• Tidak ada hasil yang ditemukan

UNIVERSITAS NEGERI YOGYAKARTA F A K U L T A S M I P A

N/A
N/A
Protected

Academic year: 2021

Membagikan "UNIVERSITAS NEGERI YOGYAKARTA F A K U L T A S M I P A"

Copied!
21
0
0

Teks penuh

(1)

Fakultas : FMIPA

Program Studi : Pendidikan Matematika Mata Kuliah/Kode : Teori Bilangan MAT 212 Jumlah SKS : Teori= 2 sks; Praktek= - Semester : Genap

Mata Kuliah Prasyarat/kode : Logika dan Himpunan, MAT 302 Dosen : Sukirman,MPd

I. Diskripsi Mata Kuliah : Kajian bilangan bulat dan sifat-sifatnya berkenaan dengan relasi keterbagian, FPB dan KPK, bilangan prima, relasi kekongruenan, fungsi aritmetik, akar primitif dan indeks.

II. Standar Kompetensi Mata Kuliah: Menerapkan sifat-sifat bilangan bulat untuk pemecahan masalah yang berkaitan dengan bilangan bulat.

III. Rencana Kegiatan Tatap

Muka ke

Kompetensi Dasar Materi Pokok Strategi Perkuliahan Standar Bhn /Referensi I II, III IV V, VI VII, VIII, IX, X Menerapkan induksi matematik dan teorema binomial dalam pemecahan masalah bilangan bulat. Menjelaskan sifat-sifat keterbaguan, FPB dan KPK serta dapat menerapkan untuk pemecahan masalah sehari-hari yang berkaitan Menjelaskan konsep basis bilangan dan

menerapkannya dalam berbagai basis beserta operasinya.

Menjelaskan peranan bilangan prima dalam bilangan bulat dan menerapkannya dalam pemecahan masalah bilangan bulat. Menjelaskan konsep kekongruenan dan sifat-sifatnya serta 1. Pendahuluan a. Induksi matematik b. Teorema Binomial 2. Keterbagian a. Relasi keterbagian b. FPB dan KPK 3. Basis Bilangan 4. Faktorisaasi a. Bilangan prima b. Faktorisasi Tunggal 5. Kekongruenan a. Pengertian dan sifatnya Belajar mandiri, diskusi, kerja kelompok, tugas. Sda Sda Sda Sda A 3 – 32 A 33 – 54 A 55 – 68 A 69 – 86 A 87–135

(2)

XI XII, XIII XIV XV, XVI mengaplikasikannya dalam menyelesaikan perkongruenan linier dan system perkongruenan linier.

Menjelaskan teorema Fermat dan Wilson dan menerapkannya untuk memecahkan masalah yang terkait. Menerapkan fungsi aritmetik dalam memecahkan masalah bilangan bulat

Menerapkan Fungsi Phi dan Teorema Euler dalam memecahkan masalah bilangan bulat

Menjelaskan konsep akar primitif dan indeks suatu bilangan bulat dan menerapkannya dalam memecahkan masalah yang terkait. b. Aplikasinya c. Perkongruenan Linier d. Sistem perking ruenan 6. Teorema Fermat dan Wilson 7. Fungsi aritmetik

8. Fungsi Phi dan Teorema Euler 9. Akar Primitif dan Indeks a. Order bil bulat b. Akar primitif c. Indeks Sda Sda Sda Sda A 136-153 A 154-184 A 185-206 A 207-238 IV Referensi/Sumber Bahan 1. Wajib A. Sukirman. 2006. Pengantar Teori Bilangan. Yogyakarta: Hanggar Kreator.  2. Ajuran

B. Rosen, K.H. 1993. Elementary Number Theory and Its Application. New York: Addison-Wesley Publishing Company.

V Evaluasi

No Komponen Bobot (%) 1 Partisipasi Kuliah 10

2 Tugas-tugas 10 3 Ijian Tengah Semester 40 4 Ujian Semester 40

(3)

SATUAN ACARA PERKULIAHAN I

Mata Kuliah : Teori Bilangan (2 sks) Kode Mata Kuliah : MAT 212

Waktu Pertemuan : 2 × 50 menit Pertemuan ke : I

A. Kompetensi Dasar :

Menerapkan induksi matematik dan teorema binomial dalam pemecahan masalah bilangan bulat.

B. Indikator Pencapaian Kompetensi :

1. Menjelaskan cara pembuktian dengan induksi matematik 2. Melakukan pembuktian dengan induksi matematik. 3. Menjelaskan teorema Binomial

4. Menerapkan teorema Binomial

C. Materi Perkuliahan 

Pendahuluan

a. Induksi matematik b. Teorema Binomial

D. Skenario Kegiatan Perkuliahan  

Tahap Uraian Kegiatan Perkuliahan Media dan Alat Perkuliahan

Estimasi Waktu

Pendahuluan Tanya jawab tentang bilangan asli dan implikasi (logika) yang dikaitkan dengan pembuktian dengan induksi matematik

Buku referensi A Powerpoint dan LCD 5’ Penyajian (Inti)

ƒ Menjelaskan prinsip pembuktian dengan induksi matematik ƒ Memberikan contoh pembuktian

dengan induksi matematik disertai dengan Tanya jawab.

ƒ Mahasiswa berlatih membuktikan dengan induksi matematik dengan bimbingan dosen

ƒ Menanyakan konsep kombinasi dua bilangan asli.

ƒ Menjelaskan dengan Tanya jawab tentang penurunan teorema Binomial ƒ Penurunan sifat-sifat yang berkaitan

dengan teorema binomial dengan

Buku referensi A Powerpoint dan LCD

(4)

Tanya jawab.

ƒ Mahasiswa berlatih menyelesaikan soal tentang teorema Binomial. Penutup dan

Tindak Lanjut

ƒ Menyusun kesimpulan tentang

pembuktian dengan induksi matematik dan teorema binomial

ƒ Mahsiswa agar menyelesaikan soal dalam buku dan mempeelajari bahasan tentang Ketebagian. Buku referensi A Powerpoint dan LCD 5’ E. Instrumen Penilaian:

Selama perkuliahan diajukan kuis/pertanyaan yang berkaitan dengan pembuktian dengan induksi matematik dan penurunan teorema Binomial dan sifat-sifatnya. Jawaban

mahasiswa dinilai dalam buku nilai harian. Daftar pertanyaan ada dalam powerpoint.

F. Referensi:

A. Sukirman. 2006. Pengantar Teori Bilangan. Yogyakarta: Hanggar Kreator.

      

  B. Rosen, K.H. 1993. Elementary Number Theory and Its Application. New York:

Addison-Wesley Publishing Company.

Yogyakarta, 25 Januari 2011

Dosen Pengampu Sukirman

(5)

SATUAN ACARA PERKULIAHAN II

Mata Kuliah : Teori Bilangan (2 sks) Kode Mata Kuliah : MAT 212

Waktu Pertemuan : 4 × 50 menit Pertemuan ke : II dan III A. Kompetensi Dasar :

Menjelaskan sifat-sifat keterbagian, FPB dan KPK serta dapat menerapkan untuk pemecahan masalah sehari-hari yang berkaitan

B. Indikator Pencapaian Kompetensi :

1. Menjelaskan konsep dan sifat keterbagian bilangan bulat 2. Menerapkan sifat keterbagian untuk menyelesaikan soal terkait. 3. Menjelaskan algoritma pembagian.

4. Menentukan FPB dan KPK dari bilangan-bilangan bulay

5. Menerapkan konsep FPB dan KPK untuk menyelesaikan maslah sehari-hari yang terkait. C. Materi Perkuliahan  Keterbagian d. Relasi keterbagian e. FPB dan KPK D. Skenario Kegiatan Perkuliahan  

Tahap Uraian Kegiatan Perkuliahan Media dan Alat Perkuliahan

Estimasi Waktu

Pendahuluan Tanya jawab tentang pembagian bilangan-bilangan bulat Buku referensi A Powerpoint dan LCD 10’ Penyajian (Inti)

ƒ Menjelaskan definisi keterbagian pada .bilangan bulat dan mahasiswa diminta memberikan contoh..

ƒ Dengan tanya jawab menurunkan sifat-sifat keterbagian.

ƒ Menjelaskan contoh penyelesaian soal dengan tanya jawab

ƒ Menjelaskan algoritma pembagian dengan tanya jawab dan menggunakannya untuk mencari FPB dua bilangan asli.

ƒ Menyelesaikan persamaan linier Diophantus

Buku referensi A Powerpoint dan LCD

(6)

ƒ Menjelaskan konsep FPB dan KPK dua bilangan bulat dan menurunkan sifat-sifatnya dengan tanya jawab.

ƒ Mahasiswa enentukan FPB dan KPK dua bilangan bulat

ƒ Mahasiswa menyelesaikan soal-soal dengan bimbingan dosen.

Penutup dan TindakLanjut

ƒ Menekankan tentang konsep keterbagian, FPB dan KPK dan sifat-sifatnya.

ƒ Mahsiswa agar menyelesaikan soal-soal dalam buku sebagai PR dan mempelajari bahasan tentang Basis Bilangan bulat.

Buku referensi A Powerpoint dan LCD

10’

E. Instrumen Penilaian:

Selama perkuliahan diajukan kuis/pertanyaan yang berkaitan dengan keterbagian, FPB, persamaan linier Diophantus, KPK dan sifat-sifatnya. Jawaban mahasiswa dinilai dalam buku nilai harian. Daftar pertanyaan ada dalam powerpoint.

F. Referensi: A. Sukirman. 2006. Pengantar Teori Bilangan. Yogyakarta: Hanggar Kreator.

  

  B.  Rosen, K.H. 1993. Elementary Number Theory and Its Application. New York:  Addison‐Wesley Publishing Company.  Yogyakarta, 25 Januari 2011 Dosen Pengampu Sukirman

(7)

SATUAN ACARA PERKULIAHAN III

Mata Kuliah : Teori Bilangan (2 sks) Kode Mata Kuliah : MAT 212

Waktu Pertemuan : 2 × 50 menit Pertemuan ke : IV

A. Kompetensi Dasar :

Menjelaskan konsep basis bilangan dan menerapkannya dalam berbagai basis beserta operasinya.

B. Indikator Pencapaian Kompetensi :

1. Menjelaskan konsep basis suatu bilangan bulat. 

2. Mengubah lambang bilangan bulat dari suatu basis nondesimal ke basis nondesimal lain.

3. Melakukan operasi aritmetik bilangan bulat dalam basis nondesimal.

C. Materi Perkuliahan 

Basis Bilangan Bulat

D. Skenario Kegiatan Perkuliahan  

Tahap Uraian Kegiatan Perkuliahan Media dan Alat Perkuliahan

Estimasi Waktu

Pendahuluan Tanya jawab tentang lambang bilangan bulat dalam basis decimal untuk dibawa ke basis nondesimal. Buku referensi A Powerpoint dan LCD 5’ Penyajian (Inti)

ƒ Penulisan lambang bilangan bulat dalam basis non decimal.

ƒ Menuliskan lambang bilangan bulat decimal ke nondesimal secara konseptual.. ƒ Dengan bimbingan dosen, mahasiswa

mengubah langsung penulisan lambang bilangan dari basis non decimal ke non decimal lain.

ƒ Mahasiswa melakukan operasi aritmetik pada bilangan-bilangan bulat dalam basis nondesimal dengan tanya jawab.

Buku referensi A Powerpoint dan LCD 90’ Penutup dan TindakLanjut

ƒ Menekankan tentang lambang bilangan bulat dalam basis nondesimal dan operasi-operasinya.

ƒ Mahsiswa agar menyelesaikan soal-soal dalam buku sebagai PR dan mempelajari

Buku referensi A Powerpoint dan LCD

(8)

bahasan tentang Faktorisasi bilangan bulat.

E. Instrumen Penilaian:

Selama perkuliahan diajukan kuis/pertanyaan yang berkaitan dengan lambang bilangan bulat dalam basis nondesimal dan melakukan operasi-operasi aritmetiknya Jawaban mahasiswa dinilai dalam buku nilai harian. Daftar pertanyaan ada dalam powerpoint.

F. Referensi: A. Sukirman. 2006. Pengantar Teori Bilangan. Yogyakarta: Hanggar Kreator.

  

  B.  Rosen, K.H. 1993. Elementary Number Theory and Its Application. New York:  Addison‐Wesley Publishing Company.  Yogyakarta, 25 Januari 2011 Dosen Pengampu Sukirman

(9)

SATUAN ACARA PERKULIAHAN IV

Mata Kuliah : Teori Bilangan (2 sks) Kode Mata Kuliah : MAT 212

Waktu Pertemuan : 2 × 50 menit Pertemuan ke : V

A. Kompetensi Dasar :

Menjelaskan peranan bilangan prima dalam bilangan bulat dan menerapkannya dalam pemecahan masalah bilangan bulat.

B. Indikator Pencapaian Kompetensi :

1. Mengidentifikasi bilangan prima.

2. Menerapkan prinsip saringan Erathostenes.

3. Menerapkan faktorisasi tunggal untuk menyelesaikan soal terkait.

 

C. Materi Perkuliahan 

Faktorisasi Bilangan Bulat a. Bilangan Prima b. Faktorisasi Tunggal

D. Skenario Kegiatan Perkuliahan  

Tahap Uraian Kegiatan Perkuliahan Media dan Alat Perkuliahan

Estimasi Waktu

Pendahuluan Tanya jawab tentang bilangan prima dan faktorisasi prima pada suatu bilangan bulat.

Buku referensi A Powerpoint dan LCD 5’ Penyajian (Inti)

ƒ Mahasiswa diminta untuk menyatakan pengertian bilangan prima.

ƒ Tanya jawab tentang bagaimana mengidentifikasi bilangan prima, sehingga memperoleh prisip pengidentifikasian bilangan prima. ƒ Mahasiswa diminta membuat saringan

Erathostenes dengan menerapkan prinsip yang telah diperoleh.

ƒ Dengan Tanya jawab menurunkan teorema tentang faktorisasi tunggal dan distribusi bilangan prima.

ƒ Mahasiswa menentukan banyaknya bilangan prima dan membuktikannya.

Buku referensi A Powerpoint dan LCD

(10)

Penutup dan TindakLanju

t

ƒ Menekankan tentang pentingnya bilangan prima dan pemfaktoran prima, karena banyak masalah bilangan bulat yang dapat diselesaikan dengannya.

ƒ Mahsiswa agar menyelesaikan soal-soal dalam buku sebagai PR dan mempelajari bahasan tentang Kekongruenan

Buku referensi A Powerpoint dan LCD

5’

E. Instrumen Penilaian:

Selama perkuliahan diajukan kuis/pertanyaan yang berkaitan dengan bilangan prima, cara mengidentifikasi dan pemfaktoran prima., serta banyaknya bilangan prima. Jawaban mahasiswa dinilai dalam buku nilai harian. Daftar pertanyaan ada dalam powerpoint.

F. Referensi: A. Sukirman. 2006. Pengantar Teori Bilangan. Yogyakarta: Hanggar Kreator.

  

  B.  Rosen, K.H. 1993. Elementary Number Theory and Its Application. New York:  Addison‐Wesley Publishing Company.  Yogyakarta, 25 Januari 2011 Dosen Pengampu Sukirman

(11)

SATUAN ACARA PERKULIAHAN V

Mata Kuliah : Teori Bilangan (2 sks) Kode Mata Kuliah : MAT 212

Waktu Pertemuan : 8× 50 menit

Pertemuan ke : VI, VII, VIII dan IX

A. Kompetensi Dasar :

Menjelaskan konsep kekongruenan dan sifat-sifatnya serta mengaplikasikannya dalam menyelesaikan perkongruenan linier dan system perkongruenan linier.

B. Indikator Pencapaian Kompetensi :

1. Menjelaskan arti kekongruenan mod m dan sifat-sifatnya

2. Menerapkan sifat kekongruenan untuk menyelesaikan masalah yang berkenaan dengan bilangan bulat

3. Menyelsaikan perkongruenan linier 4. Menerapkan teorema sisa Cina

5. Menyelesaikan system perkongruenan linier.

C. Materi Perkuliahan 

Kekongruenan

a. Pengertian dan sifatnya b. Aplikasinya

c. Perkongruenan Linier d. Sistem perkongruenan

D. Skenario Kegiatan Perkuliahan  

Tahap Uraian Kegiatan Perkuliahan Media dan Alat Perkuliahan

Estimasi Waktu

Pendahuluan ƒ Tanya jawab tentang relasi keterbagian untuk dibawa ke relasi kekongruenan. ƒ Tanya jawab tentang konsep

kekongruenan untuk diaplikasikan ƒ Tanya jawab tentang konsep

kekongruenan untuk menyelesaikan perkongruenan linier.

ƒ Tanya jawab tentang perkongruenan linier untuk dibawa ke system perkongruenan linier.

Buku referensi A Powerpoint dan LCD

(12)

Penyajian (Inti)

ƒ Menjelaskan konsep kekongruenan dengan konsep keterbagian, dan mahasiswa memberikan contoh-contohnya.

ƒ Menurunkan sifat-sifat kekongruenan denga Tanya jawab.

ƒ Memberikan contoh penyelesaian soal dengan Tanya jawab.

ƒ Mahasiswa berlatih menyelesaikan soal kekongruenan dengan bimbingan dosen. ƒ Memberikan contoh koreksi 9 pada

operasi aritmetik bilangan-bilangan bulat dengan Tanya jawab.

ƒ Memberikan contoh dengan tanya jawab cara mencari sisa pembagian bilangan berpangkat oleh suatu bilangan dengan menggunakan konsep kekongruenan. ƒ Mahasiswa diajak mengidentifikasi cirri

suatu bilangan bulat yang terbagi oleh 2, 3, 4, . . . , 13.

ƒ Mahasiswa berlatih menyelesaikan soal tentang aplikasi kekongruenan dengan bimbingan dosen.

ƒ Mahasiswa diajak menyelesaikan 3 perkongruenan linier yang memiliki karakter berbeda, yaitu yang mempunyai satu solusi, tidak mempunyai solusi dan mempunyai banyak solusi.

ƒ Mahasiswa diajak menurunkan teorema tentang perkongruenan linier dengan tiga karakter tersebut.

ƒ Mahasiswa berlatih menyelesaikan soal perkongruenan linier dengan bimbingan dosen.

ƒ Menjelaskan matriks-matriks yang kongruen mod m.

ƒ Mahasiswa mencari invers suatu matriks. ƒ Mahasiswa diajak menyelesaikan system perkongruenan linier dengan persamaan matriks.

ƒ Mahasiswa berlatih menyelesaikan soal system perkongruenan linier dengan bimbingan dosen.

Buku referensi A Powerpoint dan LCD

(13)

Penutup dan TindakLanju

t

ƒ Menekankan tentang pentingnya relasi kekongruenan dalam matematika, khususnya dalam aljabar. Menyelesaikan perkongruenan linier dan system

perkongruenan linier.

ƒ Mahsiswa agar menyelesaikan soal-soal dalam buku sebagai PR dan mempelajari bahasan tentang teorema Fermat dan Wilson Buku referensi A Powerpoint dan LCD 20’ E. Instrumen Penilaian:

Selama perkuliahan diajukan kuis/pertanyaan yang berkaitan dengan konsep kekongruenan, aplikasinya, menyelesaikan perkongruenan linier dan system perkongruenan linier. Jawaban mahasiswa dinilai dalam buku nilai harian. Daftar pertanyaan ada dalam powerpoint.

F. Referensi: A. Sukirman. 2006. Pengantar Teori Bilangan. Yogyakarta: Hanggar Kreator.

  

  B.  Rosen, K.H. 1993. Elementary Number Theory and Its Application. New York:  Addison‐Wesley Publishing Company.  Yogyakarta, 25 Januari 2011 Dosen Pengampu Sukirman

(14)

SATUAN ACARA PERKULIAHAN VI

Mata Kuliah : Teori Bilangan (2 sks) Kode Mata Kuliah : MAT 212

Waktu Pertemuan : 2 × 50 menit Pertemuan ke : XI

A. Kompetensi Dasar :

Menjelaskan teorema Fermat dan Wilson dan menerapkannya untuk memecahkan masalah yang terkait.

B. Indikator Pencapaian Kompetensi :

1. Menjelaskan teorema Fermat

2. Menerapkan teorema Fermat untuk menyelesaikan perkongruenan 3. Menjelaskan teorema Wilson

4. Menggunakan teorema Wilson untuk menyelesaikan soal terkait.

 

C. Materi Perkuliahan 

Teorema Fermat dan Wilson

D. Skenario Kegiatan Perkuliahan  

Tahap Uraian Kegiatan Perkuliahan Media dan Alat Perkuliahan

Estimasi Waktu

Pendahuluan Tanya jawab tenatng residu terkecil mod p dari kelipatan suatu bilangan asli yang saling prima dengan p.

Buku referensi A Powerpoint dan LCD 5’ Penyajian (Inti)

ƒ Mahasiswa diajak menurunkan teorema Fermat dari contoh-contoh dan

membuktikan secara deduktif teorema tersebut.

ƒ Memberikan contoh penggunaan teorema Fermat untuk menyelesaikan soal dengan tanya jawab.

ƒ Mahasiswa diajak menurunkan teorema Wilson dengan contoh-contoh dan membuktikannya secara deduktif. ƒ Memberikan contoh penggunaan

teorema Fermat untuk menyelesaikan soal dengan tanya jawab.

ƒ Mahasiswa berlatih menyelesaikan soal dengan bimbingan dosen.

Buku referensi A Powerpoint dan LCD

(15)

Penutup dan TindakLanjut

ƒ Menekankan tentang teorema Fermat dan Wilson dan aplikasinya dalam Aljabar.

ƒ Mahsiswa agar menyelesaikan soal-soal dalam buku sebagai PR dan mempelajari bahasan tentang Fungsi Aritmetik Buku referensi A Powerpoint dan LCD 5’ E. Instrumen Penilaian:

Selama perkuliahan diajukan kuis/pertanyaan yang berkaitan dengan teorema Fermat dan Wilson. Jawaban mahasiswa dinilai dalam buku nilai harian. Daftar pertanyaan ada dalam powerpoint. F. Referensi: A. Sukirman. 2006. Pengantar Teori Bilangan. Yogyakarta: Hanggar Kreator.

  

  B.  Rosen, K.H. 1993. Elementary Number Theory and Its Application. New York:  Addison‐Wesley Publishing Company.  Yogyakarta, 25 Januari 2011 Dosen Pengampu Sukirman

(16)

SATUAN ACARA PERKULIAHAN VII

Mata Kuliah : Teori Bilangan (2 sks) Kode Mata Kuliah : MAT 212

Waktu Pertemuan : 2 × 50 menit Pertemuan ke : XII dan XIII A. Kompetensi Dasar :

Menerapkan fungsi aritmetik dalam memecahkan masalah bilangan bulat

B. Indikator Pencapaian Kompetensi :

1. Menentukan nilai tau suatu bilangan asli. 2. Menentukan nilai sigma suatu bilangan asli. 3. Menjelaskan hubungan fungsi tau dan sigma 4. Menjelaskan fungsi ganda.

5. Menentukan nilai mobius suatu bilangan asli

6. Menentukan nilai fungsi bilangan bulat terbesar dari suatu bilangan rasional.

C. Materi Perkuliahan 

Fungsi Aritmetik a. Fungsi tau b. Fungsi sigma c. Fungsi Mobius.

d. Fungsi bilangan bulat terbesar

D.  Skenario Kegiatan Perkuliahan  

Tahap Uraian Kegiatan Perkuliahan Media dan Alat Perkuliahan

Estimasi Waktu

Pendahuluan Tanya jawab tentang konsep fungsi untuk dibawa ke konsep fungsi teori bilangan (aritmetika) Buku referensi A Powerpoint dan LCD 10’ Penyajian (Inti)

ƒ Mahasiswa diajak menentukan nilai fungsi tau dan menurunkan rumusnya. ƒ Mahasiswa diajak menentukan fungsi

sigma dan menurunkan rumusnya. ƒ Membuktikan secara deduktif rumus

fungsi tau dan fungsi sigma. ƒ Menjelaskan fungsi ganda dan

mahasiswa membuktikan bahwa fungsi tau dan sigma adlah fungsi ganda. ƒ Menjelaskan fungsi Mobius dan

mahasiswa menentukan nilai fungsi Mobius untuk beberapa bilangan bulat. ƒ Mahasiswa menentukan nilai fungsi

Buku referensi A Powerpoint dan LCD

(17)

bilangan bulat terbesar dari beberapa bilangan real.

ƒ Memberikan contoh dengan Tanya jawab tentang penerapan fungsi Mobius dan fungsi bilangan bulat terbesar untuk menyelesaikan soal.

ƒ Mahasiswa berlatih menyelesaikan soal-soal tentang fungsi teori bilangan. Penutup dan

TindakLanjut

ƒ Menekankan tentang fungsi teori bilangan yang merupakan fungsi ganda dan kelak akan digunakan dalam Aljabar ƒ Mahsiswa agar menyelesaikan soal-soal

dalam buku sebagai PR dan mempelajari bahasan tentang Fungsi phi dan teorema Euler. Buku referensi A Powerpoint dan LCD 10’ E. Instrumen Penilaian :

Selama perkuliahan diajukan kuis/pertanyaan yang berkaitan dengan fungsi teori bilangan yang merupakan fungsi ganda. Jawaban mahasiswa dinilai dalam buku nilai harian. Daftar pertanyaan ada dalam powerpoint.

F. Referensi : A. Sukirman. 2006. Pengantar Teori Bilangan. Yogyakarta: Hanggar Kreator.

  

  B.  Rosen, K.H. 1993. Elementary Number Theory and Its Application. New York:  Addison‐Wesley Publishing Company.  Yogyakarta, 25 Januari 2011 Dosen Pengampu Sukirman

(18)

SATUAN ACARA PERKULIAHAN VIII

Mata Kuliah : Teori Bilangan (2 sks) Kode Mata Kuliah : MAT 212

Waktu Pertemuan : 2 × 50 menit Pertemuan ke : XIV

A. Kompetensi Dasar :

Menerapkan Fungsi Phi dan Teorema Euler dalam memecahkan masalah bilangan bulat

B. Indikator Pencapaian Kompetensi :

1. Menentukan nilai phi suatu bilangan bulat positif. 2. Menjelaskan teorema Euler

3. Menerapkan teorema Euler untuk menyelesaikan perkongruenan. 4. Mencari invers suatu bilangan mod m

C. Materi Perkuliahan 

 

Fungsi Phi dan Teorema Euler  

D. Skenario Kegiatan Perkuliahan  

Tahap Uraian Kegiatan Perkuliahan Media dan Alat Perkuliahan

Estimasi Waktu

Pendahuluan Mengulangi teorema Fermat untuk dibawa ke teorema Euler dengan memahami fungsi phi. Buku referensi A Powerpoint dan LCD Penyajian (Inti)

ƒ Menjelaskan himpunan residu sederhana mod m dan mahasiswa memberikan contoh-contohnya.

ƒ Menjelaskan definisi fungsi phi dan mahasiswa memberikan contoh-contoh yang sesuai dengan contoh yang telah diberikan pada himpunan residu sederhana.

ƒ Dari contoh tersebut, mahasiswa diajak menurunkan rumus nilai phi dan membuktikannya secara deduktif. ƒ Dengan menggunakan nilai fungsi phi,

mahasiswa diajak meurunkan teorema Euler dari contoh-contoh dan

membuktikannya secara deduktif. ƒ Mahasiswa diajak menyelesaikan soal

yang menggukan teorema Euler.

Buku referensi A Powerpoint dan LCD

(19)

ƒ Mahasiswa berlatih menyelesaikan soal deaangan bimbingan dosen.

Penutup dan TindakLanjut

ƒ Menekankan tentang pentingnya teorema Euler (yang merupakan perluasan dari teorema Fermat) dan aplikasinya dalam Aljabar.

ƒ Mahsiswa agar menyelesaikan soal-soal dalam buku sebagai PR dan mempelajari bahasan tentang Akar primitif dan Indeks.

Buku referensi A Powerpoint dan LCD

E. Instrumen Penilaian :

Selama perkuliahan diajukan kuis/pertanyaan yang berkaitan dengan pembuktian dengan induksi matematik dan penurunan teorema Binomial dan sifat-sifatnya. Jawaban

mahasiswa dinilai dalam buku nilai harian. Daftar pertanyaan ada dalam powerpoint. F. Referensi : A. Sukirman. 2006. Pengantar Teori Bilangan. Yogyakarta: Hanggar Kreator.

  

  B.  Rosen, K.H. 1993. Elementary Number Theory and Its Application. New York:  Addison‐Wesley Publishing Company.  Yogyakarta, 25 Januari 2011 Dosen Pengampu Sukirman

(20)

SATUAN ACARA PERKULIAHAN IX

Mata Kuliah : Teori Bilangan (2 sks) Kode Mata Kuliah : MAT 212

Waktu Pertemuan : 4 × 50 menit Pertemuan ke : XV dan XVI A. Kompetensi Dasar :

Menjelaskan konsep akar primitif dan indeks suatu bilangan bulat dan menerapkannya dalam memecahkan masalah yang terkait.

B. Indikator Pencapaian Kompetensi :

1. Menentukan order suatu bilangan bulat mod m 2. Menjelaskan sifat-sifat order suatu bilangan bulat 3. Menentukan akar primitif suatu bilangan bulat mod m. 4. Menerapkan teorema tentang akar primitif.

5. Menerapkan konsep indeks untuk menyelesaikan perkongruenan.

C. Materi Perkuliahan     Akar Primitif dan Indeks   D. Skenario Kegiatan Perkuliahan  

Tahap Uraian Kegiatan Perkuliahan Media dan Alat Perkuliahan

Estimasi Waktu

Pendahuluan Tanya jawab tentang residu terkecil mod m dari suatu bilangan berpangkat dengan menerapkan teorema Euler untuk dibawa ke konsep order suatu bilangan asli.

Buku referensi A Powerpoint dan LCD 10’ Penyajian (Inti)

ƒ Menjelaskan definisi order suatu bilangan bulat dan mahasiswa diminta

memberikan contoh-contohnya. ƒ Menurunkan sifat-sifat order suatu

bilangan dari contoh-contoh dengan tanya jawab dan membuktikannya secara deduktif.

ƒ Menjelaskan pengertian akar primitif suatu bilangan bulat dan mahasiswa diminta mencari akar primitif dari beberapa bilangan bulat.

ƒ Mengidentifikasi bialangan bulat yang memiliki akar primitif dan menentukan banyaknya akar primitif yang dimiliki

Buku referensi A Powerpoint dan LCD

(21)

oleh suatu bilangan bulat.

ƒ Mahasiswa diajak menyelesaikan soal yang berkaitan dengan akar primitif. ƒ Menjelaskan pengertian indeks suatu

bilangan mod m terhadap bilangan lain dan memberikan contoh-contohnya. ƒ Mahasiswa diajak menurunkan sifat-sifat

indeks suatu bilangan bulat yang ada kemiripan denga sifat logaritma.

ƒ Memberikan contoh penggunaan konsep indeks untuk menyelesaikan suatu perkongruenan berpangkat dua atau lebih. ƒ Mahasiswa berlatih menyelesaikan soal

dengan bimbingan dosen. Penutup dan

TindakLanjut

ƒ Menekankan tentang pentingnya akar primitif suatu bilangan bulat yang akan berguna dalam mempelajari

Aljabar.Abstrak.

ƒ Mahsiswa agar menyelesaikan soal-soal dalam buku sebagai PR dan

mempersiapkan diri dalam menghadapi ujian akhir semester.

Buku referensi A Powerpoint dan LCD

10’

E. Instrumen Penilaian :

Selama perkuliahan diajukan kuis/pertanyaan yang berkaitan dengan akar primtif dan indeks. suatu bilangan bulat. Jawaban mahasiswa dinilai dalam buku nilai harian. Daftar pertanyaan ada dalam powerpoint.

F. Referensi :

A. Sukirman. 2006. Pengantar Teori Bilangan. Yogyakarta: Hanggar Kreator.

  

  B.  Rosen,  K.H.  1993.  Elementary  Number  Theory  and  Its  Application.  New  York: 

Addison‐Wesley Publishing Company. 

Yogyakarta, 25 Januari 2011

Dosen Pengampu Sukirman

Referensi

Dokumen terkait

Ketidakmampuan manusia dalam menjalankan kehidupan sehari- hari akan mendorong manusia untuk selalu mengadakan hubungan timbal balik dengan sesamanya serta bertujuan

Seorang wanita, usia 50 tahun, datang ke puskesmas dengan keluhan kaki tidak dapat berjalan sejak 3 minggu yang lalu. Riwayat sebelumnya pasien sering keputihan berbau

Bentuk dari kur!a air menguap/saturasi kering saat pressure air yang disertakan lebih tinggi& maka entalpi yang dibutuhkan untuk e!aporasi lebih rendah. +aat kita memberikan

Menurut Harahap dalam (Suteja, 2018), analisis laporan keuangan berarti menguraikan pos-pos laporan keuangan menjadi unit informasi yang lebih kecil dan melihat hubungannya

Informasi terkait adanya penambahan informasi terbuka pada Daftar Informasi Publik (Kepala) Sub Bagian Umum dan Kepegawaian (Kepala) Sub Bagian Umum dan Kepegawaian Maret

Pada penelitian ini menemukan hari bebas parasit dari pengobatan AAQ yaitu pada hari kedua (H2) dari penderita dengan densitas parasit >1.000-10.000 tidak

Penyesuaian pernikahan tergolong sedang dengan nilai paling rendah ada pada 10 pasang yang menikah dini yang suaminya berusia kurang dari 19 tahun, berpenghasilan kurang dari

- Alat ini tidak dimaksudkan untuk digunakan oleh orang (termasuk anak- anak) dengan cacat fisik, indera atau kecakapan mental yang kurang, atau kurang pengalaman dan