• Tidak ada hasil yang ditemukan

BAB II TINJAUAN PUSTAKA - Analisis Laju Angkutan Sedimen untuk Perencanaan Kantong Lumpur pada D.I. Perkotaan Kabupaten Batubara”

N/A
N/A
Protected

Academic year: 2019

Membagikan "BAB II TINJAUAN PUSTAKA - Analisis Laju Angkutan Sedimen untuk Perencanaan Kantong Lumpur pada D.I. Perkotaan Kabupaten Batubara”"

Copied!
59
0
0

Teks penuh

(1)

BAB II

TINJAUAN PUSTAKA

2.1 Umum

Air adalah zat atau materi atau unsur yang penting bagi semua bentuk kehidupan yang di ketahui sampai saat ini di bumi, tetapi tidak di planet lain dalam sistem tata surya dan hampir menutupi 71% permukaan bumi (Suripin, 2001).

Manusia mutlak membutuhkan air, begitu juga tumbuhan dan binatang. Air merupakan material yang membuat kehidupan terjadi di bumi. Semua makhluk hidup di bumi mutlak membutuhkan air, tanpa air semua akan mati. Bisa dikatakan bahwa air merupakan salah satu sumber kehidupan.

Untuk tanaman, kebutuhan air juga mutlak dibutuhkan. Pada kondisi tidak ada air terutama pada musim kemarau tanaman akan segera mati. Sehinggga dalam pertanian disebutkan bahwa kekeringan merupakan merupakan bencana terparah dibandingkan dengan bencana lainnya. Bila kebanjiran tanaman masih bisa hidup, kekerungan pupuk juga masih bisa hidup.

Air bersifat sumber daya alam yang terbarukan dan dinamis. Artinya sumber utama air yang berupa hujan akan selalu turun sesuai dengan waktunya atau musimnya sepanjang tahun.

(2)

sungai. Perpaduan antara alur sungai dengan aliran air di dalamnya disebut sungai (Sosrodarsono, 1984).

Daerah Aliran Sungai disingkat DAS adalah air yang mengalir pada suatu kawasan yang dibatasi oleh titik-titik tinggi dimana air tersebut berasal dari air hujan yang jatuh dan terkumpul pada kawasan tersebut. Adapun DAS berguna untuk menerima, menyimpan, dan mengalirkan air hujan yang jatuh diatasnya melalui sungai.

Sumber daya air adalah air, sumber air dan daya air yang terkandung didalamnya. Sumber air adalah tempat atau wadah air alami dan atau buatan yang terdapat pada, di atas, ataupun di bawah permukaan tanah (UU No. 7 2004).

Dalam proses perjalanannya sumber daya air dimanfaatkan untuk berbagai macam keperluan. Daya air dipakai untuk energi misalnya pembangkit tenaga air (PLTA). Mata air dipakai sebagai salah satu sumber air, demikian pula waduk dipakai sebagai wadah air yang dimanfaatkan untuk berbagai keperluan. Air baku digunakan untuk irigasi, air bersih dipakai untuk keperluan domestik dan nondomestik. Secara alami dipakai tumbuhan (flora) dan binatang (fauna) untuk melangsungkan kehidupannya.

(3)

2.2 Erosi

Secara umum erosi dan sedimentasi proses terjadinya perlepasan butiran tanah dari induknya di suatu tempat dan terangkutnya material tersebut oleh gerakan air dan angin kemudian diikuti dengan preoses pengendapan pada tempat yang lain (Suripin, 2001).

Lahan pertanian paling rentan terjadinya erosi. Lahan-lahan pertanian yang ditanami terus-menerus tanpa istirahat (fallow), dan tanpa disertai pengelolaan tanaman, tanah, dan air yang baik dan tepat, khususnya daerah yang curah hujannya mencapai 1500 mm per tahun, akan mengalami penurunan produktif tanah. Penurunan kesuburan tanah ini bisa disebabkan oleh menurunnya tingkat kesuburan tanah, yang dikarenakan unsur hara dalam tanah hilang bersamaan dengan terjadinya proses erosi.

Bahaya erosi ini banyak terjadi pada daerah-daerah lahan kering yang memiliki kemiringan lereng sekitar 15% atau lebih. Keadaan ini sebagai akibat dari pengelolaan tanah yang keliru, tidak mengikuti kaidah-kaidah air dan tanah, dan akibat pola pertanian yang berpindah-pindah setiap tahunnya (shifting cultivation) (Suripin, 2001).

Dua sebab utama terjadinya erosi adalah karena sebab alamiah dan

aktivitas manusia. Erosi alamiah dapat terjadi karena adanya pembentukan tanah

dan proses yang terjadi untuk mempertahankan keseimbangan tanah secara alami.

Sedangkan erosi karena ativitas manusia disebabkan oleh terkelupasnya lapisan

tanah bagian atas akibat cara bercocok tanam yang tidak mengindahkan

kaidah-kaidah konservasi tanah atau kegiatan pembangunan yang bersifat merusak

(4)

2.2.1 Mekanisme Erosi

Erosi tanah terjadi melalui tiga tahapan, yaitu tahap pelepasan partikel tunggal dari massa tanah dan tahap pengankutan oleh media yang erosif seperti pada aliran air dan angin. Pada kondisi dimana energi yang tersedia tidak lagi cukup untuk mengangkut partikel, maka akan terjadi tahap ke tiga yaitu pengendapan (Suripin, 2001).

Percikan air hujan merupakan penyebab terjadinya erosi tanah. Tetesan air hujan adalah media utama pelepasan partikel tanah. Pada saat butiran air hujan mengenai permukaan tanah yang gundul, partikel tanah dapat terlepas dan terlempar sampai beberapa centimeter ke udara. Pada lahan datar partikel-partikel tanah tersebar lebih kurang merata ke segala arah, tapi untuk lahan miring terjadi dominasi kearah bawah searah lereng. Partikel-partikel tanah yang terlepas ini akan menyumbat pori-pori tanah sehingga akan menurunkan kapasitas dan laju infiltrasi. Pada kondisi dimana intensitas hujan melebihi laju infiltrasi, maka akan terjadi genangan air di permukaan tanah, yang kemudian akan menjadi aliran permukaan. Aliran permukaan ini menyediakan energi untuk mengangkut partikel-partikel yang terlepas baik oleh tetesan air hujan maupun oleh adanya aliran permukaan itu sendiri. Pada saat aliran permukaan menurun dan tidak mampu lagi mengangkut partikel tanah yang terlepas, maka partikel tanah tersebut akan diendapkan (Suripin, 2001).

Ada beberapa bentuk erosi tanah yang dapat terjadi, yaitu:

1. Erosi Percikan

Erosi percikan (splash erosion) adalah proses terlepas dan terlemparnya

(5)

sebagai air lolos secara langsung. Tenaga kinetik tersebut ditentukan oleh dua hal,

massa dan kecepatan jatuhan air. Tenaga kinetik bertambah besar dengan

bertambahnya besar diameter air hujan dan jarak antara ujung daun penetas

(driptis) dan permukaan tanah (pada proses erosi di bawah tegakan vegetasi).

Ada tiga tahapan terjadinya erosi percikan, antara lain (Suripin, 2002):

 Terjadinya pengemburan yang cepat pada permukaan tanah sehingga

kohesinya munurun, akibatnya laju erosi percikan meningkat.

 Terjadi pemadatan permukaan akibat pukulan air hujan yang jatuh

sehingga tebentuk lapisan kerak tipis yang akan menurunkan jumlah

partikel tanah yang terlempat ke udara dan meningkatkan air

permukaan.

 Terjadinya turbulensi aliran permukaan yang mampu mengangkut

sebagian lapisan kerak pada permukaan tanah.

2. Erosi Kulit

Erosi kulit (sheet erosion) adalah erosi yang terjadi ketika lapisan tipis

permukaan tanah di daerah berlereng terkikis oleh kombinasi air hujan dan air

limpasan (runoff). Tipe erosi ini disebabkan oleh kombinasi air hujan dan air

limpasan yang mengalir ke tempat yang lebih rendah. Berdasarkan sumber tenaga

penyebab erosi kulit, tenaga kinetik air hujan lebih penting karena kecepatan air

jatuhan lebih besar, yaitu antara 0,3 sampai 0,6 m/dtk. Tenaga kinetik air hujan

akan menyebabkan lepasnya partikel-partikel tanah dan bersama-sama dengan

pengendapan sedimen di atas permukaan tanah, menyebabkan turunnya laju

infiltrasi karena pori-pori tanah tertutup oleh kikisan partikel tanah. Bentang lahan

(6)

lapisan bawah permukaan yang solid merupakan bentang lahan dengan potensi

terjadinya erosi kulit besar. Besar kecilnya tenaga penggerak terjadinya erosi kulit

ditentukan oleh kecepatan dan kedalaman air limpasan.

3. Erosi Alur

Erosi alur (rill erosion) adalah pengelupasan yang diikuti dengan

pengangkutan partikel-partikel tanah oleh aliran air limpasan yang terkonsentrasi

sehingga membentuk alur-alur kecil. Hal ini terjadi ketika air limpasan masuk ke

dalam cekungan permukaan tanah, kecepatan air limpasan meningkat dan

akhirnya terjadilah laju angkutan sedimen.

Tipe erosi alur umumnya dijumpai pada lahan-lahan garapan dan

dibedakan dari erosi parit (gully erosion) dalam hal erosi alur dapat diatasi dengan

pengerjaan/pencangkulan tanah. Tipe erosi ini terbentuk oleh tanah yang

kehilangan daya ikat partikel-partikel tanah sejalan dengan meningkatnya

kelembapan tanah di tempat tersebut. Kelembapan tanah yang berlebihan akan

mengakibatkan tanah longsor. Bersama dengan longsornya tanah, kecepatan air

limpasan meningkat dan juga terkonsentrasi di tempat tersebut. Limpasan ini akan

mengangkut sedimen hasil erosi dan ini menandai awal dari terjadinya erosi parit.

4. Erosi Parit

Erosi parit (gully erosion) akan membentuk jajaran parit yang lebih dalam

dan lebar dan merupakan tingkat lanjutan dari erosi alur. Erosi parit dapat

diklasifikasikan sebagai parit bersambungan dan parit terputus-putus. Erosi parit

terputus dapat dijumpai di daerah yang bergunung. Erosi tipe ini biasanya diawali

oleh adanya gerusan yang melebar dibagian atas hamparan tanah miring yang

(7)

Kedalaman erosi parit ini menjadi berkurang pada daerah yang kurang terjal.

Erosi parit bersambungan berawal dari terbentuknya gerusan-gerusan permukaan

tanah oleh air limpasan kearah tempat yang lebih tinggi dan cenderung berbentuk

jari-jari tangan. Pada tahap awal, proses pembentukan erosi parit tampak

mempunyai kecenderungan kearah keseimbangan dinamis. Pada tahap lanjutan,

proses pembentukan erosi parit tersebut akan kehilangan karekteristik dinamika

perkembangan gerusan-gerusan pada permukaan tanah oleh aliran air dan pada

akhirnya terbentuk pola aliran-aliran kecil atau besar yang bersifat permanen.

Namun demikian, proses pembentukan erosi parit tidak selalu beraturan seperti

yang disebut diatas. Pada kondisi tertentu, terutama oleh perubahan-perubahan

geologis karena pengaruh aktivitas manusia, proses erosi parit tidak pernah

sampai pada tahap lanjutan. Secara umum erosi parit dapat terjadi serentak atau

pada waktu yang berbeda.

5. Erosi Tebing

Erosi tebing (stream bank erosion) adalah erosi yang terjadi akibat

pengikisan tebing tanah oleh air yang mengalir dari bagian atas tebing atau oleh

terjangan air sungai yang kuat terutama pada daerah tikungan-tikungan sungai.

Dua proses berlangsungnya erosi tebing sungai adalah oleh adanya gerusan aliran

sungai dan oleh adanya longsoran tanah pada tebing sungai. Proses yang pertama

berkorelasi dengan kecepatan aliran sungai. Semakin cepat laju aliran sungai

(debit puncak atau banjir) semakin besar kemungkinan terjadinya erosi tebing.

Erosi tebing sungai dalam bentuk gerusan dapat berubah menjadi tanah longsor

ketika permukaan sungai surut (meningkatnya gaya tarik kebawah) sementara

(8)

tebing sungai terjadi setelah debit yang kedua lebih ditentukan oleh keadaan

kelembapan tanah di tebing sungai menjelang terjadinya erosi. Dengan kata lain,

erosi tebing sungai dalam bentuk longsoran tanah terjadi karena beban meningkat

oleh adanya kelembapan tanah yang tinggi dan beban ini lebih besar dari pada

gaya yang mempertahankan tanah tetap pada tempatnya.

6. Erosi Internal

Erosi internal (internal or surface erosion) adalah proses tersangkutnya

partikel-partikel tanah masuk ke celah-celah atau pori-pori akibat adanya aliran

bawah permukaan. Akibat erosi ini tanah menjadi kedap air dan udara, sehingga

menurunkan kapasitas infiltrasi dan meningkatkan aliran permukaan atau erosi

alur.

Erosi bawah permukaan juga berupa erosi terowongan (piping), diman

tanah tersangkut kebagian ke bagian bawah dan terbentuk semacam pipa dan

terowongan dari permukaan ke bawah tanah. Erosi jenis ini hanya terjadi di

tanah-tanah tertentu yang kurang baik untuk pertanian.

7. Tanah Longsor

Tanah longsor (land slide) merupakan bentuk erosi dimana pengangkutan

dan pergerakan massa tanah pada suatu saat dalam volume yang relatif besar.

Berbeda dengan jenis erosi yang lain, pada tanah longsor pengangkutan tanah

terjadi sekaligus dalam jumlah yang besar.

2.2.2 Faktor-Faktor yang Mempengaruhi Erosi

Pada dasarnya erosi adalah akibat dari interaksi kerja antara faktor iklim,

topografi, tumbuh-tumbuhan dan manusia terhadap lahan. adapun faktor-faktor

(9)

2.2.2.1Iklim

Pengaruh iklim terhadap erosi dapat bersifat langsung atau tidak langsung.

Pengaruh langsung adalah melalui tenaga kinetis air hujan, terutama intensitas dan

diameter butiran air hujan. Pada hujan yang intensif dan berlangsung dalam waktu

pendek, erosi yang terjadi biasanya lebih besar daripada hujan dengan intensitas

lebih kecil dengan waktu yang lebih lama. Pengaruh iklim tidak langsung

ditentukan melalui pengaruhnya terhadap pertumbuhan vegetasi.

Di daerah beriklim basah, faktor yang mempengaruhi erosi adalah hujan.

Besarnya curah hujan, intensitas dan distribusi hujan menentukan kekuatan

dispersi hujan terhadap tanah, sehingga jumlah dan kecepatan aliran permukaan

meningkat dan kerusakan oleh erosi juga meningkat. Besarnya curah hujan adalah

volume air yang jatuh pada suatu areal tertentu. Besarnya curah hujan dapat

dinyatakan dalam meter kubik per areal atau dinyatakan tinggi jumlah air yaitu

mm. Besarnya curah hujan dapat dimaksudkan untuk satu kali hujan atau massa

tertentu seperti per hari, per bulan, per musim atau per tahun. Kemampuan hujan

untuk menyebabkan erosi disebut daya erosi atau erosivitas hujan.

Intensitas curah hujan adalah menyatakan besar curah hujan yang jatuh

dalah waktu yang singkat yaitu 5, 10, 15, atau 30 menit, yang dinyatakan dalam

mm/jam atau cm/jam (Rauf A, 2011).

2.2.2.2Topografi

Kemiringan lereng dan panjang lereng adalah dua unsur karakteristik

topografi yang paling menentukan terhadap aliran permukaan dan erosi. Selain

memperbesar jumlah aliran permukaan, makin curamnya lereng juga

(10)

angkut air. Kecepatan air limpasan yang besar umumnya ditentukan oleh

kemiringan lereng yang tidak terputus dan panjang serta terkonsentrasi pada

saluran-saluran sempit yang mempunyai potensi besar terjadinya erosi alur dan

erosi parit. Kedudukan lereng juga menentukan besar kecilnya erosi. Lereng

bagian bawah lebih mudah tererosi daripada lereng bagian atas karena momentum

air limpasan lebih besar dan kecepatan dan terkonsentrasi ketika mencapai lereng

bagian bawah.

Daerah tropis vulkanik dengan topografi bergelombang dan curah hujan

tinggi sangat potensial untuk terjadinya erosi dan tanah longsor. Oleh karena itu,

dalam program konservasi tanah dan air di daerah tropis, usaha-usaha pelandaian

permukaan tanah seperti pembuatan teras di lahan-lahan pertanian, peruntukan

tanah-tanah dengan kemiringan lereng besar untuk kawasan lindung seringkali

dilakukan. Usaha tersebut dilakukan terutama untuk menghindari terjadinya erosi

yang dipercepat dan meningkatnya tanah longsor.

2.2.2.3Vegetasi

Pengaruh vegetasi terhadap erosi adalah menghalangi air hujan agar tidak

jatuh langsung di permukaan tanah, sehingga kekuatan untuk menghancurkan

tanah sangat kurang.

Adapun pengaruh vegetasi penutup tanah terhadap erosi adalah sebagai

berikut (Asdak, 2007):

1. Melalui fungsi melindungi permukaan tanah dari tumbuhan air hujan

2. Menurunkan kecepatan air limpasan

3. Menahan partikel-partikel tanah agar tetap pada tempatnya

(11)

Dalam meninjau vegetasi terhadap mudah-tidaknya tanah tererosi, harus

dilihat apakah vegetasi penutup tanah tersebut mempunyai struktur tajuk yang

berlapis sehingga dapat menurunkan kecepatan terminal air hujan dan

memperkecil diameter tetesan air hujan. Telah dikemukakan bahwa yang lebih

berperan dalam menurunkan besarnya erosi adalah tumbuhan bawah karena

tumbuhan bawah merupakan stratum vegetasi terakhir yang akan menentukan

besar kecilnya erosi percikan. Dengan kata lain, semakin rendah dan rapat

tumbuhan bawah semakin efektif pengaruh vegetasi dalam melindungi permukaan

tanah terhadap ancaman erosi karena akan menurunkan besarnya tumbukan

tetesan air hujan ke permukaan tanah. Oleh karena itu dalam melaksanakan

program konservasi tanah dan air melalui vegetasi, sistem pertanaman (tanah

pertanian) dan pengaturan struktur tegakan (vegetasi hutan) diusahakan agar

tercipta struktur pelapisan tajuk yang serapat mungkin. Hutan yang terpelihara

dengan baik, terdiri dari pepohonan yang dikombinasikan dengan tanaman

penutup tanah, seperti rerumputan, semak atau perdu, dan belukar merupakan

pelindung tanah yang ideal terhadap bahaya erosi.

2.2.2.4Tanah

Tipe tanah mempunyai kepekaan terhadap erosi yang berbeda-beda.

Kepekaan erosi tanah yaitu mudah tidaknya tanah tererosi adalah fungsi berbagai

interaksi sifat-sifat fisik dan kimia tanah. Sifat-sifat tanah yang mempengaruhi

kepekaan erosi adalah sifat-sifat tanah yang mempengaruhi laju infiltrasi,

permeabilitas, dan kapasitas menahan air dan sifat-sifat tanah yang mempengaruhi

ketahanan struktur tanah disperse dan pengikisan oleh butir-butir hujan yang jatuh

(12)

2.2.2.5Manusia

Manusia sangat berperan dalam mempercepat proses terjadinya erosi.

Manusia merupakan faktor sangat menentukan apakah suatu tanah yang

diusahakannya akan rusak atau produktif secara berkelanjutan. Banyak faktor

yang menentukan apakah manusia akan memperlakukan dan merawat serta

mengusahakan tanahnya secara bijak sehingga menjadi lebih baik dan dapat

memberikan pendapatan yang cukup dalam jangka waktu yang tidak terbatas.

Adapun faktor yang berkenaan dengan fungsi manusia terhadap tanah yang

diusahakannya dengan erosi antara lain (Rauf A, 2011):

 Luas tanah pertanian yang diusahakan  Sistem pengusaha tanah

 Status pengusahaan tanah

 Tingkat pengetahuan dan keterampilan  Harga hasil usaha tani

 Ikatan hutan

 Pasar dan sumber keperluan usaha tani  Infrastruktur dan fasilitas kesejahteraan  Mentalitas manusia itu sendiri

Meskipun faktor-faktor tersebut dapat diprediksi menggunakan teknologi

canggih yang berkembang saat ini, tapi fenomena alam merupakan rahasia alam

yang sangat sulit untuk diprediksi dengan tepat. Menurut Wischemeier dan Smith

dalam Asdak (2007) menyebutkan bahwa ada empat faktor utama yang dianggap

terlibat dalam proses erosi, yaitu; sifat tanah, topografi, dan vegetasi penutup

tanah. Keempat faktor tersebut kemudian dijadikan dasar untuk menentukan laju

erosi tanah melalui sebuah persamaan umum yang dikenal sebagai USLE

(13)

2.2.3 USLE Sebagai Model Perkiraan Besarnya Erosi

Untuk menghitung prediksi erosi yang terjadi pada suatu DAS dapat

menggunakan metode USLE (Universal Soil Loss Equation). Prediksi erosi

adalah suatu pendugaan besarnya erosi yang dipengaruhi oleh faktor iklim, tanah,

topografi dan penggunaan lahan. Menyadari adanya keterbatasan dalam

memperkirakan besarnya erosi untuk tempat-tempat di luar lokasi yang telah

diketahui spesifikasi tanahnya tersebut, maka di kembangkan cara untuk

memperkirakan besarnya erosi dengan menggunakan persamaan matematis

seperti dikemukakan oleh Wischemeier dan Smith (1978) (Asdak, 2007).

USLE adalah suatu model erosi yang dirancang untuk memprediksi

rata-rata erosi jangka panjang dari erosi alur di bawah keadaan tertentu. USLE

dikembangkan di USDA-SCS (United State Departemen of Agriculture-Soil

Conservation Service) bekerja sama dengan Universitas Purdue oleh Wischemeier dan Smith, 1965. Berdasarkan analisis statistic terhadap lebih dari 10.000 tahun

data erosi dan aliran permukaan, parameter fisik, dan pengelolaan di kelompokkan

menjadi lima variabel utama yang nilainya untuk setiap tempat dapat dinyatakan

dengan numeris (Suripin, 2001).

Rumus USLE dapat dinyatakan sebagai:

Ae = R x K x LS x C x P ………(2.1)

Dimana:

Ae = perkiraan besarnya jumlah erosi (ton/ha/tahun) R = faktor erosivitas curah hujan tahunan rata-rata (mm) K = indeks erodibilitas tanah

LS = indeks panjang dan kemiringan lereng C = indeks pengelolahan lahan

(14)

2.2.3.1Faktor Erosivitas Hujan (R)

Faktor erosivitas hujan adalah kemampuan air hujan sebagai penyebabkan

timbulnya erosi yang bersumber dari laju dan distribusi tetesan air hujan.

Erosivitas hujan tahunan yang dapat dihitung dari data curah hujan yang diperoleh

dari pengukuran hujan. Erosivitas hujan merupakan fungsi dari energi kinetik total

hujan dengan intensitas hujan maksimum Selama 30 menit. Perlu diperhatikan

juga bahwa curah hujan bulanan rata-rata yang digunakan adalah data jangka

panjang minimal 5 tahun dan akan lebih baik jika 20 tahun atau lebih. Faktor

erosivitas hujan bulanan (Rm) dapat dihitung dengan menggunakan persamaan:

Rm = 2.21 (Rain)m1.36……… (2.2)

Untuk memperoleh nilai R dapat dihitung dengan mempergunakan persamaan

sebagai berikut:

R = 2.21 ∑ ………(2.3)

Dimana:

R = Erosivitas Curah Hujan Tahunan Rata-rata (mm) Rm = Erosivitas Curah Hujan Bulanan (cm)

(Rain)m = Curah hujan bulanan (cm)

Nilai erosivitasi hujan setahun dihitung dihitung dengan menjumlahkan

erosivitas hujan bulanan selama satu tahun (12 bulan).

2.2.3.2Faktor Erodibilitas Tanah (K)

Faktor erodibilitas tanah, atau faktor kepekaan erosi tanah (K) merupakan

daya tahan tanah baik terhadap pengelepasan dan pengangkutan, terutama

tergantung pada sifat-sifat tanah, seperti tekstur, stabilitas agregat, kekuatan geser,

kapasitas infiltrasi, kandungan bahan organik dan kimiawi. Atau faktor

erodibilitas tanah adalah jumlah tanah yang hilang rata-rata setiap tahun per

(15)

kerentanan tanah terhadap erosi air. Indeks erodibilitas tanah ini ditentukan untuk

tiap satuan lahan. Indeks ini memerlukan data ukuran partikel tanah, % bahan

organik, struktur tanah dan permeabilitas tanah. Data tersebut didapat dari hasil

analisis laboratorium contoh tanah yang diambil di lapangan atau dari data dalam

laporan survei tanah yang dilampirkan pada peta tanah. Ketersediaan peta satuan

tanah pada penelitian ini sangat membantu dalam efisiensi waktu dan biaya dalam

menentukan faktor K. Apabila tidak tersedianya peta satuan tanah maka faktor K

dapat ditentukan dari penyelidikan lapangan dan menentukan nilai K dengan

menggunakan nomograf seperti gambar 2.1 berikut.

Sumber: (Suripin, 2001)

(16)

Tabel 2.1 Kode Struktur Tanah

Kelas Struktur Tanah (ukuran diameter) Kode

Granuler sangat halus (< 1 mm) 1

Granuler halus (1 sampai 2 mm) 2

Granuler sedang sampai kasar (2 sampai 10 mm) 3

Berbentuk blok, pelat, masif 4

Sumber: Wischmeier dan Smith, 1978, dalam Suripin, 2001

Tabel 2.2 Kode Permeabilitas Profil Tanah

Kelas Permeabilitas Kecepatan Kode

Sangat lambat < 0,5 1

Lambat 0,5 – 2,0 2

Lambat sampai sedang 2,0 – 6,3 3

Sedang 6,3 – 12,7 4

Sedang sampai cepat 12,7 – 25,4 5

Cepat > 25,4 6

Sumber: Wischmeier dan Smith, 1978, dalam Suripin 2001

Tabel 2.1 dan tabel 2.2 digunakan untuk menentukan nilai kode yang

terdapat pada nomograf untuk menghitung nilai erodibilitas tanah (k) dalam

satuan metrik pada gambar 2.1.

Atau nilai K secara pendekatan dapat dihitung dengan menggunakan

persamaan (Rauf A, 2011):

K = {2.7131,14.M (10-4 x 12 – a) + 3,25 (b - 2)+2,5(c - 3)} /100 ……...(2.4)

Dimana:

(17)

Tabel 2.3 Nilai M untuk Beberapa Tekstur Tanah

Kelas Tekstur Tanah Nilai M

Lempung Berat 210

Lempung Sedang 750

Lempung Pasiran 1213

Lempung Ringan 1685

Geluh Lempung 2160

Pasir Lempung Liatan 2830

Geluh Lempungan 2830

Pasir 3035

Pasir Geluhan 1245

Geluh Berlempung 3770

Geluh Pasiran 4005

Geluh 1390

Geluh Liatan 6330

Liat 8245

Campuran merata 4000

Sumber: Suripin (2001)

Tabel 2.3 digunakan untuk menentukan nilai m (persentase ukuran

partikel) dalam menghitung nilai k pada persamaan 2.4.

Nilai erodibilitas tanah dapat ditentukan berdasarkan identifikasi jenis

tanah dalam satuan pemetaan tanah. Tabel 2.4 memperlihatkan besaran nilai K

(18)

Tabel 2.4 Nilai K untuk Berbagai Jenis Tanah

NO Jenis Tanah Nilai K Rataan

1 Latosol (Haplorthox) 0,09

2 Latosol merah (Humox) 0,12

3 Latosol merah kuning (Typic haplorthox) 0,26

4 Latosol coklat (Typic tropodult) 0,23

5 Latosol (Epiaquic tropodult) 0,31

6 Regosol (Troporthents) 0,14

7 Regosol (Oxic dystropept) 0,12 – 0,16

8 Regosol (Typic entropept) 0,29

9 Regosol (Typic dystropept) 0,31

10 Gley humic (Typic tropoquept) 0,13

11 Gley humic (Tropaquept) 0,20

12 Gley humic (Aquic entroopept) 0,26

13 Lithosol (Litic eutropept) 0,16

14 Lithosol (Orthen) 0,29

15 Grumosol (Chromudert) 0,21

16 Hydromorf abu-abu (Tropofluent) 0,20

17 Podsolik (Tropudults) 0,16

18 Podsolik Merah Kuning (Tropudults) 0,32

19 Mediteran (Tropohumults) 0,10

20 Mediteran (Tropaqualfs) 0,22

21 Mediteran (Tropudalfs) 0,23

Sumber: (Asdak, 2007dan Rauf A, 2011)

2.2.3.3Faktor Panjang dan Kemiringan Lereng (LS)

Faktor LS, merupakan kombinasi antara faktor panjang lereng (L) dan

kemiringan lereng (S) yang mana merupakan nisbah besarnya erosi dari suatu

(19)

lahan. Nilai LS untuk sembarang panjang dan kemiringan lereng dapat dihitung

dengan persamaan sebagai berikut:

LS = (L/22)z (0,006541S2 + 0,0456S + 0,065) ……… (2.5)

Dimana:

L = panjang lereng (m)

S = kemiringan lereng (%), dan

z = konstanta yang besarnya bervariasi tergantung besarnya S. z = 0,5 jika S > 5%

z = 0,4 jika 5% > S > 3% z = 0,3 jika 3% > S > 1% z = 0,2 jika S < 1%

2.2.3.4Faktor Pengolahan Lahan (C)

Faktor menggambarkan nisbah antara besarnya erosi dari lahan yang

bertanaman tertentu dan dengan manajemen tertentu terhadap besarnya erosi yang

tidak ditanami dan diolah bersih. Factor ini mengukur kombinasi pengaruh

tanaman dan pengelolaannya. Faktor C ditunjukkan sebagai angka perbandingan

yang berhubungan dengan tanah hilang tahunan pada areal yang bervegetasi

dengan areal yang sama jika areal tersebut kosong dan ditanami secara teratur.

Nilai faktor C berkisar antara 0.001 pada hutan tak terganggu hingga 1.0 pada

tanah kosong.

2.2.3.5Faktor Konservasi Tanah (P)

Faktor konservasi tanah ialah tindakan pengawetan yang meliputi

usaha-usaha untuk mengurangi erosi tanah yaitu secara mekanis maupun

biologis/vegetasi. Nilai P berkisar dari 0 untuk tanah praktek pengendalian erosi

sempurna, sampai bernilai 1 untuk tanah tanpa tindakan pengendalian erosi.

(20)

konservasi tanah (P) dapat digabung menjadi faktor CP. Tabel 2.5 menjelaskan

nilai CP untuk berbagai macam penggunaan lahan.

Tabel 2.5 Nilai CP untuk Berbagai Macam Penggunaan Lahan

No. Macam Penggunaan Lahan Nilai Faktor CP 1 Tanah terbuka, tanpa tanaman 1

2 Belukar rawa 0.01

3 Rawa 0.01

4 Semak/belukar 0.3

5 Sawah 0.01

6 Pertanian lahan kering campur 0.19

7 Pertanian lahan kering 0.28

8 Hutan lahan kering sekunder 0.01

9 Hutan mangrove sekunder 0.01

10 Hutan rawa sekunder 0.01

11 Hutan tanaman 0.05

12 Pemukiman 0.95

13 Perkebunan 0.5

14 Tambak 0.001

15 Tumbuh air 0.001

Sumber: BPDAS Wampu-Sei Ular dalam Jayusri (2012)

Hasil perhitungan faktor erosi metode USLE akan diperoleh suatu prediksi

erosi yang mempunyai nilai-nilai indeks yang kemudian di klasifikasikan

berdasarkan jumlah tanah yang hilang akibat erosi tersebut. Nilai faktor P dalam

(21)

Tabel 2.6 Nilai Faktor P untuk berbagai Tindakan Konservasi Tanah

No. Tanpa Tindakan Pengendalian Erosi Nilai P

1 Tanpa tindakan

(22)

Sungai juga menggerus tanah dasarnya secara terus-menerus sepanjang masa existensinya dan terbentuklah lembah-lembah sungai. Volume sedimen yang sangat besar yang dihasilkan dari keruntuhan tebing-tebing sungai di daerah pegunungan dan tertimbun di dasar sungai tersebut, terangkut kehilir oleh aliran sungai. Karena di daerah pegunungan kemiringan sungai curam, gaya tarik aliran airnya cukup besar. Tetapi setelah aliran sungai mencapai daratan, maka gaya tariknya sangat menurun. Dengan demikian beban yang terdapat dalam arus sungai berangsur-angsur diendapkan. Karena itu ukuran butiran sedimen yang mengendap di bagian hulu sungai lebih besar dari pada di bagian hilir sungai (Sosrodarsono, 1984).

Proses sedimentasi pada alur sungai adalah sebagai berikut (Fadlun, 2009): a. Bagian Hulu

Bagian hulu sungai merupakan daerah sumber sedimen yang tererosi. Pada bagian ini kecepatan aliran menjadi lebih besar karena umumnya alur sungai yang dilalui pada daerah pegunungan, bukit, atau lereng gunung yang kadang-kadang mempunyai ketinggian yang cukup besar dari muka air laut.

b. Bagian Tengah

(23)

c. Bagian Hilir

Alur sungai dibagian hilir biasanya melalui dataran yang mempunyai kemiringan dasar sungai yang landai sehingga kecepatan alirannya lambat. Keadaan ini sangat memudahkan terbentuknya pengendapan atau sedimen. Endapan yang terbentuk biasanya berupa endapan pasir halus, lumpur, endapan organik, dan jenis endapan lain yang sangat labil.

Gambar 2.2 Sketsa Profil Memanjang Alur Sungai (Fadlun, 2009)

(24)

Nilai NLS mendekati satu artinya semua tanah yang terangkut erosi masuk ke dalam sungai. Kejadian ini hanya terjadi pada DAS atau Sub DAS kecil yang tidak memiliki daerah-daerah datar, tetapi memiliki lereng yang curam, banyak butir halus (liat) yang terangkut, memiliki kerapatan yang tinggi, atau secara umum dikatakan tidak memiliki sifat yang cenderung menyebabkan pengendapan sedimen diatas lahan DAS tersebut. Perhitungan Nisbah Pelepasan Sedimen (NLS) adalah perhitungan untuk memperkirakan besarnya hasil sedimen dari suatu daerah tangkapan air. Perhitungan besarnya NLS dianggap penting dalam menentukan perkiraan realitas besarnya hasil sedimen total berdasarkan perhitungan erosi total yang berlangsung didaerah tangkapan air. Besarnya NLS dalam perhitungan-perhitungan erosi atau hasil sedimen untuk suatu daerah aliran sungai umumnya ditentukan dengan menggunakan grafik hubungan luas DAS dan besarnya NLS seperti dikemukakan oleh Roehl (1962) dalam Asdak C. (2007). Nilai NLS sebagai fungsi luas daerah aliran sungai dapat dilihat pada Tabel 2.7.

Tabel 2.7 Pengaruh Luas DAS terhadap NLS

Luas Daerah Aliran Sungai Nisbah Pelepasan Sedimen

(25)

Sedang cara lain untuk menentukan besarnya NLS adalah dengan menggunakan persamaan:

LS S ……… (2.6)

Sedimen yang dihasilkan oleh proses erosi dan terbawa oleh aliran air akan diendapkan pada suatu tempat yang kecepatan airnya melambat atau berhenti. Peristiwa mengendap ini dikenal dengan proses sedimentasi, yaitu proses yang bertanggung jawab atas terbentuknya dataran-dataran aluvial yang luas dan banyak terdapat di dunia. Ini merupakan suatu keuntungan karena memberikan lahan untuk perluasan pertanian dan permukiman. Akan tetapi, sedimen yang dihasilkan oleh erosi yang cepat pada tanah salah kelola lebih banyak kerugian bagi kehidupan manusia. Sedimen yang terendapkan di dalam saluran, sungai, waduk, dan muara sungai akan menyebabkan pendangkalan badan air tersebut, yang dapat menimbulkan kerugian karena mengurangi fungsi badan air itu sendiri.

Besarnya perkiraan hasil sedimen menurut Asdak C.2007 dapat ditentukan berdasarkan persamaan sebagai berikut :

Y ( LS) W ……… (2.7)

Dimana:

Y = hasil sedimen persatuan luas A = Erosi total

Ws = Luas Daerah Aliran Sungai NLS = Nisbah Pelepasan Sedimen

(26)

2.3.1 Pembagian Sedimen

Dasar sungai biasanya tersusun oleh endapan dari material angkutan sedimen yang terbawa oleh aliran sungai, material tersebut dapat terangkut kembali apabila kecepatan aliran cukup tinggi. Besarnya volume angkutan sedimen tergantung dari kecepatan aliran dan adanya kegiatan di palung sungai. Sebagai akibat dari perubahan volume angkutan sedimen adalah terjadinya pergerusan di beberapa tempat dan akan mengendap di tempat lain pada dasar sungai. Sehingga denga demikian bentuk dasar sungai akan selalu berubah. Untuk memperkirakan perubahan dasar sungai tersebut telah dikembangkan banyak rumus berdasarkan percobaan di lapangan maupun di laboratorium. Walaupun demikian perhitungan angkutan sedimen tidak teliti, karena (Loebis, 1993):

1. Interaksi antara aliran air dan angkutan sedimen adalah sangat komplek dan oleh karena itu sulit untuk dirumuskan secara matematis.

2. Pengukuran angkutan sedimen sulit dilaksanakan dengan teliti, sehingga rumus angkutan sedimen tidak dapat dicek dengan baik.

Angkutan sedimen dapat diklasifikasikan berdasarkan pembagian sebagai berikut (Loebis, 1993):

(27)

Aliran air akan membawa hanyut bahan-bahan sedimen, yang menurut mekanisme pengangkutannya dapat dibedakan menjadi 2 (dua) macam, yaitu (Sosrodarsono, 1984):

a. Muatan dasar (bed load)

Pergerakan partikel di dalam aliran air sungai dengan cara menggelinding, meluncur dan meloncat-loncat di atas permukaan dasar sungai.

b. Muatan melayang (suspended load)

Terdiri dari butiran halus yang ukurannya lebih kecil dari 0,1 mm dan senantiasa melayang di dalam aliran sungai. Partikel cendrung mengendap apabila kecepatan aliran melambat dan akan bergerak kembali karena turbulen aliran air sungai. Lebih-lebih butiran yang sangat halus, walaupun air tidak lagi mengalir, tetapi butiran tersebut tetap tidak mengendap dan airnya akan tetap saja keruh dan sedimen semacam ini disebut muatan kikisan (wash load)

(28)

Sedimen dari sungai harus dielakkan pada tubuh bendung beserta bangunan-bangunan pelengkapnya, sehingga tidak mencapai saluran pembawa (primer, sekunder, maupun tersier). Penumpukan sedimen di saluran irigasi akan mempersingkat umur pelayanan jaringan irigasi karena pendangkalan dan penurunan kapasitas. Selanjutnya, penumpukan sedimen di petak sawah akan menaikkan permukaan sawah, sehingga mempersulit air untuk mencapai permukaan sawah dan mengairi sawah. Partikel sedimen yang halus bahkan bisa menyumbat pori-pori tanah dan menghambat penyerapan air oleh tanaman. Meskipun demikian tidak semua fraksi sedimen berpotensi merusak jaringan irigasi.

Fraksi sedimen batuan dan bed load biasanya sudah teratasi dengan konstruksi pembilas bawah (under sluice) sehingga tidak masuk ke intake. Dalam kondisi debit normal. Tetapi fraksi pasir, lanau, dan lempung akan terbawa melewati pintu intake dan dapat mencapai saluran irigasi dan petak sawah. Fraksi lanau dan lempung (< 70 µm) diperbolehkan masuk ke sawah, karena dapat meningkatkan kesuburan tanah (Puslitbang Pengairan, 1986). Fraksi pasir (> 0.063 mm), disisi lain, harus ditahan jangan sampai masuk ke sawah. Fraksi pasir ini diusahakan untuk mengendap di penangkap sedimen (sediment trap/settling basin), yang berada di hilir pintu pengambilan (intake) (Hanwar dan

Herdianto, 2007).

(29)

2.3.2 Angkutan Sedimen

Pengertian umum angkutan sedimen adalah sebagai pergerakan butiran-butiran material dasar saluran yang merupakan hasil erosi yang disebabkan oleh gaya dan kecepatan aliran sungai. Di dalam perhitungan sifat-sifat sedimen yang dipakai adalah: ukuran, kerapatan atau kepadatan, kecepatan jatuh dan porositas. Laju angkutan sedimen, perubahan dasar dan tebing saluran, perubahan morfologi sungai dapat diterangkan jika sifat sedimennya diketahui (Ronggodigdo, 2011).

Prinsip dasar angkutan sedimen ayaitu untuk mengetahui perilaku sedimen pada kondisi tertentu, apakah keadaan sungai seimbang, erosi, maupun sedimentasi. Juga untuk prediksi kuantitas sedimen dalam proses tersebut. Proses yang terjadisecara alami ini kuantitasnya ditentukan oleh gaya geser aliran serta diameter butiran sedimen.

Angkutan sedimen dapat menyebabkan terjadinya perubahan dasar sungai. Angkutan pada suatu ruas sungai akan mengalami erosi atau pengendapan tergantung dari besar kecilnya angkutan sedimen yang terjadi sebagaimana dapat dilihat pada tabel 2.8.

Table 2.8 Klasifikasi Kondisi Dasar Sungai

Angkutan Sedimen, (T)

Perubahan dasar sungai

Sedimen Dasar

T1 = T2 Seimbang Stabil

T1 < T2 Erosi Degradasi

T1 > T2 Sedimentasi Agradasi

(30)

Beberapa faktor yang mempengaruhi angkutan sedimen adalah: 2.3.2.1 Ukuran Partikel Sedimen

Pengukuran ukuran butiran tergantung pada jenis bongkahan, untuk berangkal pengukuran dilakukan secara langsung, untuk kerikil dan pasir dilakukan dengan analisa saringan sedangkan untuk lanau dan lempung dilakukan dengan analisa sedimen. Klasifikasi jenis tanah berdasarkan ukuran butir dapat dilihat pada Tabel 2.9 berikut (Ronggodigdo, 2011):

Tabel 2.9 Klasifikasi Ukuran Partakel Sedimen

No. Organisasi

Ukuran Butir (mm)

Kerikil Pasir Lanau Lempung

(Gravel) (Sand) (Silt) (Clay)

Classification System 4,75-76,2 0,075-4,75 Fines (< 0,075)

Sumber: Ronggodigdo (2011)

2.3.2.2 Berat Spesifik Partikel Sedimen

Berat spesifik adalah berat sedimen per satuan volume dari bahan angkutan sedimen. Dirumuskan sebagai berikut:

..………. (2.8)

Dimana:

(31)

2.3.2.3 Kecepatan Jatuh (Fall Velocity)

Karakteristik dari sedimen adalah kecepatan jatuhnya atau fall velocity ( ),

yang mana adalah kecepatan maksimum yang dicapai oleh suatu partikel akibat gaya

gravitasi. Ukuran pasir yang tersuspensi dalam suatu sungai akan tergantung kepada

nilai fall velocity-nya. Untuk suatu ukuran butiran sedimen yang besar, akan jatuh

dengan cepat dan akan lebih sedikit mendapat tahanan dari air dibandingkan dengan

butiran sedimen yang lebih halus.

Persamaan umum untuk mencari nilai fall velocity:

………

(2.9)

Dimana:

= kecepatan jatuh (m/det) = massa jenis sedimen (kg/m3) = massa jenis air (kg/m3) d = diameter sedimen (mm) v = viskositas kinematic (m2/det)

(32)

Sumber: Grafik 1.3 buku sediment transport, Chi Ted Yang, halaman 10

Gambar 2.4 Grafik Hubungan Diameter Butiran Dengan Kecepatan Jatuh Sedimen

Yang mana:

√ ………(2. 0)

Dimana:

= factor bentuk

= diameter paling panjang sedimen = diameter paling pendek sedimen b = diameter rata-rata sedimen

2.3.2.4 Tegangan geser kritis

(33)

Beberapa penelitian menunjukkan bahwa tegangan geser kritis sangat bergantung pada riwayat proses pengendapan dan konsolidasi. Untuk itu beberapa penelitian tegangan geser kritis sedimen kohesif biasanya dilakukan dengan menghubungkan antara tegangan geser dan massa jenis sedimen pada berbagai variasi ketinggian sampel.

Sedimen bergerak tergantung dari besarnya gaya seret dan gaya angkat dan dapat digambarkan pada gambar 2.5 sebagai berikut.

Gambar 2.5 Gaya Yang Bekerja Pada Butiran di Dasar Sungai

W’ ( s - )*g ……… (2.11)

FD = ……….. (2.12)

FL = ……….. (2.13)

Partikel sedimen akan mulai bergerak pada kondisi kecepatan geser kritis terlampaui, karena gaya dorong lebih besar dari gaya gesek.

(34)

Persamaan tegangan geser Shield adalah: Ss = kemiringan saluran

d = diameter butiran sedimen (mm) = tegangan geser kritis

Apabila bilangan Reynold diketahui maka tegangan geser kritis dapat diketahui dengan melihat grafik 2.2 buku Sediment Transport, Chi Ted Yang

Viskositas kinematik dari air (v) adalah perbandingan antara viskositas dinamik ( ) dengan berat jenis air (ρ). Sebagian besar buku Mekanika Fluida mempunyai tabel dan diagram dari viskositas air sebagai fungsi dari temperatur. Misalnya harga yang mewakili v = 1.10-6 m2/s untuk air bersih pada suhu 20oC.

Viskositas kinematik juga dapat dihitung menggunakan rumus:

. 2 x 0 6

.0 0.0 0.00022 2

……… (2. )

Dimana :

(35)

Dengan melihat grafik di bawah ini maka akan didapatkan nilai critical stress.

Sumber: Chi Ted Yang (2003)

Gambar 2.6 Diagram Shields

Diagram Shields pada gambar 2.6 secara empiris menunjukkan bagaimana pendimensian tegangan geser kritis yang diperlukan untuk inisiasi pergerakan yang merupakan fungsi dari bentuk khusus partikel bilangan Reynolds, Rep atau bilangan Reynold yang terkait dengan partikel tersebut. (Chi Ted Yang, 2003). 2.3.3. Persamaan Angkutan Sedimen

Rumus-rumus yang dipakai dalam perhitungan angkutan sedimen adalah persamaan- Y ’ , , S .

2.3.3.1 Yang’s

Y ’ ( ) k f b k

(36)

bed load pasir diambil dari sungai. Yang mendasarkan rumusnya pada konsep bahwa jumlah angkutan sedimen berbanding lurus dengan jumlah energi aliran. Energi per satuan berat air dapat dinyatakan dengan hasil kali kemiringan dasar dan kecepatan aliran. Energi per satuan besar air tersebut oleh Yang disebut sebagai unit stream power dan dianggap sebagai parameter penting dalam menentukan jumlah angkutan sedimen.

Data-data yang dipergunakan dalam pe b Y ’ :

 Data sedimen

 Geometri saluran

 Kecepatan aliran Analisa perhitungan:

Log C1 = 5.435 – 0.286 log - 0.457 log

+ ( – ) log (

)

………...………(2.19)

Gw = ………..(2.20)

Qs = Ct*Gw …..………..……….. (2.21)

Dimana :

Ct = konsentrasi sedimen total

d50 = diameter sedimen 50% dari material dasar (mm) = kecepatan jatuh (m/s)

V = kecepatan aliran (m/s) Vcr = kecepatan kritis (m/s)

Ss = kemiringan saluran U* = kecepatan geser (m/s)

(37)

2.3.3.2 Engelund and Hansen

Engelund and Hansen (1967) persamaan Engelund-Hansen didasarkan pada pendekatan tegangan geser. Persamaan Engelund and Hansen dapat ditulis sebagai berikut :

Shen and Hung (1971) diasumsikan bahwa transportasi sedimen adalah begitu kompleks sehingga tidak menggunakan bilangan Reynolds, bilangan Froude, kombinasi ini dapat ditemukan untuk menjelaskan transportasi sedimen dengan semua kondisi. Shen and Hung mencoba untuk menemukan variabel yang dominan yang mendominasi laju transportasi sedimen, mereka merekomendasikan kemunduran persamaan berdasarkan 587 set data laboratorium. Persamaan Shen and Hung dapat ditulis sebagai berikut :

Log Ct = - 107404.459 + 324214.747* Y – 326309.589*Y2 +

109503.872*Y3………. (2.25)

Gw = ……… (2.26)

(38)

Y =

[

S

2.3.3.4 Metode Sampling Meyer Petter Muller

a. Suspended load

Besarnya beban layang dihitung dengan menggunakan persamaan sebagai berikut:

Qs = 0,0864 x c x Qw ……… (2.2 ) Dimana:

Qsus = beban layang (ton/hari)

c = konsentrasi sedimen layang (mg/lt) Qw = debit saluran (m3/det)

b. Bed load

Besarnya beban dasar dihitung dengan menggunakan rumus Meyer-Petter-Muller sebagai berikut:

(KK) 2 S 0,0 ( - ) 0,2 b2 ……… (2.30)

Dimana:

s = berat jenis air dan sedimen (kg/m3)

R = jari-jari hidrolik (m) Ss = kemiringan energi

d = diameter rata-rata sedimen (m) = massa jenis (kg/m3)

qb = tingkat bedload dalam saluran, berat per waktu dan lebar

((kg/s)/m)

(39)

Kemiringan energi didapat dari persamaan strickler:

S 2

K2

………. (2. )

Dimana:

V = kecepatan aliran

Dari persamaan 2.27. koeffisien dijelaskan oleh muller seperti:

K 26

0

6 ………. (2.

32)

Dimana:

d90 = Prosentase diameter lolos saringan 90 % (m)

2.4 Hubungan Erosi dengan Besarnya Sedimentasi

(40)

2.5 Debit Air

Untuk memenuhi kebutuhan air irigasi suatu lahan pertanian, maka debit air yang berada di bendung harus lebih dari cukup untuk disalurkan ke saluran-saluran irigasi menuju sawah.

Agar penyaluran air f ’ k k efisien mungkin maka dalam pelaksanaannya perlu dilakukan pengukuran debit air. Dengan distribusi yang terkendali dengan bantuan pengukuran tersebut, maka masalah kebutuhan air irigasi dapat diatasi tanpa menimbulkan gejolak di masyarakat petani dalam memakai air irigasi.

Pengukuran debit air pengairan dapat dilakukan secara langsung maupun secara tidak langsung. Dalam pengukuran debit dapat dilakukan dengan beberapa metode dan alat-alat pengukur, sehingga dalam pelaksanaannya dapat mengalami kesulitan.

2.5.1 Pengukuran Debit Air Secara Langsung

Dalam pengukuran debit secara langsung digunakan beberapa alat pengukur yang langsung dapat menunjukkan ketersediaan air dan telah ada atau di telah bangun pada saluran irigasi.

Ada berbagai alat pengukuran debit yang biasa digunakan, antara lain: a. Alat Ukur Pintu Romijn:

(41)

………(2.33)

Dimna:

Q = debit air (liter/detik) ba = lebar ambang (m)

h = tinggi permukaan air (cm)

Sumber: KP-04 (hal: 36)

(42)

b. Sekat Ukur Cipoletti (Meetschot tipe Cipoletti)

Alat ini berbentuk trapezium, perbandingan sisi 1:4 lazim digunakan untuk mengukur debit air yang relative besar. Pengukuran dengan alat ini menggunakan rumus sebagai berikut:

………(2. 4)

Dimana:

Q = debit air (liter/detik) ba = lebar ambang (cm)

h = tinggi permukaan air (cm)

Gambar 2.8 Gambar Skat Ukur Cipoletti

c. Sekat Ukur Thompson

Berbentuk segitiga sama kaki dengan sudut 90º, dapat dipindah-pindahkan karena bentuknya sangat sederhana (portable). Lazim digunakan debit yang relatif kecil. Penggunaan dengan alat ini memperhatikan rumus sebagai berikut:

……….. (2.35)

Dimana:

Q = debit air (liter/detik) h = tinggi permukaan air (cm)

(43)

Gambar 2.9 Gambar Skat Ukur Thompson

d. Alat Ukur Parshall Flume

Alat ukur tipe ini ditentukan oleh lebar dan bagian penyempitan, yang artinya debit air diukur oleh berdasarkan mengalirnya air melalui bagian yang menyempit dengan bagian dasar yang direndahkan. Karena ukuran lebar dan bagian yang menyempit berbeda-beda, maka penggunaan rumus bagi pelaksanaan pengukuran ini hendaknya disesuaikan dengan ukuran lebar bagian yang menyempit tadi. Dalam hal ini:

 Jika lebar penyempitan (W) = 7,62 cm, rumus yang digunakan:

0, , ……….. (2.36)

 Jika lebar penyempitan (W) = 15,24 cm, rumus yang digunakan:

0,26 , ……….. (2.37)

 Jika lebar penyempitan (W) = 22,86 cm, rumus yang digunakan:

0, 66 , ……….. (2.38)

Dimana:

Q = debit air (liter/detik) W dan Ha = cm

(44)

Gambar 2.10 Gambar Alat Ukur Parshall Flume

2.5.2 Pengukuran Debit Air Secara Tidak Langsung

Dalam pengukuran debit air secara tidak langsung yang sangat perlu diperhatikan adalah kecepatan aliran (V) dan luas penampang saluran (A). Sehingga rumus yang digunakan untuk mengukur debit aliran adalah:

Q = V x ……….. (2.39)

Dimana:

Q = debit aliran (m3/detik) V = kecepatan aliran (m/detik) A = luas penampang saluran (m2)

(45)

1. Pengukuran kecepatan aliran dengan menggunakan pelampung (metode apung)

Cara ini sangat mudah dilakukan walaupun dengan keadaan air yang tinggi dan tidak dipengaruhi oleh kotoran atau kayu-kayuan yang terhanyutkan, sehingga cara ini paling sering digunakan.

Tempat yang sebaiknya dipilih dalam pengukuran adalah bagian sungai atau saluran yang lurus dengan dimensi seragam, sehingga lebar permukaan air dapat dibagi dalam beberapa bagian dengan jarak lebar 0,25 m sampai 3 m tergantung kepada lebar permukaan.

Ada dua jenis pelampung yang sering digunakan, yaitu:

 Pelampung permukaan

Untuk mengukur kecepatan aliran permukaan bisanya digunakan sepotong kayu atau bambu dengan panjang 15 sampai 30 cm, tebal atau diameter 5 cm. Supaya mudah dilihat, kayu itu dicat atau kadang-kadang pada malam hari dipasang bola lampu listrik kecil. Untuk mengukur kecepatan aliran juga bisa menggunakan botol.

(46)

 Pelampung tungkai

Pelampung tangkai dibuat dari sepotong/setangkai kayu atau bambu yang diberi pemberat pada ujung bawahnya. Pemberat itu dibuat dari kerikil yang dibungkus dengan jaring atau kain di ujung bawah tungkai.

Gambar 2.11 Jenis-jenis Pelampung

(47)

Gambar 2.12 Sketsa alur sungai untuk pengukuran kecepatan metode pelampung

Bila kecepatan aliran diukur dengan pelampung, maka diperoleh persamaan debit sebagai berikut:

k ………. (2.40)

Dimana:

Q = debit (m3/det)

A = luas penampang basah (m2) k = koefisien pelampung u = kecepatan pelampung

nilai k untuk pelampung tungkai dipakai adalah:

k -0. 6 (√ - - )………..……..………. (2.41)

Dimana:

k = koefisien pelampung

= kedalaman tungkai (h) per kedalaman air (d)

(48)

Gambar 2.13 Sketsa Pelampung Tungkai

2. Pengukuran kecepatan aliran dengan menggunakan alat ukur arus (current meter)

Alat ukur arus biasanya digunakan untuk mengukur aliran pada air rendah, jadi kurang bermanfaat jika digunakan pada aliran sungai ketika debit banjir. Karena hasilnya akan kuran teliti.

Prinsip kerja jenis current meter ini adalah mangkok atau baling-baling berputar dikarenakan partikel air yang melewatinya. Jumlah putaran mangkok atau baling-baling per waktu pengukuran dapat memberikan kecepatan arus yang sedang diukur apabila dikalikan dengan rumus kalibrasi mangkok atau baling-baling tersebut.

Alat ukur arus baik berbentuk mangkok maupun yang berbentuk baling-baling digerakkan dengan tenaga baterei, dalam kerjanya setiap putaran sumbu

k k b “k k”

(49)

meter secara listrik dapat langsung merubah putaran menjadi kecepatan. Biasanya

waktu yang dibutuhkan untuk satu pengukuran yaitu 40 sampai 70 detik. Pemeriksaan bagian yang berputar dilakukan dengan menggerakkan bagian tersebut dengan kecepatan yang stabil dalam yang statis. Dengan pemeriksaan ini koeffisien-koeffisiennya dapat ditentukan dan dengan demikian kecepatan dapat diperoleh dengan menggunakan rumus sebagai berikut:

V = an + b ………... (2.42)

Dimana:

V = kecepatan aliran (m/detik)

n = jumlah putaran dalam waktu tertentu

a dan b = koeffisien/ketetapan yang diperoleh dari pemeriksaan 3. Pengukuran kecepata aliran menggunakan rumus-rumus

Dalam pengukuran kecepatan aliran dapat diperhitungkan dengan menggunakan beberapa rumus sebagai berikut:

 Rumus Chezy

C√ S ………... (2.43)

Dimana:

V = kecepatan aliran air (m/detik)

C = koeffisien kekasaran dinding dan dasar saluran Rh = jari-jari hidrolis (m)

Ss = kemiringan muka air pada saluran (%)

 Rumus Strickler

K 2 S 2 ……… (2.44)

Dimana:

V = kecepatan aliran air (m/detik)

K = koeffisien kekasaran dinding dan dasar saluran Rh = jari-jari hidrolis (m)

(50)

 Rumus Manning

2 S 2 ……… (2.45)

Dimana:

V = kecepatan aliran air (m/detik)

n = koeffisien kekasaran dinding dan dasar saluran Rh = jari-jari hidrolis (m)

Ss = kemiringan muka air pada saluran (%) 2.6 Perencanaan Kantong Lumpur

Kantong lumpur merupakan bangunan utama yang berfungsi untuk mengurangi kecepatan aliran dan memberi kesempatan kepada sedimen untuk mengendap, terutama fraksi pasir dan yang lebih besar agar tidak masuk ke jaringan pengairan. Untuk menampung endapan sedimen, dasar bagian saluran tersebut diperdalam atau diperlebar. Bangunan kantong lumpur pada umumnya dibangun di hilir bangunan pengambil (intake) sebelum masuk ke saluran induk.

Partikel-partikel yang lebih halus di sungai diangkut dalam bentuk sedimen layang dan tersebar merata di seluruh kedalaman aliran. Semakin besar dan berat partikel yang terangkut, semakin partikel-partikel itu terkonsentrasi ke dasar sungai; bahan-bahan yang terbesar diangkut sebagai sedimen dasar.

(51)

2.6.1 Dimensi Kantong Lumpur

Partikel yang masuk ke kolam pada A, dengan kecepatan endap partikel w dan kecepatan air v harus mencapai dasar pada C. Ini berakibat bahwa, partikel, selama waktu (H/w) yang diperlukan untuk mencapai dasar, akan berjalan (berpindah) secara horisontal sepanjang jarak L dalam waktu L/v.

Gambar 2.14 Skema Kantong Lumpur

Pergerakan partikel sedimen dapat dibagi dalam dua arah, yaitu arah horizontal (arah L) dan arah vertical (arah H), dengan demikian berlaku persamaan:

H = w . t ……….……… (2. 6)

L = v . t ……….……… (2. 7) maka,

w H

=

v L

, dengan v =

HB Q

Dimana:

H = kedalaman aliran saluran, m

w = kecepatan endap partikel sedimen, m/dt L = panjang kantong lumpur, m

(52)

Sehingga, LB =

W Q

……… (2.48)

Karena sangat sederhana, rumus ini dapat dipakai untuk membuat perkiraan awal dimensi-dimensi tersebut. Untuk perencanaan yang lebih detail, harus dipakai faktor koreksi guna menyelaraskan faktor-faktor yang mengganggu, seperti:

 Turbulensi air

 Pengendapan yang terhalang

 Bahan layang sangat banyak

Velikanov menganjurkan faktor-faktor koreksi dalam rumus berikut:

LB =

w = kecepatan endap partikel sedimen, m/dt

 = koefisiensi pembagian/distribusi Gauss

 adalah fungsi D/T,

dimana D = jumlah sedimen yang diendapkan, dan T= jumlah sedimen yang diangkut

 = 0 untuk D/T = 0,5 ;  = 1,2 untuk D/T = 0,95 dan

 = 1,55 untuk D/T = 0,98 v = kecepatan rata-rata aliran, m/dt H = kedalaman aliran air di saluran, m

Dimensi kantong sebaiknya juga sesuai dengan kaidah bahwa L/B > 8,

k k “ ” k .

(53)

2.6.2 Kecepatan Endap

Penentuan kecepatan endap amat penting karena sangat berpengaruh terhadap dimensi kantong lumpur. Ada dua metode yang bisa digunakan untuk menentukan kecepatan endap yakni (KP-02):

1. Pengukuran di tempat, yaitu pengukuran kecepatan endap mengambil sampel sedimen dari sungai. Metode yang akan akurat jika dilaksanakan oleh tenaga berpengalaman. Dalam metode ini dilakukan analisis tabung pengendap (settling tube) terhadap contoh air yang diambil dari lapangan.

2. Menggunakan grafik kecepatan endap dan diameter butiran (lihat gambar 2.15).

Faktor-faktor lain yang dipertimbangkan dalam pemilihan dimensi kantong lumpur adalah (KP-02):

1. Kecepatan aliran dalam kantong lumpur hendaknya cukup rendah, sehingga partikel yang telah mengandap tidak menghambur lagi.

2. Turbulensi yang mengganggu proses pengendapan harus dicegah.

3. Kecepatan hendaknya tersebar secara merata di seluruh potongan melintang, sehingga sedimentasi juga tersebar merata.

4. Kecepatan aliran tidak boleh kurang dari 0,30 m/detik, guna mencegah tumbuhnya vegetasi.

(54)

Sumber: KP-02 (1986)

Gambar 2.15 Hubungan Antara Diameter Saringan dan Kecepatan Endap untuk Air Tenang

Gambar 2.15 berguna untuk menentukan nilai kecepatan endap yang dapat dicari dengan mengetahui besar diameter sedimen dan suhu air dan atau mengetahui nilai bilangan reynold.

2.6.3 Volume Tampungan

(55)

banyaknya sedimen (sedimen dasar maupun sedimen layang) yang akan hingga tiba saat pembilasan.

Sumber: KP-02 (1986)

Gambar 2.16 Potongan Melintang dan Potongan Memanjang Kantong Lumpur yang Menunjukkan Metode Pembuatan Tampungan

a. kantong lumpur dengan dinding vertikal dan tanpa lindungan dasar

b. kemiringan talut bisa lebih curam akibat pasangan

d kombinasi alternatif " c " (potongan memanjang)

f alternatif dengan penurunan dasar pada pengambilan e potongan melintang (skematik)

(56)

Banyaknya sedimen yang terbawa oleh aliran yang masuk dapat ditentukan dari:

 Pengukuran langsung di lapangan

 Rumus angkutan sedimen yang cocok (Einstein – Brown, Meyer – Peter Mueller), atau kalau tidak ada data yang andal

 Kantong lumpur yang ada di lokasi lain yang sejenis. Sebagai perkiraan kasar yang masih harus dicek ketepatannya, jumlah bahan dalam aliran

k k k 0, ‰.

Kedalaman tampungan di ujung kantong lumpur (ds pada Gambar 2.16)

biasanya sekitar 1,0 m untuk jaringan kecil (sampai 10 m3/dt), hingga 2,50 m untuk saluran yang sangat besar (100 m3/dt).

2.6.4 Pemeriksaan Terhadap Berfungsinya Kantong Lumpur

Perencanaan kantong lumpur hendaknya mencakup cek terhadap efisiensi pengendapan.

2.6.4.1 Efisiensi pengendapan

Untuk pemeriksaan efisiensi kantong lumpur, dapat dipakai grafik Camp pada Gambar 2.17. Grafik Camp memberikan efisiensi sebagai fungsi dari dua parameter.

Kedua parameter itu adalah w/w0 dan w/v0

Dimana:

w = kecepatan endap partikel-partikel yang ukurannya di luar ukuran partikel yang direncana, m/dt

w0 = kecepatan endap rencana, m/dt

v0 = kecepatan rata-rata aliran dalam kantong lumpur, m/dt

(57)

Suspensi sedimen dapat dicek dengan menggunakan kriteria Shinohara Tsubaki. Bahan akan tetap berada dalam suspensi penuh jika:

w

w = kecepatan endap sedimen, m/dt

Efisiensi pengendapan sebaiknya dicek untuk dua keadaan yang berbeda:

 untuk kantong kosong

 untuk kantong penuh

Untuk kantong kosong, kecepatan minimum harus dicek. Kecepatan ini tidak boleh terlalu kecil yang memungkinkan tumbuhnya vegetasi atau mengendapnya partikel-partikel lempung.

v = kecepatan rata-rata, m/dt w = kecepatan endap sedimen, m/dt I = kemiringan energi

(58)

Gambar 2.17 Grafik Pembuangan Sedimen Camp untuk Aliran Turbelensi (Camp, 1945 dalam KP-02)

Apabila kantong penuh, maka sebaiknya dicek apakah pengendapan masih efektif dan apakah bahan yang sudah mengendap tidak akan menghambur lagi. Yang pertama dapat dicek dengan menggunakan grafik Camp (lihat Gambar 2.17) dan yang kedua dengan grafik Shields (lihat Gambar 2.18).

0.001

a. pengaruh aliran turbulensi terhadap sedimentasi

aliran masuk aliran keluar

b.efisiensi sedimentasi partikel-patikel individual untuk aliran turbulensi

(59)

Sumber: KP-02 (1986)

Gambar

Gambar 2.1 Nomograf untuk Menghitung Nilai Erodibilitas Tanah (K) Dalam Satuan Metrik (Wischmeier, et.al., 1971)
Tabel 2.1 Kode Struktur Tanah
Tabel 2.3 Nilai M untuk Beberapa Tekstur Tanah
Tabel 2.4 Nilai K untuk Berbagai Jenis Tanah
+7

Referensi

Dokumen terkait

Berdasarkan penjelasan tersebut, prinsip teknik dalam metode ABA yang dapat dilakukan oleh orangtua adalah dengan menerapkan kombinasi antara anteseden dan

Dengan adanya sistem pakar ini diharapkan akan membantu dan memudahkan orang tua untuk menanggulangi secara dini apabila anaknya menunjukan ciri-ciri anak

Sangat menarik, menyadari bahwa Barus tidak hanya dikenal dari hasil kemurahan alam berupa kamper dan kemenyan yang mengharumkan bandar niaga ini hingga ke

Berdasarkan hal tersebut peneliti tertarik untuk melakukan penelitian tentang efektifitas anti jamur campuran rebusan jahe ( Zingiber officinale ) dan kunyit (

--- Pada waktu dan tempat tersebut diatas, berawal saat terdakwa ENDI RAJOKI HALOMOAN PANGGABEAN mengemudikan 1 (satu) unit mobil dump truck warna merah No Polisi BK 8405 CI

Peningkatan indeks harga yang dibayar petani (Ib) pada Subsektor Tanaman Pangan sebesar 0,24 persen disebabkan oleh naiknya Indeks Konsumsi Rumah Tangga (IKRT)

Sumardi, M.Si., dosen pembimbing Program Studi Magister Administrasi Pendidikan Sekolah Pascasarjana UMS, yang telah banyak memberikan bimbingan dan ilmu kepada