• Tidak ada hasil yang ditemukan

Staff Site Universitas Negeri Yogyakarta

N/A
N/A
Protected

Academic year: 2017

Membagikan "Staff Site Universitas Negeri Yogyakarta"

Copied!
87
0
0

Teks penuh

(1)

量子力学

Quantum mechanics

School of Physics and Information Technology

(2)

Chapter 6

(3)

What

&

&

(4)

sligntly. potential the perturb we now potential, some for equation dinger o Schr t) independen -(time the solved have we Suppose

Problem

Difficulty & why

What

potential. mplicated -co more for this exactly, equation nger -ndi o Shr the solve to able be o unlikely t re we' lucky, very are we unless But , H : s eigenvalue and ions eigenfunct new the for solve to like d we' problem, For this n n = E Ψn

(5)

OUTLINE

Non-degenerate perturbation theory

• Degenerate perturbation theory

(6)

Non-degenerate Perturbation Theory

• General formulation

• First-order theory

• First-order theory

(7)
(8)

The unperturbed case

:

equation

dinger

o

Shr

t

independen

-Time

0 0

0 n 0

n n

E

H

Ψ

=

Ψ

Requirement:

nm m

n

Ψ

=

δ

Ψ

0 0

0 n

Ψ

0

n

E

(9)

Considering the perturbed case, we should solve for the new eigenvalues and eigenfunctions.

We can write the Hamiltonian of the new system into the

f o l l o w i n g t w o p a r t s Additional

Hamiltonian

H

H

H

=

0

+

Hamiltonian of the unperturbed system

of the perturbed

(10)

Rewrite the new Hamiltonian as the sum of two terms

H

H

H

=

0

+

λ

Write the nth eigenfunction and eigenvalue as power series in λ as follows

A small number ;later we will crank it up to 1,and H will be the true,

exact Hamiltonian

+

+

+

=

+

Ψ

+

Ψ

+

Ψ

=

Ψ

2 2

1 0

n

2 2

1 0

n

n n

n

n n

n

E

E

E

E

λ

λ

λ

λ

The first-order correction

(11)

n

E

Ψ

=

Ψ

n

n

H

H,Plugging the above n and En into the time-independent

equation and Collecting like

powers of λ

λ is a device to keep track of the different orders

(12)

To lowest order:

To first order:

0 0

0 n 0

n n

E

H

Ψ

=

Ψ

0 1

1 0

0 1

0

E

E

H

H

Ψ

+

Ψ

=

Ψ

+

Ψ

To second order:

And so on

n

H

n

E

n n

E

n n

H

Ψ

+

Ψ

=

Ψ

+

Ψ

0 2

1 1

2 0

1 2

n 0

n n

n n

n n

n

E

E

E

H

(13)

First-Order Theory

• The first-order correction to the

energy

(14)

The first-order

(15)

0 1 1 0 0 1 n 0 n n n n

n

E

E

H

H

Ψ

+

Ψ

=

Ψ

+

Ψ

g integratin and ) ( by g

Multiplyin Ψn0 ∗

0 0 1 1 0 0 0 0 1 n 0 0 n n n n n n n n

n H Ψ + Ψ H′Ψ = E Ψ Ψ + E Ψ Ψ

Ψ 0 0 = Ψ Ψ And, So, 1 0 0 1 n 0 0 0 0 1 n n n n n n E

H Ψ = Ψ Ψ

Ψ

= Ψ

Ψ 1 0 0

n n

n

H

E

=

Ψ

Ψ

(16)
(17)
(18)

The first-order correction

to the wave function

(19)

Rewrite equation 0 1 1 0 0 1 n 0 n n n n

n E E

H

H Ψ + ′Ψ = Ψ + Ψ

0 1 1 0 0 n n n

n H E

E

H − )Ψ = −( ′ − )Ψ

≠ Ψ = Ψ n m m n m

C( ) 0

1 n The unperturbed wave

functi-ons cfuncti-onstitute a complete set

0 0 1 0 0 0 0 ) ( 0 0 )

( l n n l n

n m m l n m n

m E C H E

E − Ψ Ψ = − Ψ ′ Ψ + Ψ Ψ

≠ 0 0 0 n 0 , Additional n n E

H Ψ = Ψ

0 1 0 ) ( 0 0 )

( n n

n m m n m n

m E C H E

E − Ψ = − ′ − Ψ ≠ ) ( 0 th product wi inner the

(20)

.

get

we

n,

l

If

;

get

we

n,

l

If

) ( 1 n m n

C

E

=

0 0 0 0 ) ( m n n m n m

E

E

H

C

Ψ

Ψ

=

Ψ

Ψ

Ψ

=

Ψ

n m n m

H

0 0 0 0 0 1 ≠

Ψ

=

Ψ

n m m m n n

E

E

0 0

Notice:

although perturbation theory often yields surprising by accurate energies, the
(21)
(22)

0 2 1 1 2 0 1 2 n 0 n n n n n n

n E E E

H

H Ψ + ′Ψ = Ψ + Ψ + Ψ

0 th product wi inner the

Take Ψn

0 0 2 1 0 1 2 0 0 1 0 2 n 0 0 n n n n n n n n n n n

n H Ψ + Ψ H′Ψ = E Ψ Ψ + E Ψ Ψ + E Ψ Ψ

Ψ

= Ψ

Ψ0 0 1 Meanwhile 2 0 0 2 n 0 n 0 2 n 0 0 n n n

n H Ψ = H Ψ Ψ = E Ψ Ψ

Ψ The Hermiticity of H0

We could proceed to

≠ Ψ Ψ = Ψ Ψ = Ψ Ψ n m m n m n n n n

C( ) n0 0

1 0

0 0

1 Meanwhile, ;

≠ − Ψ ′ Ψ = n

m n m

n m n E E H

E 0 0

2 0 0

2

We could proceed to

(23)

Results

( )

1

0 0 2 0 0 0 + − Ψ ′ Ψ + ′ + = ≠n

m n m

n m nn n n E E H H E E

Correction to the eigenvalue:

( )

2

0 0 0 0 0 0 ≠ + Ψ − Ψ ′ Ψ + Ψ = Ψ n m m m n n m n n E E H

(24)

Degenerate Perturbation Theory

• Two-ford degeneracy

(25)

Non-degenerate perturbation theory fail?

• In many cases, where two (or more) distinct states share the same energy, non-degenerate p e r t u r b a t i o n t h e o r y f a i l ! • Sometimes, two energy levels exists so near • Sometimes, two energy levels exists so near that non-degenerate perturbation theory c a n n o t g i v e u s a s a t i s f i e d a n s w e r .

(26)
(27)

In order to see how the method generalizes, we begin with the twofold degeneracy

,

H

,

Suppose

0 0

0 a 0

Ψ

=

Ψ

E

a

E

0

.

0

,

H

0 b 0

a

0 0

0 b 0

=

Ψ

Ψ

Ψ

=

Ψ

E

b

The perturbation will “break” the degeneracy

“Lifting of a degeneracy by a paerturbation

λ λ λ λ

(28)

0 b 0

a 0

Ψ

+

Ψ

=

Ψ

α

β

0 0

0 0

H

Ψ

=

E

Ψ

Any linear combination of the above states

is still an eigenstate of H0,with the same eigenvalue E0

Essential problem:

When we turn off the perturbation, the “upper” state reduces down to one perturbation, the “upper” state reduces down to one linear combination of and , and the “lower” state reduce to some other linear combination, but we don’t know a priori what these good linear combination will be. For this reason we can’t even calculate the first-order energy (equation 1) because we don’t know what unperturbed states to use.

0 a

(29)

+ Ψ + Ψ + Ψ = Ψ + + + = ′ + = 2 2 1 0 2 2 1 0 0 , , H H λ λ λ λ λ E E E E H

As before, we write H, E, in the following form

Plug into the stationary equation

0 0

0 n 0

H Ψ = En Ψn

0 1 1 0 0 1 0 Ψ + Ψ = Ψ ′ +

Ψ H E E

H

To lowest order,

(30)

0 1 1 0 0 1 0 Ψ + Ψ = Ψ ′ +

Ψ H E E

H 0 a th product wi inner the Take Ψ 0 0 1 1 0 0 0 0 1 0 0 Ψ Ψ + Ψ Ψ = Ψ ′ Ψ + Ψ

Ψa H a H E a E a

0 0 0 0 0 0 0 a 0 , H , H Ψ = Ψ Ψ = Ψ a E

E Meanwhile, H0 is

Hermitian, the first

1 0 b 0 a 0 a 0

a

H

β

H

α

E

α

Ψ

Ψ

+

Ψ

Ψ

=

0 b 0 a 0 0 b 0 a b , 0 , H Ψ + Ψ = Ψ = Ψ Ψ Ψ = Ψ

β

α

b

E Hermitian, the first

(31)

yields

th

product wi

inner

the

Similarly,

Ψ

b0

)

,

,

(

,

Where,

W

ij

Ψ

i0

H

Ψ

j0

i

j

=

a

b

1

E

W

W

aa

β

ab

α

α

+

=

Results The “matrix

elements” of H'

ab

W

β

Eliminate

1

E

W

W

ba

β

bb

β

α

+

=

b

[

W

ab

W

ba

(

E

1

W

aa

)(

E

1

W

bb

)

]

=

0

(32)

equation following

get the can

we zero,

not is

If α

( )

3 4

) (

2

1 2 2

1

+ −

± +

=

± Waa Wbb Waa Wbb Wab

E

0 )

( )

( )

(E1 2 −E1 Waa +Wbb + WaaWbbWabWba =

zero?

is

if

But what

α

2

The two roots

correspond to the two perturbed

(33)

How should we do in practice

Idea:

It would be greatly to our advantage if we could somehow guess the “good” states right from the start.

1. Look around for some Hermitian operator A that commutes with H' ;

M O

R A L

A that commutes with H' ;

2. Pick as your unperturbed states ones that are simultaneously eigenfunctions of H0

and A ;

3. Use ordinary first-order perturbation theory.

(34)

, , , s, eigenvalue distinct with of ions eigenfunct are and If . with commutes that operator Hermitian a be Let 0 0 0 0 0 0 b b a a b a A A A H A ≠ Ψ = Ψ Ψ = Ψ Ψ Ψ ′ ν µ ν µ

[

]

[

,

]

0
(35)
(36)

0 )

( ′ − 1 =

k

k k k k

k E a

H δ

0 1

1 0

0 1

0

0 0

0 0

, a

Ψ +

Ψ =

Ψ ′ +

Ψ

Ψ =

Ψ =

E E

H H

E

E nk nk Matrix equation

0

det

H

k

k

E

1

δ

kk

=

Secular equation

Get ak , then get 0

Get E'

H

on

perturbati

the

es

Diagonaliz

(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)

Some Examples For Application

• The fine structure of hydrogen

• The zeeman effect

(45)

The Fine Structure of Hydrogen

• The relativistic correction

(46)

r e 1 4

2m H

0 2 2

2

πε

− ∇

− =

Correct for the motion of the nucleus

The simplest Hamiltonian of

the hydrogen

Replace m by the reduced mass

Relativistic correction

Fine structure

Lamb shift

Hyperfine structure

Relativistic correction

Spin-orbit coupling

Quantization of the Coulomb field

(47)

Hierarchy of correction to the Bohr

e n e r g i e s

o f

h y d r o g e n

2 5 2 4 2 2 order of : shift Lamb order of : structure Fine order of : energies Bohr mc mc mc α α α 2 4 order of : splitting Hyperfine order of : shift Lamb mc m m mc p α α

(48)
(49)

m

2

2

p

T

=

General discussion

r

e 1

4 2m

H

0 2 2

2

πε

− ∇

− =

Represent kinetic energy

Classical formula

2

The relativistic formula kinetic energy

( )

2 2

2

1

mc

c

mc

T

=

υ

The rest energy The total

(50)

Express T in terms of the relativistic momentum

( )

2

1 p momentum ic relativist The c m υ υ − = :

( )

( )

(

)

2 2 2 2 4 2 2 2 2 4 2 2 2 1 mc T c c m c m c m c

p = +

− + = + υ υ υ mc p << limit istic nonrelativ The + − = − − +

= 3 2

4 2 4 2 2 8 2 1 8 1 2 1 1 c m p m p mc p mc p mc T

( )

2

(

)

1 c − υ 2 4 2 2 2 mc c m c p

(51)

+ −

= 3 2

4 2

8

2 m c

p m

p T

The classical result

The lowest-order

relativistic contribution to the Hamiltonian

In first-order perturbation theory, the correction to En is given by the expectation value of H' in the unperturbed state

ψ ψ

ψ

ψ 4 3 2 2 2

2 3 1

r ˆ ˆ

8 1 ˆ 8 1 p p c m p c m

E = − = −

ψ ψ E V m p = + 2 ˆ And, 2

(

)

ψ

ψ m E V

pˆ 2 = 2 −

[

2 2

]

2 1 r 2 2 1 V V E E mc

(52)

In the case of hydrogen

+ + − = 2 2 0 2 0 2 2 n 2 1 r 1 4 1 4 2 2 1 r e r e E E mc E n πε πε 1 1 1 1

Where En is the Bohr energy of the state in question

(

)

3 2 2 2 2 1 1 1 , 1 1 And, a n l r a n

r = = +

(53)

2 2 0

4

me

a

πε

2

2 0 2 2 1 4 2 n e m

En = −

πε

(

+

)

+ + − = 2 3 2 2 2 2 2 n 2 1 r 1 1 4 1 4 2 2 1 a n l e a n e E E mc E n πε πε

P l u g g i n g

(

+

)

3 2

0 2 0 n 2 r 2 1 4 4

2mc n πε n a πε l n a

(54)

Spin-Orbit Coupling

The orbiting positive charge sets up a magnetic field B

in the electron frame, which exerts a to rque on th e spinning electron, tending t o a l i g n i t s m a g n e t i c

Β

Β

Β

Β

μ

μ

μ

μ

=

H

t o a l i g n i t s m a g n e t i c m o m e n t (µµµµµµµµ) a l o n g t h e d i r e c t i o n o f t h e f i e l d .

(55)

The Magnetic Field of the Proton

2r

: law Savart

-Biot the

to

According B = µ0 I

T e

I =

current effective

An The charge of proton

The period of the orbit

L

3 2

r mc

e

0000

4444 1111 Β

Β Β Β

πε

=

T mr rm

L

2

2

: electron the

of momentum angular

orbital

The = υ = π

direction same

in the point

and ,

(56)

The Magnetic Dipole Moment of the Electron

r

q

2

amics

electrodyn

Classical

π

µ

=

T

mr

S

T

r

q

2

2

π

π

µ

=

=

(57)

S

=

m

2

q

μ

μ

S

e

=

Classical

result

However, as it turns out, the electron’s

magnetic moment is

?

S

m

e

e

=

μ

μ

magnetic moment is twice the classical

answer

The “extra” factor of 2 was explained by Dirac in his relativistic theory of the electron. For a related

(58)

The Spin-Obit Interaction

L 3 2

r mc

e

0 00 0

4444 1111 Β

ΒΒ

Β

πε

=

S

m e

e = −

L S ⋅ = 2 2 3

2

1

r c m e

H

0 00 0

4444πε

FR A

We did the analysis in the rest frame of the electron, but that’s not an inertial

A U D

the electron, but that’s not an inertial system——it accelerates as the electron o r b i t s a r o u n d t h e n u c l e u s .

S O L U T I O N

(59)

The Spin-Obit Interaction

The modified

gyromagnetic ratio for the electron

the Thomas precession

factor

Exactly cancel one

another

D I S R E G A R D

L

S

=

3 2

2 2

1

r

c

m

e

H

SO

0000

8888

πε

(60)

[

]

[

,

]

0

0

,

S

L

SO SO

H

H

Put it another way

momentum angular

total

The JL + S

The spin and orbital angular momenta are not conserved

on theory. perturbati in use to states good are quantities these of s eigenstate the and conserved, are , , , 2 2

2 z J J S L

(61)

S

L

J

+

J

2

=

L

2

+

S

2

+

2

L

S

( ) ( ) ( )

[ 1 1 1 ]

2 of s eigenvalue The 2 + − + − + ⋅ s s l l j j : S L

(

)

( ) 3 3 3 3 2 2 2 1 2 1 1 1 1 Meanwhile, a n l l l r r c m e HSO + + = ⋅ =

S L

0 00 0

8888πε

(

2 2 2

)

2 1

S L

J − −

= ⋅S L

2 l

(

l + 2

)

(l +1)n a

( ) ( )

[

]

(

)

( ) 3 3 2 2 2 2 1 1 2 1 4 3 1 1 2 1 a n l l l l l j j c m e ESO + + − + − + = 0000 8888πε ( ) ( )

[

]

(

+

)

( + ) − + − + = 1 2 1 4 3 1 1 2 2 1 l l l l l j j n mc E ESO n
(62)
(63)

− + − = 3 2 1 4 2 2 2 n 1 r l n mc E

E

[

( ) ( )

]

(

+

)

( + ) − + − + = 1 2 1 4 3 1 1 2 2 1 l l l l l j j n mc E ESO n

The relativistic correction The spin-orbit coupling

+ − = 2 1 4 3 2 2 2 1 f j n mc E E s n

The correction to the Bohr formula

Combine with the Bohr formula − + + − = 4 3 2 1 1 6 . 13 2 2 2 j n n n eV

Enj α

The complete fine-structure formula

formula

•Fine structure breaks the degeneracy in

•The energies are determined by and

l

(64)

The Fine Structure of Hydrogen

(65)

The Zeeman Effect

• Weak-field zeeman effect

• Strong-field zeeman effect

(66)
(67)

Consider an atom placed in a

uniform external magnetic field

B

ext

What

&

(

μ

μ

μ

μ

+

μ

μ

μ

μ

)

Β

Β

Β

Β

extextextext

=

l s

Z

H

For a single electron

&

How

(

+

)

ΒΒΒΒextextextext =

L 2S

2m e HZ

Associated with orbital motion

(68)

Zeeman Effect

New phenomenon

The energy levels are shift when an atom is placed in a uniform external magnetic field

H

Depend on the strength of the externalfield in comparison with the internal field

that gives rise to spin-orbit coupling

O

W

that gives rise to spin-orbit coupling

Weak-field Intermediate Strong-field

Comparable

(69)

Weak-field Zeeman Effect

B

ext

<<B

int

Fine structure

Fine structure

dominates

H

Z

as a small

perturbation

(70)

[

]

[

,

]

0

0

,

S

L

SO SO

H

H

momentum angular total

The JL + S

Put it another way

The spin and orbital angular momenta are not conserved

on theory. perturbati in use to states good are quantities these of s eigenstate the and conserved, are , , , 2 2

2 z J J S L

(71)

numbers quantum

good" "

the are

and ,

,l j m j

n

S L 2 2

1

+ ⋅

= ′

= ΒΒΒΒextextextext

m e nljm

H nljm

E Z j Z j

The zeeman correction to the energy

The expectation

S

?

(

)

J J

S S ave 2

J

⋅ =

value of

S

?

In the presence of spin-orbit coupling,

L and S are not separately conserved; they precess about the fixed total

(72)

(

)

J J

S Save 2

Meanwhile, J ⋅ =

S

J

L

=

( ) [ ( 1) ( 1) ( 1)]

2 2

1 2 2 2 2

+ − + + + = − + =

J J S L j j s s l l

S

( )

( ) ( )

( ) J

J J S S L + + + − + + = ⋅ + = + 1 2 4 3 1 1 1 1 2 2 j j l l j j J The landé g-factor, gJ Choose the z-axis to lie along B

j ext

J B

Z

g

B

m

E

1

=

µ

Τ ×

=

≡ − e VVVV

m e B 5 10 788 . 5 2 Where,

µ

Choose the z-axis to lie along Bext

(73)

Strong-field Zeeman Effect

(74)

Strong-field Zeeman Effect

B

ext

>>B

int

The zeeman

effect dominates

effect dominates

Fine structure

as the

perturbation

(75)

Strong-field Zeeman Effect

numbers quantum good" " the now are and ,

,l ml ms n

( z z)

ext

Z B L S

m e H 2 2 n Hamiltonia zeeman The + =

nm m BBext (ml ms ) n eV E s l 2 6 . 13 energies d" unperturbe " The

2 + +

= µ

Choose the z-axis to lie along Bext Proof!

( )

(

+

)

( + ) − + − = 1 2 1 1 4 3 6 . 13 2 3 1 l l l m m l l n n eV

Efs α l s

m 2 n s l so r s l

fs nlm m H H nlm m

E 1 = ′ + ′

s l z z y y x

x L S L S L m m

S + + = 2 =

J S

H'r : The same as before

(76)

Intermediate-field Zeeman Effect

Neither H'

Z

nor

H'

fs

dominates

Treat them on

an equal footing

As perturbation

to Bohr

(77)

Intermediate-field Zeeman Effect

= ≡ Ψ = ≡ Ψ = −

0 0 ,

, 0 0 0 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 1 l j m j l n and , , by zed characteri states the : basis The 2 : case

The = ;

(78)

Matrix of H'

− − − + − β β γ β γ β γ β γ β γ 2

2 0 0

0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 5

( )

13 .6 and . 8

,

Where γ ≡ α 2 eV β ≡ µ B B ext

(79)

Energy levels for the n=2 states of hydrogen, with fine structure and zeeman splitting

2 2 5 5 2 4 2 3 2 2 2 1 β γ ε β γ ε β γ ε β γ ε − − = + − = − − = + − = E E E E

(

)

(

)

(

)

(80)
(81)

Brief introduction to proton

The quark structure of the proton. There are two up quark in it and one down quark. The s t r o n g f o r c e i s mediated by gluons

Made by Arpad Horvath.

commons.wikimedia.org/wiki/ Image:Quark_struct...

(82)

The proton itself constitutes a magnetic dipole, smaller than the electron’s

Brief introduction to proton

value

measured

(

59

.

5

;

2

=

=

g

m

ge

p p

p

S

magnetic field

p

(

)

[

μμμμ rrrr rrrr ----μμμμ

]

μμμμ

( )

rrrr 4

4 4 4 Β

ΒΒ

Β 0000

µ

0000

δ

3333

π

µ

3 2 3

3 ⋅ +

=

r

According to classical electrodynamics, a dipole

µ µµ

µ sets up a magnetic field.

(83)

The electron near proton

Β

Β

Β

Β

μ

μ

μ

μ

=

H

(

)

(

)

[

]

( )

rrrr

rrrr 0000 3333

0 00

0 µ δ

µ ge p e p e ge

H′ = 3 SS ⋅ − SS + SS

2 2

The Hamiltonian of the electron,due to the proton’s magnetic dipole moment

(

)

( )

( )2 2 3 2 1 3 3 0 Ψ e p e p e p e p e p hf m m ge r m m ge

E = 0000 S ⋅rrrr S ⋅rrrr − SS + 0000 SS

8888

µ π

µ

( )

rrrr

8888π p e p e p eδ

hf m m r m m

H′ = + SS

3

3

(84)

For the ground state hydrogen

(

)

(

)

0 3

3 =

⋅ −

⋅ ⋅

r

e p

e

p S S S

S rrrr rrrr

T h e w a v e f u n c t i o n i s

s p h e r i c a l l y s y m m e t r i c a l

( )

2 13

,

Meanwhile

a

π

=

0

Ψ100

e p

e p

hf

a

m

m

ge

E

=

3

S

S

2 1

3

π

(85)

( )

2 2 2 4 3 = = p e S S

(

2 2 2

)

2

1

p e

e

pS = SSS

S

p

e

S

S

S

+

Spin-spin coupling

The individual spin angular momenta are no longer conserved; the “good” states are eigenvectors of the total spin.

The electron and proton both have spin 1/2 .

− + = singlet). ( , 4 3 triplet); ( , 4 1 3 4 4 2 2 2 1 a c m m g E e p hf . 0 state, singlet In the 2 state, triplet In the 2 2 2 = = S S

( )

4

= = p

e S

S

(86)

Effect of spin-spin coupling

Hyperfine

splitting in

the ground

state of

•Lifting the triplet configuration

•Depressing the singlet configuration

(87)

eV a

c m m

g E

e p

6 4

2 2

2

10 88

. 5 3

4

× =

= ∆

z h

E

ΜΗ =

= 1420

ν

The energy gap as a result of spin-spin coupling

The frequency of the photon emitted in a transition from the triplet to the singlet state

h

cm

21

c

:

h

wavelengt

ing

Correspond

=

ν

!" # This famous “21-centimeter line” is among

the most pervasive and ubiquitous forms of radiation in the universe.

Referensi

Dokumen terkait

Banyak pembenih ikan yang menggunakan minyak tanah dengan cara menyiramkannya ke permukaan air dan hasilnya dapat mematikan ucrit.. Para ahli budidaya ikan

Karena U hitung = 65 &gt; U (15,15) = 56, yang berarti tidak cukup bukti untuk menolak Ho, dengan kata lain tidak adanya perbedaan yang signifikan antara efikasi diri

5ada bayi dan anak usia dibaah  atau 6 tahun, jenis pernapasan adalah pernapasan diagragma atau pernapasan abdomen.3olume oksigen yang di ekspirasi oleh bayi dan anak 4

Berdasarkan data hasil penelitian dapat disimpulkan bahwa ada pengaruh frekuensi gelombang audiosonik terhadap perilaku (jumlah hinggap) lalat rumah (Musca

Pada penelitian aplikasi tungku gasifikasi biomassa multi burner sebagai teknologi pemanfaatan energi alternatif pengganti minyak tanah dan kayu bakar menuju

setelah mendapatkan penjelasan mengenai penelitian tentang “Hubungan Pemberian ASI Eksklusif terhadap Kejadian Infeksi Saluran Pernapasan Akut (ISPA) pada Bayi

Bakteri harus dapat tumbuh dalam medium padat dan membentuk koloni yang kompak dan jelas (tidak menyebar) dan memerlukan persiapan waktu inkubasi relatif lama sehingga