• Tidak ada hasil yang ditemukan

Optimal Dynamic Inversion Based Control Of An Overhead Crane.

N/A
N/A
Protected

Academic year: 2017

Membagikan "Optimal Dynamic Inversion Based Control Of An Overhead Crane."

Copied!
24
0
0

Teks penuh

(1)

OPTIMAL DYNAMIC INVERSION BASED CONTROL OF AN OVERHEAD CRANE

AHMAD EDHAM BIN MOHAMMAD

(2)

UNIVERSTI TEKNIKAL MALAYSIA MELAKA

FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek : OPTIMAL DYNAMIC INVERSION BASED CONTROL OF AN OVERHEAD CRANE

Sesi

Pengajian : 2008/2009

Saya AHMAD EDHAM BIN MOHAMMAD mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi

pengajian tinggi.

4. Sila tandakan ( ) :

SULIT*

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

TERHAD* (Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan oleh:

__________________________ ___________________________________

(TANDATANGAN PENULIS) (COP DAN TANDATANGAN PENYELIA)

Alamat Tetap:

LOT P.T 11083, LRG 2 KANAN, JLN. GONG PASIR, 23000, DUNGUN TERENGGANU.

(3)

OPTIMAL DYNAMIC INVERSION BASED CONTROL OF AN OVERHEAD CRANE

AHMAD EDHAM BIN MOHAMMAD

This report is submitted in partial fulfillment of the requirements for the award of Bachelor of Electronic Engineering (Industrial Electronics) With Honours

Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

(4)

iii

“I hereby declare that this report is the result of my own work except for quotes as cited in the references”

(5)

iv

“I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering

(Industrial Electronics) with Honours.”

Signature :………. Supervisor’s Name :MDM. AZDIANA BINTI MD YUSOP

(6)

v

To my beloved family, mum, dad, brothers and sisters, thanks for your support and encouragement that you have given in my life. Also to my supervisor, thanks for your guide and the supports that been given

to me in completing this work. And also not forget to all of my friend and people

(7)

vi

ABSTRACT

(8)

vii

ABSTRAK

(9)

viii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

BORANG PENGESAHAN STATUS LAPORAN i

PAGE TITLE ii

AUTHOR DECLARATION iii

SUPERVISOR DECLARATION iv

DEDICATION v

ABSTRACT vii

ABSTRAK vii

CONTENTS viii

LIST OF TABLES xii

LIST OF FIGURES xiii

LIST OF SYMBOLS xv

LIST OF APPENDIXS xvi

I INTRODUCTION 1

1.1 Introduction 1

1.2 Objective 3

1.3 Problems Statement 3

1.4 Scopes of work 4

1.5 Methodology 5

(10)

ix

2.1 Optimal Dynamic Inversion Method 7 2.2 Luenberger Observer 8 2.3 Background on Gantry Crane 8

2.3.1 Types of Gantry Cranes 9

2.4 Motion Control System 11

2.4.1 Stepper Motor 12

2.4.1.1 Fundamentals of Operations 12 2.4.1.2 Stepper Motor Characteristics 12 2.4.1.3 Open-loop versus closed-loop commutation 13 2.4.1.4 Types of Stepper Motor 13

2.4.2 Operation principles of stepper motor 14 2.5 Data Acquisition Board (DAQ) 15

2.5.1 Acquisition of Data 16

2.6 Microcontroller 18

2.6.1 Programming Environment 19 2.7 Overview Microchip PIC 20 2.7.1 Data space (RAM) 21

2.7.2 Code Space 22

2.7.3 Word Size 22

2.7.4 Stacks 22

2.7.5 Limitation 23

2.8 Signal Conditioning (SCC-68) 24

(11)

x

3.1.4 Stage4 28

IV MODELING OF THE GANTRY CRANE SYSTEM 29

4.1 Assumption and Limitation 30 4.2 Modeling of a Gantry Crane 30

4.3 Modeling Techniques 31

4.4 Mathematical Modeling of a Gantry Crane 36

4.5 Controller Design 45

4.5.1 Observability and Controllability Test 45

4.5.2 Pole Placement 46

4.5.3 Dynamic Inversion-Based Control Design 49 4.5.4 State-Feedback Control Design 49

4.5.5 For 20 OS% Ts=5s 50

4.5.6 For 20 OS% Ts=1s 54

V SIMULATION RESULTS AND DISCUSSION 57

5.1 General SIMULINK Model of the Open Loop system 57 5.1.1 Nonlinear Model Function Block Parameters 58

5.2 Simulation Results of Open Loop System 59

5.2.1 Input Force 59

5.2.2 Sway Angle 60

5.2.3 Position of the Trolley 61 5.3 General Model of Closed Loop System 62 5.3.1 State Feedback Controller 63

(12)

xi 5.4.4 Graph Sway Angle for OS=20% Ts=1s 67

5.4.5 Comparison Graph Position of the Trolley for

OS=20% Ts=5s and Ts=1s 68 5.4.6 Comparison Graph Sway Angle for OS=20%

Ts=5s and Ts=1s 69

VI HARDWARE IMPLEMENTATION 71

6.1 Microcontroller 71

6.1.1 Pin description 72

6.1.2 Microcontroller Schematic 74 6.1.3 L293D Motor Driver IC 76 6.1.4 Motor Driver Schematic 77

6.1.5 Rotation for Stepper Motor and Trolley Wheel 79

6.2 Hardware Implementation 79

VII CONCLUSION 90

7.1 Conclusion 90

7.2 Future Works 91

(13)

xii

LIST OF TABLES

NO TITLE PAGE

5.1 Simulations result 70

(14)

xiii

LIST OF FIGURES

NO TITLE PAGE

1.1 Project flow chart 6

2.1 Super-PostPanamax portainer crane 9 2.2 Workstation Gantry crane 10 2.3 Rail Mounted or EOT Gantry Cranes 11 2.4 Operation principles of stepper motor 15

2.5 PIC Microchip 19

2.6 PIC 21

2.7 Signal Conditioning (SCC-68) 24 2.8 SCC-68 Power Distribution Block Diagram 25

4.1 Gantry Crane Model 29

4.2 Block Diagram of Linear System 35 4.3 F(t) Approximated by sequence of pulses 36 4.4 Trolley Free Body Diagram 37 4.5 Load’s Free Body Diagram 37 4.6 Block Diagram Based on State Space Equation 42

4.7 Modified block diagram 42

(15)

xiv 4.13 Find gain, K using M-File 55 4.14 Find integral gain, K5using M-File 56

5.1 Open loop system for linearized model 58 5.2 Nonlinear Model function block parameters 58 5.3 Graph of Input Force vs. Time 59 5.4 Graph of sway angle vs. Time 60 5.5 Graph Position of the Trolley vs. Time 61 5.6 Nonlinear Model with feedback control system 62 5.7 State Feedback controller 63 5.8 Graph Position of the Trolley vs. Time for OS=20% TS=5s 64 5.9 Graph of Load Sway Angle vs. Time for OS=20% TS=5s 65 5.10 Closed Loop Trolley Position vs. Time OS=20% for Ts=1s 66 5.11 Closed Loop Load Sway Angle vs. Time for OS=20% Ts=1s 67 5.12 Comparison Graph Position of the Trolley Position 68 5.13 Comparison Graph Position of the Payload Sway Angle 69 6.1 PIC16F84A block diagram 72 6.2 Pins description for PIC16F84A 73 6.3 Microcontroller Schematic 74

6.4 IC L293D 76

6.5 Motor driver schematic 77

6.6 Stepper motor and run wheel diagram 79 6.7 Solver Configuration Parameter 80 6.8 Hardware Implementation task pane 81 6.9 Hardware Implementation task pane 81 6.10 Real Time Application task pane 82

6.11 Error Notification 83

(16)

xv

LIST OF SYMBOLS

M, mc- Trolley mass m, ml- Payload mass

l - Length of the hoisting rope Fx - Input force

G - Gravitational acceleration = 9.81ms-2 G - Centre point

x - Trolley position

.

x- Velocity ..

x- Acceleration

θ - Sway angle .

θ- Angular velocity ..

(17)

xvi

LIST OF APPENDIX

NO TITLE PAGE

1 Optimal Dynamic Inversion Based of an Overhead Crane 95 2 Anti-Sway Control of Container Cranes: Inclinometer,

Observer, and State Feedback 102

(18)

CHAPTER I

INTRODUCTION

In this chapter there will be a discussion on this project title of optimal dynamic inversion based control of an overhead crane. The project introduction, project objective, problem statement, and scopes of work and methodology will also be presented.

1.1 Introduction

(19)

2 model is considered for the controller design, then the attained performances have to verified against a complete nonlinear model) and the value of certain parameters such as the rope length and the payload mass may significantly vary during the operations. Moreover, in the minimization of the motion time of the payload the trolley driving motor constraint have to be taken into account.

In many cases system uncertainties and actuator constraints are not taken into account and often the controller design is done by optimizing only one side of the problem either the traveling time of the payload is minimise or the swinging effect is reduced. Therefore, it seems that a design technique that is capable of achieving different goals in a unified frame work still lacking.

A methodology based on dynamic inversion, for the design of a robust feedforward/feedback control scheme which allows us to significantly reduce the transient sway and residual oscillation of the payload, whilst minimizing the traveling time and taking into account the trolley’s actuator constraints. The methodology basically consists of linearising system and dampening it by means of a robust state-feedback controller. Then, after having defined a family of desired smooth polynomial motion laws for the payload depend on the motion time, the corresponding family of reference inputs is subsequently determined by inverting the nominal closed-loop system. Finally, with a worst case approach, the motion time can be opportunely minimized ensuring that limits on the trolley’s actuator are not exceeded.

(20)

3 1.2 Objective

The objective of this project is to develop an optimal dynamic inversion based control for a gantry crane system where this system can reduce the transient sway, residual oscillation, traveling time and reach the target position without vibration.

1.3 Problems Statement

Gantry cranes are widely used for factories, transportation, nuclear installation and also construction. The crane has to move as fast as possible without causing any excessive movement at the final position or during it moves. However, moving the payload using the crane is not an easy task especially when strict specifications on the swing angle and on the transfer time need to be satisfied. The swing motion when payload is suddenly stopped after a fast motion can be reduced but very wasting time. Moreover, the gantry crane needs a skilful and experience operator to control manually for stopping the swing immediately at the right position. Beside this, the operator also needs time to wait the string stop from vibration after movement the load. The vibration is a serious problem in a mechanical system. A gantry crane system with inverse dynamic method can used to solve this problem

(21)

4 1.4 Scopes of Work

During the project, there a scope of work that will guide student in their project. It’s a guideline which student should attain to fulfill the requirement of project. The scopes of work are listed as below:

i. Learn the basic concept of a dynamic inversion analysis. ii. Develops the system based of an optimal dynamic inversion.

iii. Modeling of a gantry crane consists of dynamic derivations of gantry crane model, dynamic inversion analysis.

iv. Perform a controllability and observability test before designing a controller. v. Designing a state feedback control using pole placement method related to the

optimal control.

vi. Applying the design of nonlinear gantry crane block in MATLAB SIMULINK to analyze to simulation result.

vii. Interface the gantry crane system control design in MATLAB Simulink with the hardware.

viii. Evaluation of any problems in the project.

(22)

5 1.5 Methodology

Start

Develops the system based of an optimal dynamic inversion.

(Review of theory related to optimal dynamic inversion, Familiarization of MATLAB

Simulink etc.)

Modeling a gantry crane system consist of dynamic inversion analysis.

(Dynamic derivation of crane model)

Designing a controller by using poles placement method related to the optimal control.

Apply the design using nonlinear block in the MATLAB Simulink

to analyze the simulation result.

(23)

6

Continue

Interface the gantry crane system control design in MATLAB Simulink

with the hardware.

Evaluation of any problems in this project and come out with result and analysis of

this project.

[image:23.612.214.446.94.439.2]

End

(24)

CHAPTER II

LITERATURE REVIEW

This chapter contains the reviews and information about the project on several important concepts on optimal dynamic inversion and tools that were used in this project. Each fact and information is guided by journals and other references. It will be compared and the best method will be choosing for this project. This literature review will also include the review of several types of cranes.

2.1 Optimal Dynamic Inversion Method

Gambar

Figure 1.1: Project flow chart

Referensi

Dokumen terkait

Bagi para pembina dan pelatih cabang olahraga taekwondo diharapkan dengan hasil penelitian yang didapat bisa lebih memperhatikan komponen-komponen kondisi fisik

Yoke flange adalah merupakan bagian dari komponen otomotive pada transmisi penggerak roda belakang , yang salah satu bagian permukaan perlu memenuhi kekasaran

Aspek bahasa yang dikembangkan dalam penelitian pengembangan buku ajar menulis nonsastra berdasarkan strategi RAFT ( Role Audience Format Topic) untuk SMP/MTs kelas VIII

Dapat mengefektifkan waktu karena dengan adanya sistem informasi yang. baik maka semakin mudah untuk pencarian data, perhitungan

teknologi yang canggih (high-tech) , dengan harapan dapat menjanjikan Garuda Bandung Arena sebagai salah satu lapangan basket internasional yang.. representatif

Pengaplikasian 2 cara tersebut (eceng gondok dan aerasi) memungkinkan adanya penurunan yang cukup banyak baik untuk kadar BOD maupun COD. Berdasarkan hasil

Berdasarkan Surat Keputusan Pejabat Pengadaan Barang/Jasa Dinas Bina Marga Kabupaten Lebak Nomor : 602.1/62-PPBJ/SKPPBJ/DBM/APBD/2016 Tanggal 06 Juni 2016 Tentang Penetapan

memindahk an batu, kapur, penghapus lilin dari satu tempat ke tempat yang lain dan cara memperhati kan bentuk dan volume benda- benda tersebut2.