menunjukkan lengkungan yang layak untuk grafik Medan Listrik. Perbedaan ini disebabkan hasil pengukuran di lapangan bisa mengalami perbedaan baik karena faktor cuaca, kesalahan pembacaan oleh pengukur, atau masalah eksternal lainnya. Secara teori grafik yang paling mendekati untuk medan listrik adalah grafik hasil perhitungan dengan metode bayangan. Berikut ini dasjikan pula grafik dalam bentuk 3 dimensi:

20 10 0 10 20

0 2 4 6 8

E kV

Perbandingan Perhitungan dan Pengukuran

Pengukuran

(23)

Gambar 4.4. Grafik 3D Perbandingan Medan Listrik Pengukuran dengan Perhitungan menggunakan Metode Bayangan

4.5.2. Perbandingan Hasil Pengukuran dengan Perhitungan menggunakan Karakteristik Impedansi

(24)

Tabel 4.6. Perbandingan Hasil Pengukuran dengan Perhitungan menggunakan Karakteristik Impedansi

No Jarak Pengukuran

(m)

(25)

berikut ini disajikan tampilan tabel 4.6 dalam bentuk grafik seperti ditunjukkan pada gambar 4.5 berikut ini:

Gambar 4.5 Grafik Perbandingan Medan Listrik Pengukuran dengan Perhitungan menggunakan Karakteristik Impedansi

Dari grafik di atas dapat kita lihat grafik perhitungan dengan persamaan karakteristik impedansi paling mendekati dengan hasil perhitungan di lapangan. Hal ini disebabkan, dalam menghitung medan listrik dengan persamaan karakteristik impedansi kita sangat bergantung pada data medan magnet yang juga kita dapat dari hasil pengukuran di lapangan. Berikut ini dasjikan pula grafik dalam bentuk 3 dimensi.

20 10 0 10 20

0 2 4 6 8

E kV

Perbandingan Perhitungan dan Pengukuran

Persamaan Karakteristik Impedansi

(26)
(27)

BAB 5

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil-hasil yang didapat pada bab sebelumnya, maka dapatlah disimpulkan bahwa:

1. Metode bayangan dan persamaan karakteristik impedansi dapat digunakan untuk menghitung Medan Magnet pada saluran Transmisi

2. Penggunaan Wolfram Mathematic dalam perhitungan sangat memudahkan perhitungan, selain itu Wolframe juga memiliki ketelitian angka lebih akurat dengan banyak digit di belakang koma. Hal ini dapat kita lihat pada data-data yang ditampilkan pada tabel 4.2 dan 4.3.

(28)

4. Berdasarkan data yang ditunjukkan pada tabel 4.1 diketahui medan listrik tertinggi ada pada kemiringan 2 m dan terendah pada kemiringan 18 m ke kiri dari menara yaitu 8.0 kV/m dan 0.0009 kV/m. Sedangkan hasil perhitungan dengan metode bayangan masih di bawah 3 kV/m, dan nilai tertinggi di dapat 9.04779 kV/m pada kemiringan 4 m untuk perhitungan dengan persamaan Karakteristik Impedansi. Dengan demikian berdasarkan Rekomendasi IRPA/INIRC pada tabel 2.1 dan rekomendasi WHO pada tabel 2.2, jaringan transmisi SUTT 150 kV untuk G.I Titi Kuning – G.I Berastagi aman bagi kesehatan.

5.2 Saran

Ada beberapa saran untuk penelitian selanjutnya:

1. Menggunakan Metode Bayangan untuk kabel yang lain, karena sejauh ini penulis mencukupkan pada kabel terbawah dengan tinggi 19 m.

2. Menggunakan Metode bayangan untuk menghitung medan magnet untuk menyempurnakan penelitian ini.

(29)

BAB 2

TINJAUAN PUSTAKA

2.1 Medan Listrik

Secara operasional, kita dapat mendefinisikan medan listrik dengan menempakan sebuah muatan uji yan kecil q0(untuk memudahkan kita menganggap q0 positif) pada titik di dalam sebuah ruang yang diselidiki, kemudian diukur gaya yang bekerja pada benda ini. Sehingga dapat didefinisikan muatan listrik sebagai berikut:

0 q

F

E ……… (2.1)

Dari persamaan di atas diketahui E adalah besaran vector karena F adalah besaran vector, dan q0 adalah besaran skalar. Arah E searah dengan arah F yang menyatakan di dalam arah mana sebuah muatan positif yan diam akan ditempatkan pada titik tersebut akan cenderung bergerak.

2.2 Intensitas Medan Listrik

Jika sebuah muatan Q yang diam disuatu titik, dan menggerakkan sebuah muatan 1

(30)

lain, muatan kedua mengungkapkan keberadaan sebuah medan gaya di ruang sekitar 1

Q . Jika dianggap muatan kedua sebagai muatn uji Q , maka gaya yang bekerja pada 2

muatan uji ini sesuai dengan Hukum Coulomb berikut:

12 yaitu dimensi gaya per satuan muatan listrik. Untuk memenuhi kebutuhan ini sebuah besaran baru, yaitu volt (V), didiefinisikan dengan dimensi Joule per coulomb atau newton meter per coulomb (N . m/C). sehingga dengan besaran baru ini, intensitas medan listrik akan dinyatakan dengan volt per meter (V/m). dengan menggunakan huruf kapital E untuk melambangkan intensitas medan listrik, maka dapat dituiskan dengan persamaan :

(31)

Jika di dalam sebuah konduktor mengalir arus listrik, maka di sekitar konduktor tersebut akan muncul medan listrik. Hal ini disebabkan arus listrik merupakan aliran muatan listrik. Kuat medan listrik di sekitar konduktor yang dialiri arus dapat dihitung dengan menggunakan persamaan:

) / ( 2 0 2

m V a R

E r

r

 

  (2.5)

dengan:

R = jarak konduktor dengan titik pusat

r

a = vector satuan jarak konduktor

= kerapatan muatan konduktor (Coulomb/meter)

Jika dua buah konduktor yang masing-masing bermuatan bermuatan –Q dan +Q, diberi jarak d satu sama lain, maka di antara kedua konduktor tersebut akan muncul medan listrik. Dengan arah medan listrik yang ditimbulkan adalah sama disebabkan kedua muatannya berlawanan. Akibat dari medan listrik ini akan muncul potensial listrik pada masing-masing konduktor.

(32)

) ( ln 2 0 R V

d Vp



 (2.6)

Perhitungan dengan metode bayangan merupakan suatu konfigurasi lengkap yang mencakup konfigrasi awal dan konfigurasi bayangannya. Dalam aplikasinya pada saluran transmisi, ditetapkan suatu konfigurasi bayangannya dari konfigurasi penghantar terhadap tanah. Dengan tanah dianggap sebagai media yang memiliki tegangan nol volt (V=0).

Gambar 2.1 Penghantar bermuatan di atas tanah dan bayangannya

dengan:

dqp = jarak muatan q dengan titik P

Dqp = jarak bayangan muatan Q dengan titik P h = tinggi muatan Q dari permukaan tanah

Permukaan tanah dqp

Dqp

P

V=0 h

Q

(33)

Untuk saluran transmisi dengan jumlah konduktor n, potensial listrik dari masing-masing konduktornya adalah sebagai berikut:



Dalam matriks dapat dinyatakan sebagai berikut:

 Atau dapat disingkat sebagai berikut:

 

V n

   

P nnnKV

(34)

n = jumlah konduktor

h = jarak konduktor dari permukaan tanah

D = jarak konduktor dengan bayangan konduktor lain d = jarak konduktor dengan konduktor lain

V1 = potensial listrik pada konduktor 1 Vn = potensial listrik pada konduktor n

(35)

) sebanyak n, yang dapat dituliskan sebagai berikut:

( / ) ri = jarak antara konduktor I dengan titik P

= (xpxi)2 (ypyi)2

rii = jarak antara bayangan konduktor I dengan titik P

(36)

2.4 Kuat Medan Listrik dengan Menggunakan Persamaan Karakteristik Impedansi

Karakteristik Impedansi dari saluran transmisi merupakan perbandingan tegangan V dengan kuat arus I yang melewati saluran transmisi. Atau dapat ditulis secara matematis dengan persamaan berikut ini:

I V

Z0  (2.14)

Pada sebuah medan saluran transmisi, V = Eh dan I = Hw, dengan E adalah kuat medan listrik dan H adalah kuat medan magnet. Sedangkan h adalah tinggi penghantar dari tanah dan w adalah strip penghantar seperti ditunjukkan pada gambar berikut:

I = Hw

w

V = Eh

(37)

Persamaan karakteristik dari medan saluran transmisi dapat dinyatakan sebagai berikut:

Hw Eh I V

Z0   (2.15)

Jika dimisalkan h = w, maka karakteristik impedansinya adalah:

 

120

0 0

0   

H E

Z (2.16)

Gambar 2.3 Komponen medan elektromagnetik melalui sistem koordinat Hy

Ey

(38)

Dari gambar di atas dapat diasumsikan bahwa suatu penghantar dengan arah sumbu x, medan listrik E mempunyai komponen Ey dengan arah sumbu y, dan medan magnet H mempunyai komponen Hz dengan arah sumbu z.

0

z y

B

H  (2.17)

Maka dari persamaan (2.9), (2.10) dan (2.11) maka didapatlah:

0 0

h

w B Z

Eyz (2.18)

Dengan:

Ey = kuat medan listrik pada sumbu y (V/m)

0

 = Permeabilitas udara (4.10-7 H/m)

Bz = Medan magnet pada sumbu z (T) Z0 = Karakteristik impedansi () h = Tinggi konduktor dari tanah (m)

w = Strip konduktor (m)

2.5 Ambang Batas Medan Listrik dan Medan Magnet

(39)

Udara Tegangan Tinggi (SUTT) dan Saluran Udara Tegangan Ekstra Tinggi (SUTET)-Nilai

Ambang Batas Medan Listrik dan Medan Magnet.

Tabel berikut memberikan informasi tentang ambang batas yang direkomendasikan

oleh IRPA/INIRC:

Table 2.1. Rekomendasi IRPA/INIRC untuk Batas Pemaparan terhadap Medan Listrik dan

Medan Magnet yang Berlaku pada Lingkungan Kerja dan Umum untuk Frekuensi

50/60 hz

Klasifikasi Medan Listrik

(KVrms/m)

Kuat Fluks Magnetik

(mTrms)

Lingkungan Kerja:

1. Sepanjang hari

kerja

2. Waktu singkat

3. Anggota tubuh

10

30a) -

0,5

5b) 25

Lingkungan Umum:

4. Sampai

24/haric) 5. Beberapa

jam/hari

5

10

0,1

1

(40)

Catatan:

a) Lama pemaparan untuk kuat medan listrik antara 10-30 kv/m dapat dihitung dengan

rumus: t80/E dimana t = lama axposure (jam) dan E = kuat medan listrik (kV/m)

b) Lama pemaparan maksimum per hari adalah 2 jam

c) Berlaku pada ruangan terbuka, seperti tempat-tempat rekreasi, lapangan dan

sebagainya.

Batas pemaparan dapat melampaui selama beberapa menit per hari dengan syarat

(41)

2.5 Rekomendasi WHO 1990 Working Group on Health Implication of the Increased Use

of NIR Technologies

Pada tahun 1990, WHO memberikan rekomendasi untuk nilai ambang batas medan magnet

dan medan listrik seperti diinformasikan pada tabel 2.2 berikut ini:

Tabel 2.2. Nilai ambang batas Medan Listrik

Intensitas medan listrik (kV/m) Lama exposure/24 jam yang

dibolehkan (menit)

5 Tidak terbatas

10 180

15 90

20 10

25 5

Sumber: WHO dalam Suwitno 2010

Selain nilai di atas, bagi masyarakat umum WHO merekomendasikan tingkat pemaparan

(42)

2.6 Saluran Transmisi

Saluran transmisi adalah penghantar baik berupa konduktor ataupun isolator (dialektrika) yang digunakan untuk menghubungkan suatu pembangkit sinyal, disebut juga sumber, dengan sebuah penerima/pemakai yang disebut sebagai beban. Karena sinyal elektrik hanya merambat dengan kecepatan cahaya, amka sinyal elektrik juga memerlukan waktu tempuh tertentu untuk merambat dari suatu tempat atau beban. [Bonggas L. Tobing, 2003]

Prinsip transmisi secara umum adalah memindahkan tenaga dari satu titik ke titik lain. Proses pemindahan ini dapat dilakukan dengan berbagai media transmisi, baik yang digunakan pada frekuensi tinggi maupun gelombang mikro. Pada umumnya saluran transmisi yang umum digunakan yaitu saluran transisi dua kawat sejajar, kabel koaksil, bumbung gelombang, balanced shielded line, dan mikrostrip. [S. Bandri, 2013]

2.7 Peralatan yang menimbulkan Medan Listrik

Seperti kita tahu, kehidupan manusia modern tidak terlepas dari energi listrik, baik untuk kebutuhan rumah tangga, terapi, sarana kerja dan kegiatan lainnya. Dengan peralatan menggunakan listrik maka pekerjaan menggunakan tenaga listrik dalam pelaksaannya menjadi lebih cepat, praktis dan bersih.

Medan listrik di dalam dan di sekitar rumah dihasilkan dari peralatan yang dialiri listrik termasuk lampu penerangan jalan, sistem instalasi listrik rumah, oven listrik, lemari es, mesin cuci, televisi, radio, kipas angin dan sebagainya.

Keberadaan medan listrik tidak dapat dirasakan oleh indra manusia kecuali pada intensitas yang cukup besar. Seperti telah dijelaskan sebelumnya, kuat medan listrik di luar batas tertentu akan mempengaruhi kesehatan manusia. Dampak kesehatan ini termasuk di dalamnya kanker, pengaruh reproduksi dan stres. [S. Bandri, 2013]

(43)

BAB 1

PENDAHULUAN

1.1 Latar Belakang

Sistem pengiriman daya listrik dengan jaringan transmisi saluran udara tegangan tinggi (SUTT) memiliki berbagai keuntungan diantaranya: pengiriman daya listrik lebih besar, memberikan kerugian daya yang semakin kecil, memiliki keandalan yang lebih unggul, dan sebagainya. Namun demikian sistem ini memiliki kerugian yang meresahkan masyarakat, yakni akibat dari efek medan yang ditimbulkannya terkhusus bagi mereka yang tinggal di bawah atau disekitar SUTT. [Suwitno, 2010]

Keresahan masyarakat ini sudah berlangsung sejak lama. Namun perkembangan teknologi dan sulitnya untuk mendapatkan lahan menyebabkan saluran yang melewati rumah-rumah tidak dapat dihindarkan. Menyikapi hal ini

World Health Organization (WHO) telah membuat standarisasi bahwa kuat medan

magnet sebesar 240 A/m atau 0,3 mT tidak mengganggu kesehatan. Demikian pula untuk medan listrik, pada tahun 1987 WHO telah menetapkan bahwa kuat medan listrik sampai 104 V/m tidak membahayakan kesehatan manusia. Di Indonesia PLN juga telah menetapkan Standar PLN (SPLN) bahwa ambang batas medan magnet secara terus-menerus adalah 0,5 mT. [Sepannur Bandri, 2013]

(44)

Untuk itu dipergunakan juga metode Persamaan Karaktristik Impedansi untuk menganalisis kuat medan magnet dan medan listrik dengan mempertimbangan konduktor kawat yang digunakan. Kedua metode ini sama-sama bergantung pada jarak ketinggian dari permukaan tanah. Adapun bahasa pemograman yang digunakan adalah Wolfram Mathematica versi 10.01 yang merupakan bahasa pemograman yang biasa dipakai untuk bidang sains, teknik, dan matematika serta bidang komputasi teknis lainnya.

1.2 Tujuan Penelitian

Tujuan dari penelitian ini adalah:

1. Menggunakan metode bayangan dan persamaan karakteristik impedansi dalam penyelesaian perhitungan medan listrik

2. Membuat program bantu untuk mensimulasikan solusi perhitungan medan listrik dengan menggunakan perangkat lunak bahasa pemograman Wolfram Mathematica versi 10.01.

3. Membandingkan kestabilan metode bayangan dan persamaan karakteristik impedansi dalam penyelesaian perhitungan medan listrik berdasarkan hasil simulasi

(45)

Dengan dilakukannya penelitian ini, diharapkan dapat memberikan konstribusi positif terhadap usaha menanggulangi bahaya dari medan listrik bagi kesehatan. Manfaat khusus yang diharapkan diantaranya :

1. Pengaturan tinggi dari andongan jaringan transmisi SUTT 150 KV yang tidak menyebabkan bahaya bagi lingkungan dan kesehatan.

2. Program bantu dapat dikembangkan untuk menghitung medan listrik secara komputasi.

3. Memberikan informasi untuk digunakan sebagai pengembangan pengetahuan pada penelitian lanjutan khususnya bidang fisika komputasi dengan menggunakan perangkat lunak bahasa pemograman Wolfram Mathematica versi 10.01

1.4 Batasan Masalah

Penelitian ini dibatasi pada:

1. Saluran yang dianalisis adalah Saluran Udara Tegangan Tinggi (SUTT) 150 kV.

2. Metode perhitungan yang digunakan adaah metode bayangan dan metode karakteristik impedansi dengan memvariasikan jarak

3. Data lapangan diambil dari data yang diambil secara komersial secara komersial berupa kerjasama antara PT. PLN UPT Indonesia dan LP USU.

(46)

Laporan tugas akhir ini disusun dalam lima bab, yaitu sebagai berikut:

Bab 1 Pendahuluan

Bab ini menjelaskan latar belakang penelitian, tujuan penelitian, batasan masalah, manfaat penelitian dan sistematika pembahasan

Bab 2 Tinjauan Pustaka

Bab ini menjelaskan landasan teori yang digunakan dalam penelitian, yaitu medan listrik, intensitas medan listrik, metode bayangan, persamaan karakteristik impedansi serta ambang batas yang direkomendasikan oleh IRPA/INIRC dan juga WHO sebagai lembaga kesehatan Internasional.

Bab 3 Metode Penelitian

Bab ini menjelaskan tentang peralatan dan prosedur penelitian. Perancangan perangkat lunak ini menggunakan bahasa pemograman Wolfram Mathematica verci 10.01

Bab 4 Hasil dan Pembahasan

Bab ini memberikan hasil coba simulasi penyelesaian metode bayangan dan karakteristik impedansi yang telah dilakukan pada bab 3 untuk melihat kesesuaian spesifikasi metode yang digunakan sehingga dianalisa hasil yang telah diperoleh. Serta analisis kesesuaian dengan ambang batas yang telah direkomendasikan oleh WHO.

Bab 5 Kesimpulan dan Hasil

(47)

ANALISIS DATA MEDAN LISTRIK DENGAN METODE BAYANGAN DAN PERSAMAAN KARAKTERISTIK IMPEDANSI DI BAWAH ANDONGAN

JARINGAN TRANSMISI SUTT 150 KV

ABSTRAK

(48)

DATA ANALYSIS OF ELECTRICAL FIELDS WITH SHADOW AND EQUALITY UNDER THE CHARACTERISTICS IMPEDANCE

TRANSMISSION SUTT sag of 150 KV

ABSTRACT

(49)

ANALISIS DATA MEDAN LISTRIK DENGAN METODE

BAYANGAN DAN PERSAMAAN KARAKTERISTIK

IMPEDANSI DI BAWAH ANDONGAN JARINGAN TRANSMISI

SUTT 150 KV

SKRIPSI

NURHASANAH

100801051

DEPARTEMEN FISIKA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

UNIVERSITAS SUMATERA UTARA

MEDAN

(50)

ANALISIS DATA MEDAN LISTRIK DENGAN METODE

BAYANGAN DAN PERSAMAAN KARAKTERISTIK

IMPEDANSI DI BAWAH ANDONGAN JARINGAN TRANSMISI

SUTT 150 KV

SKRIPSI

Diajukan untuk melengkapi tugas dan memenuhi syarat mencapai gelar Sarjana Sains

(51)

PERSETUJUAN

Judul : Anilisis Data Medan Listrik dengan Metode Bayangan dan Persamaan Karakteristik Impedansi di Bawah Andongan Jaringin Transmisi SUTT 150 kV

Kategori : Skripsi Nama : Nurhasanah Nomor Induk Mahasiswa : 100801051

Program Studi : Sarjana (S1) Fisika Departemen : Fisika

Fakultas : Matematika dan Ilmu Pengetahuan Alam Universitas Sumatera Utara

Disetujui di Medan, Februari 2017

Disetujui Oleh:

Departemen Fisika FMIPA USU Pembimbing, Ketua,

(52)

PERNYATAAN

ANALISIS DATA MEDAN LISTRIK DENGAN METODE BAYANGAN DAN PERSAMAAN KARAKTERISTIK IMPEDANSI DI BAWAH ANDONGAN

JARINGAN TRANSMISI SUTT 150 KV

SKRIPSI

Saya mengakui bahwa skripsi ini adalah hasil kerja saya sendiri, kecuali beberapa kutipan dan ringkasan yang masing-masing disebutkan sumbernya.

Medan, Januari 2017

(53)

PENGHARGAAN

Puji syukur penulis panjatkan kepada Allah SWT yang telah melimpahkan kasih sayang serta karunia-Nya kepada Penulis dapat menyelesaikan skripsi yang berjudul

Analisis Data Medan Listrik dengan Metode Bayangan dan Persamaan Karakteristik Impedansi di Bawab Andongan Jaringan Transmisi SUTT 150 kV” ini dengan baik dan tepat pada waktu yang telah ditetapkan. Shalawat dan salam kepada Nabi Muhammad SAW sebagai suri teladan terbaik di muka bumi.

Ucapan terimakasih penulis sampaikan kepada Drs. Syahrul Humaidi, M.Sc., selaku pembimbing yang telah memberikan panduan, bantuan serta segenap perhatian dan dorongan kepada penulis dalam menyempurnakan skripsi ini. Ucapan terimakasih juga ditujukan kepada bapak Dr. Marhaposan Situmorang, dan bapak Drs. Syahrul Humaidi, M.Sc. selaku Ketua dan sekertaris Departemen Fisika FMIPA USU, Dekan dan Pembantu Dekan FMIPA USU, seluruh staff dan dosen Fisika FMIPA USU, serta pegawai FMIPA USU.

Penghargaan tak berhingga kepada Alm. Dr. Mester Sitepu, M. Sc, M. Phil. Tanpa ide, panduan dan perhatian beliau sebelumnya, skripsi ini bukanlah apa-apa. Semoga Allah menempatkan beliau di tempat terbaik di sisi-Nya.

Ucapan terimakasih terbesar penulis sampaikan kepada Ibunda tercinta Siti Hamimah Siregar dan Ayahanda Muhammad Husni Nasution tersayang, segala cinta kasih dan doa yang selalu dihadiahkan kepada penulis tanpa henti. Juga tak lupa kepada kedua adik penulis Arpiani Nasution dan Muhammad Taufik Rizki Nasution.

Tak lupa pula terima kasih kepada teman-teman terbaik penulis yang tak bisa disebutkan namanya satu persatu. Kalian telah menjadikan hari-hari penulis penuh warna dan kegembiraan.

(54)

ANALISIS DATA MEDAN LISTRIK DENGAN METODE BAYANGAN DAN PERSAMAAN KARAKTERISTIK IMPEDANSI DI BAWAH ANDONGAN

JARINGAN TRANSMISI SUTT 150 KV

ABSTRAK

(55)

DATA ANALYSIS OF ELECTRICAL FIELDS WITH SHADOW AND EQUALITY UNDER THE CHARACTERISTICS IMPEDANCE

TRANSMISSION SUTT sag of 150 KV

ABSTRACT

(56)

DAFTAR ISI

Halaman

Persetujuan ii

Pernyataan iii

Penghargaan iv

Abstrak v

Abstract vi

Daftar isi vii

Daftar tabel ix

Daftar gambar x

Bab 1 Pendahuluan 1

1.1 Latar Belakang 1

1.2 Tujuan Penelitian 2

1.3 Manfaat Penelitian 3

1.4 Batasan Masalah 3

1.5 Sistematika Pembahasan 4

Bab 2 Tinjauan Pustaka 5

2.1 Medan Listrik 5

2.2 Intensitas Medan Listrik 5 2.3 Kuat Medan Listrik dan Metode Bayangan 7

2.4 Kuat Medan Listrik dengan Menggunakan Persamaan 12 Karakteristik Impedansi

2.5 Ambang Batas Medan Listrik dan Medan Magnet 14 2.6 Rekomendasi WHO 1990 Working Group on Health of

the Increased Use of NIR Technologies 17

2.7 Saluran Transmisi 18

2.8 Peralatan yang Menimbulkan Medan Listrik 18

Bab 3 Metode Penelitian 19

3.1 Analisis Masalah 19

(57)

4.5 Perbandingan Hasil Pengukuran dan Perhitungan 35 4.5.1 Perbandingan Hasil Pengukuran dengan Perhitungan

Menggunakan Metode bayangan 35 4.52 Perbandingan Hasil Pengukuran dengan Perhitungan

Menggunakaan Persamaan Karakteristik Impedansi 38

Bab 5 Kesimpulan dan Saran 42

5.1 Kesimpulan 42

5.2 Saran 43

Daftar Pustaka 44

(58)

DAFTAR TABEL

Halaman Tabel 2.1 Rekomendasi IRPA/INIRC untuk batas pemaparan

Terhadap Medan Listrik dan Medan Magnet pada Lingkungan Kerja dan Umum untuk Frekuensi

50/60 Hz 15

Tabel 2.2 Nilai Ambang Batas Medan Listrik 17 Tabel 4.1 Hasil Pengukuran Medan Listrik dan Medan Magnet di

Menara 39-40 G.I Titi Kuning – G.I Berastagi 28 Tabel 4.2 Hasil Perhitungan Medan Listrik dengan Metode

Bayangan 30

Tabel 4.3 Hasil Perhitungan Medan Listrik dengan Persamaan

Karakteristik Impedansi 32 Tabel 4.4 Perbandingan Hasil Perhitungan Menggunakan Metode

Bayangan dan Persamaan Karakteristik Impedansi 33 Tabel 4.5 Perbandingan Hasil Pengukuran dengan Perhitungan

Menggunakan Metode Bayangan 36 Tabel 4.6 Perbandingan Hasil Pengukuran dengan Perhitungan

(59)

DAFTAR GAMBAR

Halaman Gambar 2.1 Penghantar bermuatan di atas tanah dan bayangannya 8 Gambar 2.2 Prespektif medan listrik dan medan magnet 12 Gambar 2.3 Komponen Medan Elektromagnetik melalui sistem

Koordinat 13

Gambar 3.1 Tampilan halaman kerja Wolframe versi 10.01 22 Gambar 3.2 Diagram alir penelitian 24 Gambar 4.1 Konstruksi menara transmisi 150 kV antara G.I Titi

Kuning dan G.I Berastagi 27

Gambar 4.2 Grafik 2D Perbandingan hasil perhitungan medan listrik dengan Metode Bayangan dan Persamaan Karakteristik

Impedansi 34

Gambar 4.3 Grafik 3D Perbandingan hasil perhitungan medan listrik dengan Metode Bayangan dan Persamaan Karakteristik

Impedansi 35

Gambar 4.4 Grafik 2D Perbandingan hasil medan listrik pengukuran

dengan perhitungan menggunakan Metode Bayangan 37 Gambar 4.5 Grafik 3D Perbandingan hasil medan listrik pengukuran

dengan perhitungan menggunakan Metode Bayangan 38 Gambar 4.6 Grafik 2D Perbandingan hasil medan listrik pengukuran

dengan perhitungan menggunakan Persamaan Karakteristik

Impedansi 40

Gambar 4.6 Grafik 3D Perbandingan hasil medan listrik pengukuran dengan perhitungan menggunakan Persamaan Karakteristik

Gambar

Gambar 3.1 Tampilan halaman kerja Wolframe versi 10.01
Gambar 3.2 diagram alir penelitian
Gambar 4.1 Konstruksi menara transmisi 150 kV antara G.I titi Kuning dan G.I
Tabel 4.1. Hasil Pengukuran Medan Listrik dan Medan Magnet di menara 39-40 G.I
+7

Referensi

Dokumen terkait

Tugas Akhir dengan judul “ANALISIS TAHANAN PENTANAHAN TOWER SALURAN UDARA TEGANGAN TINGGI (SUTT) 150 KV TRANSMISI PALUR - SRAGEN” ini telah dipertahankan dan

bahwa Pola distribusi intensitas radiasi medan magnet di bawah SUTT 150 kV menunjukkan nilai yang tinggi pada saat berada tepat di bawah kabel phasa kemudian

perhitungan yang didapat dengan kedua metode seperti disajikan pada tabel

bahwa Pola distribusi intensitas radiasi medan magnet di bawah SUTT 150 kV menunjukkan nilai yang tinggi pada saat berada tepat di bawah kabel phasa kemudian

Sesuai denan judul skripsi ini, yaitu “ Menghitung Andongan Kawat Penghantar Pada Saluran Transmisi 150 kV ” , maka penulisan Skripsi ini hanya terbatas pada aspek-aspek

proteksi rele jarak pada SUTT 150 kV sistem kelistrikan Lombok dengan beroperasinya PLTU LED 2x25 MW sehingga diharapkan proteksi tetap dapat bekerja secara cepat dan

Pada tabel 2, menunjukkan pengukuran intensitas medan magnet ELF tanpa menggunakan penghalang atap, intensitas radiasi medan magnet ELF di bawah SUTT 150 kV

Perhitungan Kuat Medan Listrik Di Bawah Saluran Transmisi Studi Kasus : Perencanaan Transmisi 27 5 kV Galang-Binjai Studi Pengaruh Korona Terhadap Surja Tegangan Lebih Pada Saluran