• Tidak ada hasil yang ditemukan

Dinamo Sepeda

N/A
N/A
Protected

Academic year: 2021

Membagikan "Dinamo Sepeda"

Copied!
8
0
0

Teks penuh

(1)

PEMBANGKIT LISTRIK TENAGA AIR DENGAN MENGGUNAKAN DINAMO

PEMBANGKIT LISTRIK TENAGA AIR DENGAN MENGGUNAKAN DINAMO

SEPEDA

SEPEDA

YOGI SAHFRIL PRAMUDYA YOGI SAHFRIL PRAMUDYA

PEMBIMBING PEMBIMBING

1. Dr. NUR SULTAN SALAHUDDIN 1. Dr. NUR SULTAN SALAHUDDIN 2. BAMBANG DWINANTO, ST.,MT 2. BAMBANG DWINANTO, ST.,MT

Jurusan

Jurusan Teknik Teknik  Elektro,Elektro, FakultasFakultas TeknologiTeknologi Industri,Industri, UniversitasUniversitas Gunadarma,Gunadarma, MargondaMargonda RayaRaya 100100 Depok Depok  1642416424 telp

telp (021)(021) 78881112,78881112, 78637887863788

Krisis energi listrik telah diprediksikan akan melanda dunia. Hal ini dikarenakan semakin langkanya Krisis energi listrik telah diprediksikan akan melanda dunia. Hal ini dikarenakan semakin langkanya minyak bumi dan semakin meningkatnya permintaan energi. Untuk itu diperlukan sebuah terobosan untuk  minyak bumi dan semakin meningkatnya permintaan energi. Untuk itu diperlukan sebuah terobosan untuk  memanfaatkan energi lain yang dapat diperbaharui untuk dikonversi menjadi energi listrik. Untuk mengatasi memanfaatkan energi lain yang dapat diperbaharui untuk dikonversi menjadi energi listrik. Untuk mengatasi  permasalahan

 permasalahan krisis krisis energi energi listrik listrik tersebut, tersebut, tentunya tentunya diperlukan diperlukan alat alat untuk untuk mengkonversi mengkonversi energi energi yang yang tidak tidak akanakan habis di permukaan bumi seperti air, angin dan matahari untuk menghasilkan energi listrik. Energi yang paling habis di permukaan bumi seperti air, angin dan matahari untuk menghasilkan energi listrik. Energi yang paling mudah didapat dan dimanfaatkan di Indonesia yaitu energi air.

mudah didapat dan dimanfaatkan di Indonesia yaitu energi air.

Maka dari itu pembangkit listrik tenaga air dengan dinamo sepeda dapat berguna untuk membantu Maka dari itu pembangkit listrik tenaga air dengan dinamo sepeda dapat berguna untuk membantu mengurangi krisis energi listrik, dengan keunggulan menggunakan energi air yang melimpah di Indonesia dan ramah mengurangi krisis energi listrik, dengan keunggulan menggunakan energi air yang melimpah di Indonesia dan ramah lingkungan.

lingkungan.

Komponen utama dari alat ini adalah dinamo sepeda (sebagai generator yang mengubah energi mekanik ke Komponen utama dari alat ini adalah dinamo sepeda (sebagai generator yang mengubah energi mekanik ke energi listrik), rangkaian indikator baterai (sebagai pengontrol penuhnya baterai), baterai (12 volt dan arus 7,5 Ah), energi listrik), rangkaian indikator baterai (sebagai pengontrol penuhnya baterai), baterai (12 volt dan arus 7,5 Ah), rangkaian inverter (sebagai pengubah tegangan DC 12V dari baterai ke tegangan AC 220 V dengan menggunakan rangkaian inverter (sebagai pengubah tegangan DC 12V dari baterai ke tegangan AC 220 V dengan menggunakan  bantuan dari IC C

 bantuan dari IC C D4047 dan trafo).D4047 dan trafo).

Berdasarkan hasil penelitian semakin cepat putaran dari dinamo sepeda maka semakin besar pula tegangan Berdasarkan hasil penelitian semakin cepat putaran dari dinamo sepeda maka semakin besar pula tegangan yang dihasilkan

yang dihasilkan

1.1

1.1 Latar Belakang MasalahLatar Belakang Masalah

Krisis energi listrik telah diprediksikan akan Krisis energi listrik telah diprediksikan akan melanda dunia pada tahun 2015. Hal ini dikarenakan melanda dunia pada tahun 2015. Hal ini dikarenakan semakin langkanya minyak bumi dan semakin semakin langkanya minyak bumi dan semakin meningkatnya permintaan energi. Untuk itu meningkatnya permintaan energi. Untuk itu diperlukan sebuah terobosan untuk memanfaatkan diperlukan sebuah terobosan untuk memanfaatkan energi lain yang dapat diperbaharui untuk dikonversi energi lain yang dapat diperbaharui untuk dikonversi menjadi energi listrik. Karena jika kita tergantung menjadi energi listrik. Karena jika kita tergantung  pada

 pada energi energi tidak tidak terbarukan, terbarukan, maka maka di di masa masa depandepan

kita juga akan kesulitan untuk memanfaatkan energi kita juga akan kesulitan untuk memanfaatkan energi tersebut karena keterbatasannya di permukaan bumi. tersebut karena keterbatasannya di permukaan bumi. Untuk mengatasi permasalahan krisis energi Untuk mengatasi permasalahan krisis energi listrik tersebut, tentunya diperlukan alat untuk  listrik tersebut, tentunya diperlukan alat untuk  mengkonversi energi yang tidak akan habis di mengkonversi energi yang tidak akan habis di  permukaan

 permukaan bumi seperbumi seperti air,anti air,an gin dan gin dan matahari matahari untuk untuk  menghasilkan energi listrik. Energi yang paling menghasilkan energi listrik. Energi yang paling mudah didapat dan dimanfaatkan di Indonesia yaitu mudah didapat dan dimanfaatkan di Indonesia yaitu energi air.

(2)

Air menyelimuti lebih dari ¾ luas  permukaan bumi kita,dengan luas dan volumenya yang besar air menyimpan energi yang sangat besar  dan merupakan sumber energi yang terbarukan yang menunggu untuk dimanfaatkan, maka sangat wajar   bila Indonesia mengandalkan air untuk memenuhi

kebutuhan hidup penduduknya, karena Indonesia merupakan Negara kepulauan yang memiliki luas perairan lebih besar dari luas daratannya. Salah satu energi yang dapat dimanfaatkan dari air adalah energi potensial air, maka energi tersebut dapat dikonversi menjadi energi listrik untuk memenuhi kebutuhan manusia akan energi listrik. Ini adalah sebuah solusi yang sangat tepat dan strategis bagi bangsa dan negara Indonesia.

Berdasarkan rincian masalah yang telah dipaparkan, maka penulis berinisiati f untuk membuat alat “Pengkonversi Energi Air Menjadi Energi Lisrik” dengan menggunakan energi potensial dari air  yang mengerakkan kincir sebagai turbin penggerak  generator (dinamo) yang akan dapat menghasilkan energi listrik.

2. Landasan Teori

Generator atau pembangkit listrik yang sederhana dapat ditemukan pada sepeda. Pada sepeda, biasanya dinamo digunakan untuk  menyalakan lampu sepeda. Caranya ialah bagian atas dinamo (kepala dinamo) dihubungkan ke ban sepeda. Pada proses itulah terjadi perubahan energi gerak  menjadi energi listrik.

Generator (dinamo) merupakan alat yang  prinsip ker janya berdasar kan induksi elektromagnetik 

yaitu peristiwa dihasilkannya GGL induksi jika terjadi perubahan fluks magnet dalam suatu daerah yang dibatasi oleh suatu kawat penghantar. Besarnya GGL induksi dapat dihitung dengan rumus :

E = -N ………2.6

Ket: E = Besarnya GGL induksi (volt) B = Induksi magnet (tesla) A = Luas daerah (m²)

= Lamanya waktu (sekon)

Berkebalikan dengan motor listrik, generator  (dinamo) adalah alat yang mengubah energi mekanik  menjadi energi listrik. Energi mekanik didapat dari angin atau air yang memutar turbin dan turbin tersebut akan memutar generator. Berdasarkan arus yang dihasilkan, generator dapat dibedakan menjadi dua macam, yaitu generator AC dan generator DC. Generator AC menghasilkan arus bolak balik (AC) dan generator (DC) menghasilkan arus searah (DC). Baik arus bolak-balik maupun searah dapat digunakan untuk penerangan dan alat-alat pemanas.

Pada alat ini penulis menggunakan dinamo sepeda sebagai sumber tegangan AC yang akan disimpan dalam bentuk DC pada baterai dan dapat dipakai untuk 

 penerangan di rumah karena tegangan sudah diubah kedalam bentuk AC dengan inverter sehingga outputnya 220 volt AC.

Gambar 2.3 Dinamo Sepeda

2.7. Inverter

Inverter digunakan untuk mengubah tegangan masukan DC menjadi tegangan AC. Keluaran inverter dapat berupa tegangan yang dapat

(3)

diatur dan tegangan yang tetap. Sumber tegangan masukan inverter dapat menggunakan baterai, sel  bahan bakar, tenaga surya, atau sumber tegangan DC yang lain. Tegangan keluaran yang biasa dihasilkan adalah 120 V 60 Hz, 220 V 50 Hz, 115 V 400 Hz. Ada dua jenis inverter yang umum digunakan pada sistem tenaga listrik yaitu:

 Inverter dengan frekuensi dan tegangan

keluar yang konstan CVCF (Constant  Voltage Constant Frequency).

 Inverter dengan frekuensi dan tegangan

keluaran yang berubah-ubah. Umumnya inverter dengan frekuensi dan tegangan keluaran yang berubah-ubah digunakan pada  pemakaian khusus seperti pemakaian pada  pompa listrik 3 fasa dengan menggunakan sumber tegangan DC. Kerugian cara ini adalah bahwa sistem hanya dapat digunakan  pada pemakaian khusus saja, sedangkan keuntungannya adalah kemampuannya untuk menggerakkan sistem (beban) dengan sumber yang berubah-ubah

3. Perancangan Alat

Gambar 3.1 blok diagram secara keseluruhan

3.3. Rangkaian Indikator Baterai

Rangkaian indikator baterai yang ditunjukkan pada gambar 3.5 dirancang untuk  melihat kondisi baterai dengan menggunakan indikator LED. Tegangan masukan baterai adalah 12 Volt dihubungkan antara kutub positif dan negatif, dan potensiometer 10 K Ω diatur agar LED di kaki 10 menyala yang menandakan kondisi baterai maksimum.

Gambar 3.5 Rangkaian indikator baterai

Led 6 sampai 10 menujukkan bahwa kapasitas baterai lebih dari 50 % dan led 1 sampai 5 menujukkan bahwa kapasitas baterai kurang dari 50%. Jika led 10 menyala, maka transistor 2N3904 akan mentriger ke relay, lalu relay akan hubung tertutup (NC) sehingga baterai berhenti mengisi. Jika kondisi baterai kurang penuh (Led 10 tidak menyala), maka relay akan hubung terbuka (NO) sehingga  baterai mengisi.

IC LM7815 berfungsi sebagai pembatas tegangan pada pengisian baterai dari dinamo sepeda, dimana tegangan di dinamo lebih dari 15 volt maka tegangan keluaran dibatasi sampai 15 volt sehingga tegangan output dari dinamo yang lebih dari 15 volt akan diturunkan sampai 15 volt ,tetapi penurunan tegangan pada rangkaian ini tidak terlalu  berpengaruh besar.

(4)

3.5. Perancangan Inverter

Pada gambar 3.8 menunjukkan rangkaian inverter. Rangkaian inverter mendapatkan masukan  berupa tegangan DC 12 volt dari baterai (aki) yang masuk ke IC CD4047 yang berfungsi sebagai multivibrator. Sinyal keluaran dari IC CD4047 kemudian diteruskan ke IC LM358 yaitu Op Amp yang berfungsi sebagaivoltage follower .

Pada rangkaian ini terdapat rangkaian transistor darlington dan transistor paralel yang disusun sedemikian rupa untuk mendapatkan sinyal dan penguatan tegangan, sehingga dapat menghasilkan sinyal AC yang bisa digunakan sebagai sumber tegangan pengganti PLN untuk beban. Pada rangkaian inverter tersebut, trafo yang digunakan untuk menaikan tegangan dari 12 volt AC ke 220 volt AC adalah trafo CT step down, karena harga trafo step up di pasaran sangat mahal maka penulis merancang rangkaian menggunakan trafo CT step down dengan membalik keluaran trafo 12V menjadi inputan dari sumber tegangan lalu keluaran trafo menjadi 220V AC. Sumber tegangan AC dari transistor daya dihubungkan pada masukan 12 volt trafo tersebut dan CT dihubungkan pada ground, maka trafo tersebut akan menaikan tegangan menjadi 220 volt AC dengan frekuensi 50 Hz yang telah diatur pada IC CD4047.

Gambar 3.8 Rangkaian inverter 

4. Hasil Uji Coba dan Pembahasan

Uji coba pembangkit listrik tenaga air ini dilakukan dengan tujuan untuk mendapatkan  pembuktian bahwa konstruksi mesin-mesin  penggerak dari turbin air dapat memutar dinamo yang dipakai berfungsi dengan baik dan menghasilkan tegangan AC sesuai dengan yang diharapkan dan diubah menjadi tegangan DC untuk disimpan pada  baterai sehingga dapat mengubah tegangan DC dari  baterai menjadi tegangan AC 220V dengan

menggunakan inverter 

4.1 Pengujian Dinamo Sebagai Generator

Pengujian ini dilakukan langsung di laboratorium, dengan menggunakan alat pemutar  manual agar dapat mengatur kecepatan putar dinamo untuk mendapatkan rpm dan hasil tegangan yang diinginkan,sehingga dapat mengetahui dinamo ini dapat berfungsi atau tidak. Pengujian dinamo sebagai generator dapat dilihat pada gambar 4.1 dibawah ini

Gambar 4.1 pengujian dinamo seb agai generator menghasilkan tegangan AC

Dinamo sepeda ini menghasilkan tegangan AC yang disesuaikan dengan kecepatan rpm putarannya, makin cepat putaran dinamo, maka makin besar pula tegangan yang dihasilkan oleh dinamo tersebut. Dan hasil tegangan yang dihasilkan oleh dinamo akan

(5)

diubah menjadi tegangan DC, yang akan disimpan ke dalam baterai.

Table 4.1 hasil uji coba dinamo menurut kecepatan putarnya

Kecepatan putaran (rpm) Tegangan AC (volt) 0 0 651 16 680 16,6 761 17,1 775 18,4 805 18,6

4.3 Pengujian Lama Waktu Pengisian Baterai dan Pemakaian Baterai pada Alat Listrik

Pengujian lamanya waktu pengisian baterai ini dilakukan pada saat pengisian berlangsung yaitu  pada saat dinamo berputar yang menyuplai sumber 

tegangan dan arus yang akan disimpan pada baterai sebelumnya diubah menjadi DC.

Gambar 4.2 baterai 12V/7,5Ah

Sumber arus yang dihasilkan oleh dinamo rata-rata 0,4 A – 0,5 A tergantung dari kecepatan putaran

dinamo, jadi arus yang tersimpan setelah diubah menjadi DC pada baterai sekitar 0,4A. Pengukuran ini menggunakan alat berupa multimeter digital,  pengukuran ini dilakukan secara bertahap sampai  baterai terisi penuh.

Tebel 4.3 Pengukuran Lama Waktu Pengisian Baterai per menit

Kecepatan  putaran dinamo (rpm) 651 680 761 775 805 Tegangan(V)  baterai per  menit 10,87 11,20 11,67 11,87 11,94 Arus(A)  pada baterai  per menit 0,38 0,43 0,44 0,47 0,49

Berdasarkan pengujian ini dapat diketahui kenaikan arus sebesar 0,02A permenit, sehingga untuk mengisi baterai hingga penuh dengan kapasitas baterai sebesar 7,5 A , maka dari hasil  pengujian dapat diketahui baterai dapat terisi penuh

Selama kurang lebih 7 jam dengan arus rata-rata yang masuk ke dalam baterai kurang lebih sebesar 0,02 A  permenit.

(6)

Gambar 4.3 rangkaian inverter 

Pada pengujian IC CD4047, akan dilihat bentuk  gelombang keluaran. Pada penjelasan dari bab 3, dapat diketahui bahwa IC ini dapat dioperasikan sebagaimultivibrator astableataumonostable. Untuk  rangkaian inverter ini maka digunakan multivibrator  astable. Secara teorimultivibrator astablemerupakan rangkaian pembangkit gelombang masukan berasal dari tegangan DC yang menghasilkan gelombang kotak. Pada rangkaian ini frekuensi diatur sebesar 50 Hz.

(a) (b)

Gambar 4.4 Gelombang keluaran pada IC CD4047; (a) Gelombang  pada kaki 10; (b) Gelombang pada kaki 11; beda fasa gelombang

(a) dan (b) 180° dengan periode 20 ms dan a mplitudo 13.5 Vpp.

Dengan cara mengubah nilai resistor dan kapasitor   pada pin 1 dan 2, sedangkan keluaran dari IC

CD4047 terdapat di pin 10 dan 11.

Dari pengamatan pada gambar 4.4 (a) dan (b) memiliki bentuk gelombang yang sama, yang  berbeda hanya fasa. Kedua gelombang memiliki memiliki beda fasa sebesar 180° atau saling  berkebalikan. Kedua gelombang pada gambar 4.4 (a) dan (b) memiliki skala yang tertera pada skala osiloskop seperti tabel 4.3.

Tabel 4.4 Skala gelombang IC CD4047 pada osiloskop

Time / Div Volt / Div

5 mS 5 Volt

Dari keterangan gambar 4.4 (a) dan (b) diketahui bahwa kedua gambar tersebut memenuhi 4 kotak osiloskop untuk satu gelombang penuh. Jika  periode dalam satu gelombang osiloskop adalah T,

maka didapat persamaan

T = Jumlah kotak dalam satu gelombang penuh x (Time / div). . . . ………. . . . .(4.1) Maka, untuk mencari frekuensi persamaannya adalah

. . . .(4.2) dimana:

ƒ : Frekuensi (Hertz) t : Periode (Sekon)

Dengan demikian dapat dihitung nilai frekuensi berdasarkan pengamatan dari osiloskop. Karena kedua gambar mempunyai jumlah kotak  dalam satu gelombang sama maka keluaran frekuensi dari pin 10 dan 11 adalah sama, maka nilai periode dari IC CD4047 adalah

(7)

T = 19.5 mS

Maka nilai frekuensi IC CD4047 dari hasil  pengamatan adalah

ƒ = 1 / 19.5 mS ƒ = 51.28 Hertz

Jadi hasil dari nilai pengamatan adalah 51.28 Hertz. Lalu dibandingkan dengan nilai perhitungan. Dari hasil teori pada bab 3 bahwa IC CD4047 mempunyai keunggulan yang salah-satunya adalah mempunyai eksternal kapasitor dan resistor pada pin 1 dan 3 untuk mengatur nilai frekuensi. Maka untuk  mencari frekuensi dari IC CD4047 dengan menggunakan persamaan 3.2 pada bab 3. Dengan menggunakan nilai resistor 30 KΩ dan kapasitor 150 nF pada pin eksternal IC CD4047, maka nilai frekuensi dari hasil perhitungan adalah

T = 4.40 R.C

T = 4.40 x 30 KΩ x 150 nF T = 4.40 x 30 x 103x 150 x 10-9 T = 1.998 x 10-2S

Maka nilai frekuensinya adalah ƒ = 1 / 1.998 x 10-2S

ƒ = 50.05 Hertz.

Berdasarkan teori kesalahan dan  pengambilan data terdapat perbedaan nilai dengan  persentase kesalahan.

Persentase kesalahan

= ×100.. (4.3)

Dimana nilai frekuensi pada data perhitungan adalah 50.05 Hertz. Sedangkan nilai frekuensi pada data  pengamatan adalah 51.28 Hertz. Maka, nilai  persentase kesalahannya adalah

= 2.40 %

Dari gambar juga dapat dilihat besar  tegangan yang dihasilkan oleh IC multivibrator  tersebut. Bila dilihat pada gambar 4.3 (a) dan (b), dapat diketahui kedua gambar memiliki tingkat tegangan yang sama, yaitu 2.7 kotak untuk satu gelombang penuh ( peak to peak ) pada osiloskop. Dengan demikian dapat diketahui bahwa tegangan tersebut adalah

V = Jumlah kotak peak to . .. . . (4.4) V = 2.7 x 5

V = 13.5 Vp-p.

Jadi Tujuan dari pengujian ini untuk  membuktikan bahwa IC CD4047 dapat merubah tegangan DC menjadi AC, dan dapat diamati pada gambar 4.4 yaitu mengeluarkan output gelombang kotak AC.

5. Kesimpulan

Berdasarkan hasil uji coba dan pembahasan terhadap data yang telah diperoleh pada Bab 4, maka dapat ditarik kesimpulan bahwa penulis telah berhasil membangun Pembangkit Listrik Tenaga Air dengan Menggunakan Dinamo Sepeda dengan jenis dinamo sepeda ontel yang keluaran tegangan 12 VAC dan arus sebesar 0,5 A yang diputar dengan kecepatan kurang lebih 600 rpm. Pembangkit ini dapat menghasilkan 0,02 A permenit untuk mengisi baterai hingga baterai penuh dengan kapasitas arus 7,5A selama kurang lebih 7 jam.

(8)

DAFTAR PUSTAKA

[1] Pudjanarsa, Astu dan Nursuhud, Djati, Mesin

Konversi Energi, PT ANDI

Yogyakarta, Yogyakarta, 2006

[2]

--

http://id.wikipedia.org/wiki/Energi_terbarui [28 Juli 2011]

[3] Fazman, Mohammad, Thesis S2 Design and   Development of Sollar Tracking,

Universiti Teknologi Malaysia, 2010 [4] repository.upi.edu/operator/upload/s_e5231_0

02065_chapter2.pdf [31 Juli 2011] [5] Widyastuti, Tugas Akhir S1Perencanaan dan

Pembuatan Uninterruptable Power  Supply 220 v dengan Frekuensi 50 Hz, Universitas Gunadarma, Jakarta, 2010

[6] Zuhal,  Dasar Teknik Tenaga Listrik dan  Elektronika Daya, PT Gramedia

Pustaka Utama, Jakarta, 1993

[7] http://www.electronicecircuits.com/electronic- circuits/lm3914-12v-battery-monitor-circuit/ [22 Juni 2011]

[8] charger-circuit-diagram[22 Juni 2011]

[9] Tim Asisten Laboratorium Fisika Dasar  Universitas Gunadarma,  Buku Pedoman Praktikum Fisika Dasar , Laboratorium Fisika Dasar Universitas Gunadarma, Jakarta, 2006

[10]  Nugraha, Heru, Tugas Akhir S1  Rancang  Bangun Pendeteksi Posisi Sinar   Matahari Untuk Mengoptimalkan

Penyerapan Energi Matahari Pada Solar Sel, Universitas Gunadarma, Jakarta, 2011

[11] Malvino, Albert Paul, Prinsip-prinsip  Elektronik , Edisi pertama, PT Salemba

Teknika, Jakarta, 2003 [12] http://www.alldatasheet.com[26 Juli 2011] (a) (  b )

Gambar

Gambar 2.3 Dinamo Sepeda
Gambar 3.1 blok diagram secara keseluruhan
Gambar 3.8 Rangkaian inverter 
Table 4.1 hasil uji coba dinamo menurut kecepatan putarnya
+2

Referensi

Dokumen terkait

Usaha yang dilakukan dalam memperoleh informasi dari informan adalah dengan melakukan pendekatan secara personal dan mencari berbagai informasi tentang

Rancang bangun antena Yagi sebagai penguat sinyal telemetri 433 MHz pada pesawat tanpa awak adalah suatu kegiatan pembuatan antena Yagi yang diawali dengan perancangan

Hasil belajar setelah diadakan siklus I mahasiswa prodi pendidikan matematiika semester IV STKIP YAPIM Maros terdapat 15 orang dengan persentase 55,56%

User mengklik menu penghitungan akan muncul form penghitungan, user akan memilih tanggal periode awal input dan akhir periode input, untuk selanjutnya memilih

Berdasarkan Standar Kompetensi 5 pada kelas V yaitu memahami cerita tentang suatu peristiwa dan cerita pendek anak yang dibacakan secara lisan serta Kompetensi Dasar 2

Dengan asumsi bahwa yang paling berpengaruh pada reaksi delignifikasi adalah lignin, maka digunakan nilai konstanta laju difusi lindi terhadap lignin yang berkisar antara (0,01 –

7.1 Dewan Desa mengidentifikasikan, merencanakan dan melaksanakan kegiatan pembangunan di desa yang menggunakan dana yang telah dibagikan sebagai dana bagi pembangunan desa, baik

• Effects of Maternal Employment on Child Health Chapter 2 • Effects of Medical Subsidies for Children and Infants on Healthcare Utilization Chapter 3 • Effects of Medical Subsidies