• Tidak ada hasil yang ditemukan

Analisis Frekuensi Gelombang Ul Trasonik Terbadap Radius Gelembung Ka Vitasi Pada Sistem Cairan Kompresibel

N/A
N/A
Protected

Academic year: 2017

Membagikan "Analisis Frekuensi Gelombang Ul Trasonik Terbadap Radius Gelembung Ka Vitasi Pada Sistem Cairan Kompresibel"

Copied!
8
0
0

Teks penuh

(1)

ANALISIS FREKUENSI GELOMBANG UL TRASONIK TERBADAP RADIUS GELEMBUNG KA VITASI PADA SISTEM CAIRAN

KOMPRESIBEL

Tb Gamma N.R.•, Musi Kumiati, Htndradi Hadritnata Departemen Fisika lnstitut Pertanian Bogor

tubagusgamma@yahoo.com

ABSTRAK

Tclah dilalc:ukan penelitian metode numcrik dari persamaan dinamika gclembung k.avit.asi yang dihasilkan mclalui gelombang ultrasonik. Pendckatan untuk mendapatkan pcrsamaan dinamika gclembung kavitasi mcnggunakan pcrmisalan bahwa keccpatan fluida jauh lebih kccil dari kecepatan suara, dan mengabaikan cfek dari gravit.asi. Metode numcrik dari pcrsamaan gelcmbung mcnggunakan program MA TI.AB. dengan metode ODE45. Metode numerik dilalc:ukan dcngan melakukan variasi pada nilai frckuensi (/),

scbesar 450 kHz, 500 kHz. dan 550 kHz. Variasi dari frckucnsi dilakukan untuk melihat efeknya tcrhadap perubahan dinamika gelcmbung kavitasi.

Kata lumci : Kavitasi, Ultrasonik. ODE45.

PENDAHULUAN

Kavitasi merupakan suatu gelembung yang muncut di dalam cairan akibat adanya

perubahan tekanan dalam cairan (1]. SaJah satu sumber dari perubahan tekanan tersebut

adaJah penjalaran gelombang ultrasonik di dalam cairan.

Penjalaran gelombang ultrasonik akan mengakibatkan pertumbuhan gelembung pada 7.31 cair hingga ukuran tertentu, sctelah mencapai ukuran maksimum gelembung ini akan mengalami tekanan kc arah pusat gelembung, dan mengakibatkan kenmtuhan ukuran dengan kecepatan yang sangat tinggi [2). Gelembung kavitasi dapat memunculkan tekanan dan temperatur yang sangat tinggi pada titik kompresi gelernbung (3).Suhu dan tekanan yang dihasitlcan dari fenomcna ini akan sangat bergantung pada parameter-parameter yang digunakan dalam gelombang ultrasonik, tenrtama frekucnsi dan intensitas.

..

Sifat-sifat dari gelcmbung kavitasi menyebabkannya dapat dimanfaatkan bagi kepentingan manusia., terutama di dalam bidang nanoteknologi. Pada bidang ini dia difokuskan sebagai suatu mctodc untuJc mendapatkan uJcuran yang seragam dan minimal, umumnya dalam ordc nanometer. Metodc yang digunakan untuJc menghasilkan partlkcl bcrskala nanometer dcngan menggunakan gclcmbung kavitasi dikenaJ sebagai tchnik sonokimia [4]. Metodc ini digunakan karena ia tidak merubah sifat-sifat kimjawi dari

(2)
(3)

partikel, selain itu ia dianggap lebih efisien dibandingkan metode lainnya [5]. Dalam metode

ini partikel dilarutkan dalam zat cair, yang dilanjutkan dengan memberikan gelombang

ultrasonik dengan frekuensi yang umumnya berkisar antara 20-25 kHz (6]. Ukuran partikel

yang dihasilkan akan sangat bergantung kepada kondisi-kondisi yang digunakan dalarn

penelitian seperti optimasi alat, parameter-parameter dari gelombang, dan karakteristik cairan

yang digunakan.

Pada bidang medis penggunaan gelembung kavitasi digunakan dalam tehnik

pengiriman obat (DDS) ke suatu organ yang bennasalah (7]. Metode ini bertujuan untuk

mengirimkan obat tepat pada sistem organ yang bermasalah, sehingga dapat mengurangi efek

samping dari obat terhadap organ lainnya [8]. Untuk mengirimkan obat tersebut menuju

organ yang diinginkan dibutuhkan polimer sebagai pembung.kus dari obat dan partikel

magnetis, agar ia tidak terlarut sebelwn mencapai organ yang diinginkan. Setelah ia mencapai organ yang dituju maka obat akan dilepaskan dengan cara menembakkan ultrasonik untuk menghasilkan gelembung kavitasi yang digunakkan untuk merusak polimer pembungkus.

Pada penelitian ini dilakukan analisa untuk menggambarkan dinamika pergerakan

dari gelcmbung kavitasi dengan mengamati kebergantungan jari-jari gelembung terhadap

frekuensi gelombang ultrasonik.

2 METODOLOGI

Untuk memahami pergerakan dari gelembung kavitasi diperlukan pemahaman yang

baik mcngcnai aliran tluida yang pcrgcrakannya diatur oleh konscrvasi massa dan

momentum (9, 10]. Pada arah radial r dapat dituliskan sebagai :

!(

0

P +vR

0

P)+v"R

=O

o>

p 01 fJr

evR

evR

1

op

- + v

=

-81 R Or p Or

(2)

dimana p adalah kerapatan, p adalah tckanan dan vR adalah kecepatan pada arah radial.

Dikctahui bahwa kcccpatan suara pada fluida dapat digambarkan sebagai suatu nilai

perubahan tekanan terhadap kerapatannya sehingga:

(4)

c=

{?P

va;;

(3)

Selain itu diketahui bahwa nilai perubahan cntalpi diberikan oleh dh = p·1 dp,schingga

bisa didapat

セK」セIイ\ー@

= 0

ar

ar

(4)

Dengan mcnurunkan persamaan di atas tcrhadap t dan mcnggunakan pcrsamaan

konscrvasi momentum didapatkan

Dcngan mcnggunakan pcrsamaan konservasi massa dan momentum serta hubungan

dp = c-idp akan didapatkan cmpat pcrsamaan turunan parsial dari p dan v pada dinding gelcmbung, dimana

H。カセIr@

] 、カセKHカセ

R@

)(d%,}+2vRJ.:

(0%)R

]、ELKpGヲrH、カセI@

H。カセL@

)R

=

{YJX2

Xd%,}-2vri;

(0%,)R

]Mセ、カセI@

(6)

Dcngan mengsubstitusikan pcrsamaan di atas kc persamaan (S) akan didapatkan suatu pcrsamaan difercnsial untuk kecepatan dinding gclcmbung

r、カrHQM

vァIKセカOHQMセセI]⦅Aス⦅@

、pHセKセKセIK@

rdp

(7)

dt

c

2 3

c

P"1t di

c

c

2

c

3 " • p

Pcrsamaan di atas dapat disedcrhanakan dengan menghilangkan variabcl yang mcmiliki orde lcbih bcsar dari satu untuk (;), schingga

(8)

(5)

Pada penjalaran gclombang di dalam fluida nilai dari tckanan akan bcrubah-ubah terhadap waktu yang diakibatkan olch variasi jarak antar molckul, yang dapat dituliskan sebagai

P

=

PA

sin

2nfl (9)

dimana PA adalah amplitudo tckanan

Selain dari gclombang ultrasonik tckanan yang muncul pada gclcmbung dipengaruhi oleh tcgangan pcrmukaan (S) pada pcrmukaan gclcmbung, cfck viskositas (µ). dan tckanan hidrostatis (p11) schingga dapat dituliskan

( 2S

x

Ro )

3

' 2S 4 µ dR .

P= p

+ - -

- - - p -P

sm{2nft)

" R 0 R R R dt セ@ A

(10)

Pcrsamaan-pcrsamaan di atas dimodelkan mcnggunakan MATLAB dimana kita tcntukan bahwa Ro scbcsar 10-6 m, amplitudo tckanan 114 lcPa, viskositas 0,001 N.s/m2,

tcgangan pcnnukaan 0,073 Nim, kcrapatan 998 kg/m1, tckanan hidrostatis 101,32 lcPa, dan

rasio kapasitas panas 1,4. Pemodclan ini dilakukan pada tiga nilai frckucnsi yang bcrbcda, yakni 450 kHz. 500 kHz dan 550 kHz.

3HASIL DAN PEMBAHASAN

Dari hasil yang didapatkan diperlihatkan bahwa bcsamya rentang antara HriセI@ maksimum dan (R/R..) minimum a.lean semakin kccil dcngan meningkatnya nilai frckucnsi yang digunakan. yaitu t,54 untuk/ • 450 kHz, 1,26 untuk/ = 500 kHz, dan 0,98 untuk/c: 550 kHz. scpcrti yang dipcrtihatkan pada gambar 4.

(6)

Oinamlka ka\litasi

2 . 2 2

1 . 8

t

1 . 6 1 .•

1 . 2

セ@

1

l

0 . 8

0 . 8 O. • 0 . 2

0 50 100 150 200 250 300

Wektu(/mua)

Gambar I Model pcrsamaan kavitasi untuk frckuensi/ = 450 kHz

Olnemlke k•\llteal

2 1 . 8

1 . 8

セ@

1 . •

1 . 2

[

1

l

0 . 8

0 . 8 O.•

0 50 100 150 200 250 3o0

Wektu(/mua )

Gambar 2 Model pcrsamaan kaYitasi untuk frekuensi/ = 500 kHz

[image:6.636.119.559.82.771.2]
(7)

Dinamika ka'llitasi

1 . 8 1.6

1.4

セ@

1.2

1

セ@

0 . 8

l

0.6 0.4 0 . 2

0 50 100 150 200 250

[image:7.614.22.545.53.629.2]

Waktu(/mua)

Gambar 3 Model persamaan kavitasi untuk frekuensi/= 550 kHz

Gambar 4 Plot grafik dari frekueni(f) vs /J.(R/R.,)

Dari model juga dapat diperlihatkan bahwa dengan semakin bertambahnya frekuensi akan meningkatkan kecepatan dari pergerakan siklus refraksi-kompresi yang dialarni gelembung.

Prosiding セュゥョッイ@ Nasional Sains IV: Bogar. 12 November 20 I I 480

(8)

4 KESIMPULAN

Kavitasi dapat muncul di dalam cairan dengan memberikan variasi tekanan terhadapnya, sehingga a.kan memunculkan siklus refraksi-kompresi pada cairan yang tejadi secara bcrulang, tcrgantung dari kondisi cairan yang digunakan.

Kavitasi dapat dibagi mcnjadi dua jenis, yakni kavitasi hidrodinamik yang muncul akibat tekanan yang bcrasal dari pcrgera.kan cairan. Kedua adalah kavitasi akustik , muncut akibat tekanan yang bcrasal dari gelombang.

Dengan scmakin meningkatnya frekuensi gelombang yang digunakan untuk menghasilkan kavitasi, akan meningkatkan keccpatan pergerakan dari gelembung kavitasi. Selain itu peningkatan frekuensijuga akan menurunkan nilai rentang (R/Ro), dimana R adalah radius gelembung pada suatu waktu dan

Roadalah

gelembung awal.

Nilai rcntang (R/Ro) maksimum pada penelitian ini didapatkan pada frekuensi 450 kHz dengan nilai 1,53 dan nilai minimum pada frekuansi 550 kHz dengan nilai 0,98.

DAFT AR PUST AKA

[I

J

Noltingk B.E, Neppiras E.A. Cavitation Produced by Ultrasonics: Theoretical conditions for the onset of cavitation . Phys. Rep. 6 I, 160-25 I ( 1980)

(2) Neppiras, E.A. Acoustic cavitation. Phys. Rep. 61 , 160-251 (1980)

[3] Hickling R., Plesset M.S. Collapse and rebound of a Spherical Bubble in Water. The Physics of Fluids 7 (1964) 7

(4) Mason T J ., Lorimer J.P. Applied Sonochemistry: The Uses of Power Ultrasound in Chemistry and Processing. Coventry University. Coventry (2002)

(5) Arrojo S., Benitto Y. A theoretical study of hydrodynamic cavitation. Ultrasonics Sonochemistry I 5 (2008) 203·2 I I.

(6) J.P. Franc and J. M. Michel. Fundamental.r of cavitation. University of Grenoble. France (2005).

[7] Alfonso, M. High-Frequency ultrasound drug delivery and cavitation. Brigham Young University (2007).

(8) G.P. William, A.H. Ghaleb and J.S. Bryant Ultrasonic Drug Delivery-A General Review. Expert Opin Drug De/iv. 2004 November; 1(1): 37- 56.

Gambar

Gambar I Model pcrsamaan kavitasi untuk frckuensi/= 450 kHz
Gambar 3 Model persamaan kavitasi untuk frekuensi/= 550 kHz

Referensi

Dokumen terkait

Usaha Kecil dan Menengah (UKM) merupakan sektor ekonomi yang memiliki peran yang sangat vital dalam pembangunan dan pertumbuhan ekonomi di Indonesia. Hal ini terbukti

Alhamdulillah penulis ucapkan kehadirat Allah SWT atas rahmat dan karunia- Nya sehingga penulis dapat menyelesaikan Tesis dengan judul Penambahan Senam Otak pada

Hwalnya terasa gatal-gatal di pergelangan dan punggung kaki kiri lebih kurang 1 bulan yang lalu3 kemudian berobat ke dokter umum diberi obat minum penghilang rasa gatal3 di minum

Pasangan Kepala Rumah Tangga Kepala Rumah Tangga Anggota Rumah Tangga Lain diatas 18

Dalam makalah ini akan dibahas 8 bioma darat utama, diantaranya bioma hutan tropis, bioma sabana, bioma gurun, bioma semak belukar, bioma padang rumput, bioma hutan gugur, bioma

RPC-777/PSS/2016, tanggal 8 april 2016, telah mendapat opini auditor bahwa laporan keuangan konsolidasian terlampir menyajikan secara wajar, dalam semua hal yang material, posisi

Konglomerasi Keuangan BNP Paribas Indonesia telah memiliki Pedoman Audit Intern Terintegrasi dimana tertera bahwa SKAIT wajib membuat dan menyampaikan Laporan

Dalam pada itu, melihat aturan baku penanggalan Im Yang Lik, bahwa saat terjadinya konjungsi pada bulan Desember harus selalu jatuh pada bulan ke-11 sistem