• Tidak ada hasil yang ditemukan

Suci Wulandari – Hi Welcome to my blog. Hope you enjoy it

N/A
N/A
Protected

Academic year: 2017

Membagikan "Suci Wulandari – Hi Welcome to my blog. Hope you enjoy it"

Copied!
9
0
0

Teks penuh

(1)

y

r

t

e

m

o

e

G

e

c

a

p

S

2 6

0

1

1

S

p

a

c

e

G

e

o

m

e

t

r

y

V .Space oGe metry

: I T R A

P Polyhedra

s d r o

W Pronunciation Indonesian

e n i L w e k

S /skjuː laɪn / Garis Bers liangan n

o r d e h y l o

P /ˌpɒl ˈɪhɛdrən / Bidang Banyak a

r d e h y l o

P /ˌpɒl ˈɪhɛdrə/ Bidang Banyak j(amak) e

c a

F /feɪs / S isi e

d i

S / as ɪd/ S iis

e g d

E /ɛdʒ/ Rusuk

x e t r e

V /vɜ:teks/ Titiksudut s

e c i t r e

V /vɜ:tɪs :iz/ Titiksudut-titiksudut e

d i

S -edge / as ɪd ɛdʒ/ Rusuk tegak d

e s a

B -edge /beɪsd ɛdʒ/ Rusuk alas e

s a

B /beɪs/ Alas

l a r e t a

L Side /ˈlatərəl as ɪd/ Sis itegak m

s i r

P /ˈprɪz(ə)m/ Prisma m

s i r P t h g i

R / ar ɪtˈprɪz(ə)m/ Prisma tegak m

s i r P e u q il b

O bl:ik ˈprɪz(ə)m/ Prisma miring e

m u l o

V /ˈvɒ jluːm / I si a

e r A e c a f r u

S /ˈsəːfɪs ˈɛːrɪə/ Luas Permukaan e

c a f r u S d e v r u

C k/ əːv d ˈsəːfɪs/ Se ilmut ( tabung/kerucut) t

h g i e

H /haɪ /t Tinggi t

n a l

S Height / ls ɑːn ath ɪt / Panjang ruas garis Pelukis e

b u

C /kju:b/ Kubus d

i o b u

C /ˈkjuːbɔɪd / Balok e

c a

F -diagonal /feɪs dʌˈɪag(ə)n(ə l) / Diagona lbidang e

c a p

S -diagonal / esp ɪs dʌˈɪag(ə)n(əl) / Diagona lruang e

n a l P l a n o g a i

D /dʌˈɪag(ə)n(əl) epl ɪn / Bidang diagonal t

e

N /nɛt / Jaring-jaring d

i m a r y

P /ˈpɪrəmɪd / Limas d

il o S c i n o t a l

P /pləˈtɒnɪk ˈsɒlɪd / BangunpadatPlato n

o r d e h a r t e

T /ˌtɛtrəˈ hɛdrən / Tetrahedron n

o r d e h a x e

H /ˌhɛksəˈhɛdrən / Heksahedron n

o r d e h a c e d o

D /ˌdəʊdɛkəˈhɛdrən / Dodekahedron n

o r d e h a s o c

I /ˌʌɪkɒsəˈhɛdrən / Ikosahedron r

e d n il y

C /ˈsɪlɪndə/ Tabung e

n o

C /kəʊn / Kerucut e

r e h p

(2)

y

r

t

e

m

o

e

G

e

c

a

p

S

2 6

0

1

2

S

p

a

c

e

G

e

o

m

e

t

r

y

Example:

.

1 SkewLines are nonintersecting ilnes thatare notpara lle .l

.

2 A polyhedron is the union o fpolygona lregions such that a ifnite .

r o i r e t n i e h t n i s e l o h y n a t u o h t i w d e s o l c n e s i e c a p s f o n o i g e r

.

3 Parts of a Polyhedra

.

a The polygona lshapes that e r a n o r d e h y l o p e h t m r o f

s t i d e ll a

c faces/sides. .

b The ilne segments where s t i e r a t e e m s e c a f o w t

s e g d

e .

.

c A point where three or a s i t e e m s e g d e e r o m

x e t r e v

e c a f x

e t r e v

e g d e

a s a H

e l o

h Ncloos ted

t o N

l a n o g y l o p

(3)

y

r

t

e

m

o

e

G

e

c

a

p

S

2 6

0

1

3

S

p

a

c

e

G

e

o

m

e

t

r

y

.

4 Types of a Polyhedra s

m s i r P . A

¬ A prism si a polyhedron that has identica lpolygona lfaces r

e h t o h c a e e t i s o p p

o .

¬ The segments that connect base side and top side is ca lled

e d i

s -edges .The others i s ca lled based-edges.

¬ The opposite ,identica lside o fa prism are ca lled its bases.

e h t d e ll a c e r a d n a s m a r g o l e ll a r a p e r a s e d i s r e h t o e h

T lateral

s e d i

s .

¬ I fthe latera lsides o fa prism are rectangles ,it is a right

. m s i r

p I fnot, i t i s ca lled an oblique prism .

¬ When naming a prism we use two main descriptors . First , e

w n e h t , e u q il b o r o t h g i r s i t i r e h t e h w y a s e

w say what type

l a r e t a l s t i f o r e b m u n e h t r o s e s a b s ’ m s i r p e h t m r o f n o g y l o p f o

. s e d i s

¬ Genera lly ,the f ormula f or volume o fprismi s t

h g i e h s t i × e s a b s t i f o a e r A = V

t n a l s e h t t o n t h g i e h l a e r e h t s i a l u m r o f s i h t n i t h g i e h e h T

. t h g i e h

m s i r p l a n o g a t n e p t h g i r

5 t h g i

r -sidedprism oobbililqquuee4re-csitdaendguplrairsmprism

m s i r p t h g i

(4)

y

r

t

e

m

o

e

G

e

c

a

p

S

2 6

0

1

4

S

p

a

c

e

G

e

o

m

e

t

r

y

)

1 Cube

e b u C a f o s t r a P

6 lfat sides o f equa l s

e r a u q

s (ex :side ABCD )

12 edges o fequal l engths )

B A e g d e : x e (

8 vertices ( ex :pointA)

12 f ace-diagonals ) F A e n il t n e m g e s : x e (

4 space-diagonals ) G A e n il t n e m g e s : x e (

6 diagona lplanes ) H G B A e d i s : x e (

e b u C a f o t e

N Formula for Volume and o

a e r A e c a f r u

S f a Cube

s i e b u c f o e m u l o v r o f a l u m r o f e h T

) e g d e f o h t g n e l( =

V 3

s i a e r a e c a f r u s r o f d n A

) e g d e f o h t g n e l( × 6 =

A 2

)

2 Cuboid ( Rectangular Prism)

A rectangular prism has d il o s r a l u g n a t c e r 8

e l g n

a s , 12 edges , equa l . s r u o f n i l e ll a r a p d n a

It is bounded by three t n e u r g n o c f o s r i a p

n i g n i y l s e l g n a t c e r

(5)

y

r

t

e

m

o

e

G

e

c

a

p

S

2 6

0

1

5

S

p

a

c

e

G

e

o

m

e

t

r

y

o a e r A e c a f r u S d n a e m u l o V r o f a l u m r o

F f a Cuboid

d i o b u c f o s e g d e t n e r e ff i d e e r h t e h t e m a n n a c e w t a h t e s o p p u S f o e m u l o v r o f a l u m r o f e h t , n e h T . t h g i e h d n a , h t d i w , h t g n e l s a s i d i o b u c t h g i e h × h t d i w × h t g n e l = V s i a e r a e c a f r u s r o f d n A ]) t h g i e h × h t d i w ( + ) t h g i e h × h t g n e l( + ) h t d i w × h t g n e l( [ × 2 = A .

B Pyramid

¬ A pyramid is a three-dimensiona lsoild with one polygona l e h t f o s e c i t r e v e h t g n i t c e n n o c s t n e m g e s e n il h t i w d n a e s a b . e s a b e h t e v o b a e r e h w e m o s t n i o p e l g n i s a o t e s a b

¬ The latera lsides o fa pyramid are triangles . I fthey are t s e l e c s o s

i riangles ,then i t i s a right pyramid ,otherwise i t i s n

a oblique pyramid.

¬ Genera lly ,the f ormula f orvolume o fpyramid i s

t h g i e h s t i × e s a b s t i f o a e r A × ) 3 / 1 ( = V e h t t o n t h g i e h l a e r e h t s n a e m o s l a a l u m r o f s i h t n i t h g i e h e h T . t h g i e h t n a l s d i m a r y p e r a u q s e u q il b

(6)

y

r

t

e

m

o

e

G

e

c

a

p

S

2 6

0

1

6

S

p

a

c

e

G

e

o

m

e

t

r

y

.

5 The Platonic So ilds

r a l u g e r e l b i s s o p e v if y l n

O polyhedra exist .These ifve so ilds are S

D I L O S C I N O T A L P d e ll a c

r a l u g e R

n o r d e h y l o P

r e b m u N

s e d i S f o

h c a E

a s i e d i S

s n o g y l o P f o r e b m u N

x e t r e v a t a

n o r d e h a r t e

T 4 Triangle 3

n o r d e h a t c

O 8 Triangle 4

n o r d e h a s o c

I 2 0 Triangle 5

n o r d e h a x e

H 6 Square 3

n o r d e h a c e d o

D 1 2 Pentagon 3

n

o

r

d

e

h

a

r

t

e

t

e

h

T

--

4

t

r

i

a

n

g

u

l

a

r

s

e

d

i

s

e

b

u

c

e

h

T

--

6

s

q

u

a

r

e

s

e

d

i

s

n

o

r

d

e

h

a

t

c

o

e

h

T

--

8

t

r

i

a

n

g

u

l

a

r

s

e

d

i

s

n

o

r

d

e

h

a

c

e

d

o

d

e

h

T

--

1

2

h

e

x

a

g

o

n

a

l

s

e

d

i

s

n

o

r

d

e

h

a

s

o

c

i

e

h

T

(7)

y

r

t

e

m

o

e

G

e

c

a

p

S

2 6

0

1

7

S

p

a

c

e

G

e

o

m

e

t

r

y

.

6 Cy ilnder

¬ A cy ilnder is a prismi nwhich the bases are circles orelilps.

¬ The volume o fa cyilnder is the area o fits base times its height

π = r2h

V

¬ The surface area o fa cyilnder i s π

+ π

=2 r2 2 rh

A

s u i d a r s ’ e s a b f o h t g n e l = r

r e d n il y c f o t h g i e h = h

¬ A cyilnder can be right or obilque ,and cyilnders are named in the s

d i m a r y p d n a s m s i r p s a y a w e m a s

. 7 Cone

¬ A cone is ilke a pyramid but with a circular base instead o fa .

e s a b l a n o g y l o p

¬ The volume o fa cone is one-third the area o fits base times its :

t h g i e h

π = 1 r2h

V 3

¬ The surface area o fa cone i s base surface area +curved surface :

a e r a

ro A =πr2 +πr r2 +h2 s u i d a r s ’ e s a b f o h t g n e l = r

e n o c f o h t g i e h = h

π + π

= r2 rs

A

r e d n il y C r a l u c r i C t h g i R

A AnObilqueElilptica lCyilnder

e l c r i c a s i e s a b e h

(8)

y

r

t

e

m

o

e

G

e

c

a

p

S

2 6

0

1

8

S

p

a

c

e

G

e

o

m

e

t

r

y

e n o c f o t h g i e h t n a l s = s

.

8 Sphere

¬ Sphere is the mathematica lword f or “bal.l” It i s the set o fal l r e t n e c e h t d e ll a c t n i o p n e v i g a m o r f e c n a t s i d d e x if a e c a p s n i s t n i o p

. e r e h p s e h t f o

¬ The volume o fa sphere i s :V = 4 rπ 3

3

(9)

e

c

a

p

S

G

e

o

m

e

t

r

y

2 3

0

1

9

S

p

a

c

e

G

e

o

m

e

t

r

y

s e s i c r e x E s n o it s e u q e s e h t s r e w s n A . A .

1 Intersection o fthewalli n aclasscanbedescribedas_____________. .

2 Two planes i n aspace can ________________ or __________________ ,but cant’ . r e h t o h c a e _ _ _ _ _ _ _ _ _ _ _ _ .

3 What i sthenameo fobject thathas 6 vertices ,6 sides ,and 1 0 edges? .

4 I fa cuboid has edges whose lengths are 8 ,6 ,and 5 cm ,then its surface . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ s i a e r a .

5 A cyilndrica loi ltank can be if lled with 7,700 ilter gaso ilne .I fits base’s i l a i d a

r s70 cm ,then ifnd i ts height. .

6 Drawa neto fregularsquarepyramid and acone. .

7 Apyramid is i nscribed i n a cube .The top o fthe pyramid i s at the center o f s a h e b u c e h t f I . e b u c f o e d i s e s a b e h t s i e s a b s t i e li h w , e b u c f o e d i s p o t e h t . _ _ _ _ _ _ _ _ _ _ _ _ _ _ s i d i m a r y p e h t f o e m u l o v n e h t , m c 9 f o s e g d e .

8 A three dimensiona lobject that has 8 sides ,12 vertices ,and 1 8 _______ is . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ d e ll a c .

9 A cone is inscribed in a cyilnder .Their base side is equal ,whlie the top o f s a h r e d n il y c e h t f I . r e d n il y c f o p o t e h t f o r e t n e c e h t n i d e c a l p s i e n o c e h t e h t d n if , m c 4 2 f o t h g i e h d n a m c 7 f o i i d a

r curved surfaceareao fthecone.

. 0

1 What is the diameter o fthe sphere inscribed in a cube that is inscribed in ? 0 1 r e t e m a i d f o e r e h p s a . 1

1 The tota lsurface area o fa cube ,expressed in square centimeters ,is equa l i b u c n i d e s s e r p x e , e b u c e h t f o e m u l o v e h t o

t c centimeters .Compute the

a f o , s r e t e m i t n e c n i , h t g n e

l sideo fthesquare.

. 2

1 Two cy ilndrica lwater tank stand side by side .One has radius o f4 meters 3 f o s u i d a r a s a h r e h t o e h T . s r e t e m 5 . 2 1 f o h t p e d a o t r e t a w s n i a t n o c d n a u p s i r e t a W . y t p m e s i d n a s r e t e

m mped from the ifrst tank to the second

n u r p m u p e h t t s u m g n o l w o H . e t u n i m r e p s r e t e m c i b u c 0 1 f o e t a r a t a k n a t ? s k n a t h t o b n i e m a s e h t s i r e t a w e h t f o h t p e d e h t e r o f e b . 3

1 The pyramid ABCDE has a square base and al lfour triangular faces are e h T . l a r e t a li u q

Referensi

Dokumen terkait

c) Web (e-commerce dan web design) : untuk web design minimal memiliki 2 (dua) file dan untuk e-commerce perancangan web yang berorientasi pada penjualan secara

Untuk itu, diperlukan teknologi yang dapat mendukung percepatan kinerja pegawai agar penjualan busana dapat dilakukan dalam waktu yang singkat dan data busana

Jangan diberi spasi antara kalimat atau kata yang beri tanda tanya. Tanda

Tugas Akhir adalah suatu bentuk karya ilmiah yang ditulis oleh seorang mahasiswa, yang telah memenuhi persyaratan akademik, dan merupakan mata kuliah inti yang harus

Diagram alir data adalah diagram yang menggambarkan suatu sistem automat atau komputerisasi, manualisasi atau gabungan dari keduanya, yang menggambarkannya

Sistem yang ada pada Bengkel Fajar Motor saat ini sering mengalami kerusakan program (program errors), mulai dari pencatatan customer yang melakukan service,

Don’t forget to pick up the living room," Joan exclaims as she rushes out the door to start her long commute to the office..

Potongan yang berasal dari bagian tengah pinggang sapi ini mempunyai tekstur yang empuk dengan lemak yang sedikit.. Potongan tenderloin paling nikmat jika dipanggang dalam