• Tidak ada hasil yang ditemukan

Pengaruh Citra Merek Terhadap Kesediaan Membayar Mahal Donat Kemasan Paket J.Co Donuts & Coffee Cabang Plaza Medan Fair Pada Mahasiswa Fakultas Ekonomi & Bisnis Universitas Sumatera Utara

N/A
N/A
Protected

Academic year: 2019

Membagikan "Pengaruh Citra Merek Terhadap Kesediaan Membayar Mahal Donat Kemasan Paket J.Co Donuts & Coffee Cabang Plaza Medan Fair Pada Mahasiswa Fakultas Ekonomi & Bisnis Universitas Sumatera Utara"

Copied!
13
0
0

Teks penuh

(1)

Lampiran 1 Kuesioner Penelitian

PENGARUH CITRA MEREK TERHADAP KESEDIAAN MEMBAYAR MAHAL

DONUT KEMASAN PAKET J.CO DONUTS & COFFEE CABANG PLAZA MEDAN

FAIR PADA MAHASISWA FAKULTAS EKONOMI&BISNIS UNIVERSITAS

SUMATERA UTARA

No. Responden : ...

Identitas Responden

Nama

:

Umur

:

Jenis Kelamin

:

Pria

Wanita

Frekuensi membeli

:

( ) satu kali dalam sebulan

( ) dua kali dalam sebulan

( ) lebih dari dua kali dalam sebulan

Petunjuk Pengisian

Berilah tanda check list (

√) pada salah satu jawaban yang telah disediakan sesuai dengan

pendapat saudara

Keterangan : Sangat Setuju

(SS)

Setuju

(S)

Kurang Setuju

(KS)

Tidak Setuju

(TS)

Sangat Tidak Setuju

(STS)

(2)

Variabel Citra Merek

Skala Ukur

No.

Pernyataan

SS

S

KS TS

STS

1.

Donat kemasan J.Co donuts&coffee memiliki

rasa yang berbeda

2.

Saya dapat memilih donat dengan berbagai

variasi

topping yang banyak hanya di J.Co

donuts&coffee

3.

Bisa membeli donat J.Co donuts&coffee

membuat saya bangga daripada membeli donat

dengan merek lain

4.

Restoran donat J.Co merupakan restoran donat

dengan lifestyle anak muda

5.

J.Co donuts&coffee berbeda dari donat-donat

lain karena berstruktur lebih lembut

6.

J.Co donuts&coffee merupakan merek asli

Indonesia

7.

ketika membeli donat di J.Co donuts &coffee

Saya dapat melihat atraksi cara pembuatan donat

8.

J.Co donuts &coffee menawarkan banyak variasi

donat dengan nama-nama yang unik

Variabel Kesediaan Membayar Mahal

Skala Ukur

No.

Pernyataan

Ya

Tidak

1.

Apakah anda bersedia untuk membayar mahal?

(3)

Lampiran 2 Output Analisis Deskriptif

Jenis_Kelamin

Frequency Percent Valid Percent

Cumulative

Frequency Percent Valid Percent

Cumulative

Distribusi Jawaban Variabel Citra Merek dan Kesediaan Membayar Mahal

Statistics kelompok umur

Frequency Percent Valid Percent

(4)

Frequency Percent Valid Percent

Cumulative

Frequency Percent Valid Percent

Cumulative

Frequency Percent Valid Percent

Cumulative

Percent

Valid 2 5 6.2 6.2 6.2

(5)

4 34 42.0 42.0 84.0

5 13 16.0 16.0 100.0

Total 81 100.0 100.0

P4

Frequency Percent Valid Percent

Cumulative

Frequency Percent Valid Percent

Cumulative

Frequency Percent Valid Percent

(6)

P6

Frequency Percent Valid Percent

Cumulative

Frequency Percent Valid Percent

Cumulative

Frequency Percent Valid Percent

(7)

Kesediaan_membayar_mahal

Frequency Percent Valid Percent

Cumulative

Percent

Valid Tidak bersedia membayar

mahal 32 39.5 39.5 39.5

Bersedia membayar mahal 49 60.5 60.5 100.0

Total 81 100.0 100.0

Lampiran 3 Output Validitas Data Dan Reliabilitas Tes

Case Processing Summary

N %

Cases Valid 30 100.0

Excludeda 0 .0

Total 30 100.0

a. Listwise deletion based on all variables in the

procedure.

Item-Total Statistics

Scale Mean if

Item Deleted

Scale Variance if

Item Deleted

Corrected

Item-Cronbach's Alpha N of Items

(8)

Lampiran 4 Output Analisis Logistik

Logistic Regression

[DataSet0]

Case Processing Summary

Unweighted Casesa N Percent

Selected Cases Included in Analysis 81 100.0

Missing Cases 0 .0

Total 81 100.0

Unselected Cases 0 .0

Total 81 100.0

a. If weight is in effect, see classification table for the total number of

cases.

Dependent Variable Encoding

Original Value Internal Value

Tidak bersedia membayar

mahal 0

Bersedia membayar mahal 1

Block 1: Method = Enter

Iteration Historya,b,c,d

Iteration -2 Log likelihood

Coefficients

Constant Citra_merek

Step 1 1 103.246 -3.382 .123

2 103.165 -3.788 .138

3 103.165 -3.799 .138

4 103.165 -3.799 .138

a. Method: Enter

b. Constant is included in the model.

(9)

Iteration Historya,b,c,d

Iteration -2 Log likelihood

Coefficients

Constant Citra_merek

Step 1 1 103.246 -3.382 .123

2 103.165 -3.788 .138

3 103.165 -3.799 .138

4 103.165 -3.799 .138

a. Method: Enter

b. Constant is included in the model.

d. Estimation terminated at iteration number 4 because parameter

estimates changed by less than ,001.

Omnibus Tests of Model Coefficients

Chi-square df Sig.

Step 1 Step 5.530 1 .019

Block 5.530 1 .019

Model 5.530 1 .019

Model Summary

Contingency Table for Hosmer and Lemeshow Test

Kesediaan_membayar_mahal = Tidak

bersedia membayar mahal

Kesediaan_membayar_mahal =

Bersedia membayar mahal

Total

Observed Expected Observed Expected

(10)

Step -2 Log likelihood Cox & Snell R Square Nagelkerke R Square

1 103.165a .066 .089

a. Estimation terminated at iteration number 4 because parameter estimates changed by less than ,001.

Hosmer and Lemeshow Test

Step Chi-square df Sig.

1 7.029 8 .533

Classification Tablea

Observed

Predicted

Kesediaan_membayar_mahal

Percentage

Correct Tidak bersedia

membayar mahal

Bersedia

membayar mahal

Step 1 Kesediaan_membayar_mahal Tidak bersedia membayar

mahal 9 23 28.1

Bersedia membayar mahal 9 40 81.6

Overall Percentage 60.5

a. The cut value is ,500

Variables in the Equation

B S.E. Wald df Sig. Exp(B)

95,0% C.I.for EXP(B)

Lower Upper

Step 1a Citra_merek .138 .062 5.054 1 .025 1.148 1.018 1.296

Constant -3.799 1.878 4.091 1 .043 .022

(11)

Step number: 1

Predicted ─────────┼─────────┼─────────┼─────────┼─────────┼─────────┼─────────┼───

──────┼─────────┼──────────

Prob: 0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 1

Group: TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBB

Block 0: Beginning Block

Iteration Historya,b,c

Iteration -2 Log likelihood

Coefficients

Constant

Step 0 1 108.696 .420

2 108.695 .426

3 108.695 .426

(12)

b. Initial -2 Log Likelihood: 108,695

c. Estimation terminated at iteration number 3 because

parameter estimates changed by less than ,001.

Classification Tablea,b

Observed

Predicted

Kesediaan_membayar_mahal

Percentage

Correct Tidak bersedia

membayar mahal

Bersedia

membayar mahal

tep 0 Kesediaan_membayar_mahal Tidak bersedia membayar

mahal 0 32 .0

Bersedia membayar mahal 0 49 100.0

Overall Percentage 60.5

a. Constant is included in the model.

b. The cut value is ,500

Variables in the Equation

B S.E. Wald df Sig. Exp(B)

Step 0 Constant .426 .227 3.514 1 .061 1.531

Variables not in the Equation

Score df Sig.

Step 0 Variables Citra_merek 5.332 1 .021

Overall Statistics 5.332 1 .021

Lampiran 5 Output Pengujian Hipotesis

ANOVAb

Model Sum of Squares df Mean Square F Sig.

1 Regression 1.274 1 1.274 5.567 .021a

Residual 18.084 79 .229

(13)

ANOVAb

Model Sum of Squares df Mean Square F Sig.

1 Regression 1.274 1 1.274 5.567 .021a

Residual 18.084 79 .229

Total 19.358 80

a. Predictors: (Constant), Citra_merek

b. Dependent Variable: Kesediaan_membayar_mahal

Model Summaryb

Model R R Square

Adjusted R

Square

Std. Error of the

Estimate

1 .782 .611 .609 2.413

a. Predictors: (Constant), Citra_merek

Referensi

Dokumen terkait