• Tidak ada hasil yang ditemukan

Kelompok 10 - Trickling Filter

N/A
N/A
Protected

Academic year: 2021

Membagikan "Kelompok 10 - Trickling Filter"

Copied!
16
0
0

Teks penuh

(1)

SECONDARY TREATMENT PLANT DENGAN METODE SECONDARY TREATMENT PLANT DENGAN METODE

TRICKLING FILTER TRICKLING FILTER

Disusun oleh : Disusun oleh : Ayik

Ayik Abdillah Abdillah 13063678511306367851 Raras

Raras Azhaari Azhaari 13064045311306404531 Christian

Christian Pratama Pratama 13064468811306446881

DEPARTEMEN TEKNIK SIPIL DEPARTEMEN TEKNIK SIPIL

FAKULTAS TEKNIK FAKULTAS TEKNIK UNIVERSITAS INDONESIA UNIVERSITAS INDONESIA DEPOK DEPOK 2015 2015

(2)

ii

Daftar Isi

Judul Halaman ... i

Daftar Isi ... ii

Trickling Filter ... 1

KlasifikasiTrickling Filter ... 3

Menentukan Kriteria DesainTrickling Filter ... 6

KriteriaTrickling Filter ... 8

Contoh Soal  ... 10

(3)

1. Trickling Filter

Trickling filter adalah suatu pengolahan limbah yang menggunakan proses

attached growth  yang menggunakan media berupa batu atau plastik sebagai tempat bagi mikroorganisme pengurai untuk membentuk suatu lapisan biofilm. Pada reaktor ini air limbah dialirkan secara kontinyu melalui lapisan biofilm yang terbentuk pada media. Kedalaman reaktor dengan menggunakan media batu antara 0.9 – 2.5 m (3 – 8 ft) dan yang biasa digunakan rata-rata pada kedalaman 1.8 m (6 ft). Bed media batu ini biasanya berbentuk sirkulair, dan air limbah dialirkan dari atas bed dengan menggunakan rotary distributor (Metcalf & Eddy, 1998).

Gambar 1. TipeTrickling Filter.

Sumber : Metcalf & Eddy, 1998.

Beberapa bangunan Trickling Filter   yang konvensional yang menggunakan batu sebagai medianya kini beralih menggunakan plastik agar dapat menambah kapasitas pengolahannya. Sehingga pada saat ini hampir semua bangunan Trickling Filter menggunakan plastik.

Trickling Filter   yang menggunakan media plastik dibangun dengan bentuk lingkaran maupun persegi dengan kedalaman bervariasi dari 4 – 12 m (14 – 40 ft).

(4)

Gambar 2. SkemaTrickling Filter.

Sumber : www.sswm.info/content/trickling-filter

Pada filter di trickling filter, terdapat pembunuh berlendir yang berkembang pada filter tersebut (batu atau plastic) dan berisi mikroorganisme untuk biodegradasi substrat. Dalam media filter terdapat bakteri aerobic dan fakultatif, jamur, ganggang, dan protozoa. Bakteri fakultatif adalah organisme yang mendominasi dan membusuk dalam air limbah dengan bakteri aerob dan anaerob, seperti Achromobacter, Flavobacterium, Pseudomonas, dan Alcaligenes.

Pada bagian hilir filter, terdapat bakteri nitrifikasi. Jamur berguna untuk stabilisasi limbah, namun jamur berperan penting dalam kondisi rendah pH atau dengan limbah industri tertentu. Contoh spesies jamur yang telah diidentifikasi adalah Fusazium, Mucor, Penicillium, Geotrichum, Sporatichum, dan berbagai ragi. (Hawkes, 1963; Higgins dan Burns, 1975)

Mekanisme biologis dalam media filter plastik dan batu adalah berbeda. Pada media filter plastik, terjadi pengelupasan skala kecil dari film karena adanya geseran hidrolik, sedangkan dalam skala besar terjadi pengelupasan pada media filter batu yang terletak di daerah beriklim sedang. Pengelupasan ini disebabkan oleh aktivitas dari serangga larva. Serangga ini aktif dalam suhu musim semi dan menngurangi biofilm tebal yang menumpuk selama musim dingin. Ketika menggunakan media filter batu, effluent yang sebelum mengendap akan mengandung jumlah yang lebih tinggi dari BOD dan TSS dari air limbah yang diterapkan (Hawkes, 1963).

(5)

2. Proses Pengolahan Trickling Filter 

Proses pengolahan air limbah dengan sistemtrickling filter  pada dasarnya hampir sama dengan sistem lumpur aktif, di mana mikroorganisme berkembang biak dan menempel pada permukaan media penyangga. Di dalam aplikasinya, proses pengolahan air limbah dengan sistem trickling filter   secara garis besar ditunjukkan seperti pada gambar 3.

Gambar 3. Diagram Proses Pengolahan Trickling Filter

Sumber : Anounnymous.

Pertama, air limbah dialirkan ke dalam bak pengendapan awal untuk mengendapkan padatan tersuspensi (suspended solids), selanjutnya air limbah dialirkan ke bak trickling filter   melalui pipa berlubang yang berputar. Dengan cara ini maka terdapat zona basah dan kering secara bergantian sehingga terjadi transfer oksigen ke dalam air limbah.

Pada saat kontak dengan mediatrickling filter , air limbah akan melakukan kontak dengan mikroorganisme yang menempel pada permukaan media, dan mikroorganisme inilah yang akan menguraikan senyawa polutan yang ada di dalam air limbah.

Air limbah yang masuk ke dalam baktrickling filterselanjutnya akan keluar melalui pipa underdrain  yang terdapat di dasar bak dan keluar melalui saluran efluen. Underdrain  adalah suatu sistem yang sangat penting yang ada di bangunan Trickling Filter   untuk menampung effluent dari air yang telah diolah dan sirkulasi udara juga dapat melalui sistem underdrain tersebut. Dari saluran efluen, air limbah kemudian dialirkan ke bak pengendapan akhir dan air limpasan dari bak pengendapan akhir adalan merupakan air olahan.

Lumpur yang mengendap di dalam bak pengendapan selanjutnya disirkulasikan ke inlet bak pengendapan awal. Gambar penampang bak trickling  filterdapat ditunjukkan seperti pada Gambar 3 dan Gambar 4.

(6)

Gambar 4. Penampang BakTrickling Filter

Sumber : Anounymous.

Gambar 5. Penampang BakTrickling Filter

(7)

3. Klasifikasi Trickling Filter 

Fenomena lepasnya biofilm dari media disebut sebagai sloughing dan hal ini adalah fungsi dari beban organik dan beban hidrolik pada Tricking Filter . Beban hidrolik (hydroulik loading) memberikan kecepatan daya gerus biofilm, sedangkan beban organik (organic loadings) memberikan kontribusi pada laju metabolisme dalam biofilm. Berdasarkan beban hidrolik dan organik maka dapat dikelompokkan dalam beberapa tipe, yaitu sebagai berikut

Tabel 1. Klasifikasi trcikling filter .

Sumber : Metcalf & Eddy, 1993

Tabel 2. Trickling Filter dosing rate as a function of BOD loading BOD Loading (kg/m³.d) Operating Dose (mm/pass) Flushing Dose (mm/pass) 0.25 10.00-30.00 ≥200 0.5 15.00-45.00 ≥200 2 30.00-90.00 ≥300 2 40.00-120.00 ≥400 3 60.00-180.00 ≥600 4 80.00-240.00 ≥800

Sumber: Metcalf & Eddy

Design

Characteristics Low rate

Intermediate

Rate High Rate High Rate Roughing

Type of packing Rock Rock Rock Plastic Rock/Plastic

Hidraulic loading

m3/m2.d 1 – 4 4 – 10 10 – 40 10 – 75 40 – 200

Organic loading

Kg BOD/m3.d 0.07 – 0.22 0.24 – 0.48 0.4 – 2.4 0.6 – 3.2 > 1.5

Recirculation ratio 0 0 – 1 1 – 2 1 – 2 0 – 2

Filter flies Many Varies Few Few Few

Sloughing Intermittent Intermittent Continous Continous Continous

Depth, m 1.8 – 2.4 1.8 – 2.4 1.8 – 2.4 3.0 – 12.2 0.9 – 6

BOD removal

efficiency, % 80 – 90% 50 – 80% 50 – 90% 60 – 90% 40 – 70%

Effluent quality Well nitrified Some nitrification No nitrification No nitrification No nitrification Power, kW/103 m3 2 – 4 2 – 8 6 –10 6 –10 10 – 20

(8)

4. Menentukan Kriteria Desain Trickling Filter 

Untuk mendesain Trickling Filters, diperlukan untuk memperhatikan sistem distribusinya. Pada umumnya Rotary hydraulic distribution  digunakan sebagai standar dalam proses Trickling Filters. Selain, Rotary  hydraulic distribution, fixed nozzle  juga dapat digunakan sebagai standar dalam proses ini. Fixed nozzle berbentuk persegi yang digunakan pada reaktor. Berikut adalah alur bagaimana menentukkan kriteria desain trickling filter .

(9)

Diketahui Nilai Debit dan BOD

S0= 70% dari BOD awal

St = asumsi BOD removal

efficiency

SOR =

.

:

.

 

:



R : asumsi Recirculation Ratio

Nilai St sesuai dengan nilai asumsi

BOD removal efficiency

Menentukan dimensi bakTrickling Filter 

Menghitung nilai kT

kT= k20 (1.035)T - 20

Menghitung Beban Hidrolik

q =









2

H : asumsi sesuai kriteria

Jika nilai q sudah memenuhi kriteria maka dilanjutkan dengan

menghitung nilai A A =



 ℎ



Volume Packing V = A x H

Waktu tinggal (detention time) td = H / (beban hidrolik)0.67

Rotatory Ditributor

Asumsi : wet rateAsumsi wet rate = 0.5 L/m2 Beban sirkulasi = Asumsi rate – Beban Hidrolik Rasio resirkulasi = beban sirkulasi : beban hi drolik

Hitung BOD Loading BOD Loading = Q x S0/ V

Menentukan Flushing rate dan Dosing rate sesuai dengan BOD loading sesuai

tabel 9-3 hal 899 Metcalf & Eddy Jika tidak sesuai kriteria

(10)

5. KriteriaTrickling Filters

 Media

Media dalam trickling terbuat dari berbahan yang keras, kuat, tahan terhadap tekanan, tahan terhadap kurun waktu yang lama, dan memiliki luas permukaan per unit volume tinggi. Pada umumnya menggunakan kerikil, antrasit, batu bara, dan batu kali. Diameter media berukuran 2.5 cm hingga 7.5 cm. diameter media ini tidak bisa terlalu kecil karena akan terjadi penyumbatan. Semakin luas permukaan media, semakin besar mikroorganisme yang hidup. Tebal dari media trickling filter adalah berkisar 1 meter hingga 4 meter. Semakin besar ketebalannya, semakin besar total luas permukaan yang akan ditumbuhi mikroorganisme.

Pada media ini terdapat lapisan yang terdiri dari mikroorganisme yang berguna untuk menguraikan substrat yang akan dihilangkan dari limbah tersebut. Dalam proses ini, terdapat bakteri fakultatif yang mengikat zat-zat organik.

Gambar 6. Media PadaTrickling Filter

Sumber : www.bridgat.com

 Waktu Tinggal

(11)

untuk mikroorganisme dapat menguraikan bahan organik dan tumbuh membentuk lapisan biofilm.

Pertumbuhan pada mikroorganisme pada batu kali akan mulai terbentuk pada hari ke 3.

 pH

pH yang digunakan berkisar 4-9.5 dengan pH optimum 6.5-7.5.

 Temperatur

Suhu yang optimum terjadi pada 25-37˚C. suhu ini akan

mempengaruhi kecepatan reaksi proses biologis dan efesiensi juga dipengaruhi oleh suhu.

 Aerasi

Udara harus masuk kedalam sistem karena oksigen berpengaruh pada proses penguraian yang dilakukan oleh mikroorganisme.

(12)

6. Contoh Soal :

Diketahui Q = 2000 m3/hari, BOD = 240 mg/L, dan T2 = 30 0

C.

1. Menghitung nilai S0

Nilai S0  adalah 30% dari nilai BOD awal karena telah melewati proses  primary treatment. Maka S0 = 70% x 240 = 168 mg/L.

2. Menghitung Nilai St

Untuk menghitung nilai St perlu ditentukan BOD Removal Efficiency. Berdasarkan Metcalf & Eddy BOD Removal Efficiency berada pada rentang 60 – 90% sehingga kami mengasumsikan BOD Removal Efficiency adalah 80%. Maka St = 20% x 168 = 33.6 mg/L (sisa).

3. Menghitung Nilai SOR

Untuk menghitung nilai SOR  perlu ditentukan nilai Recirculation Ratio. Berdasarkan Metcalf & Eddy, Recirculation Ratio berada pada rentang 1 – 2 sehingga kami memilih 1. Dengan persamaan berikut :

(S0.Q) + (St.RQ) = SOR (Q + RQ) SOR =

.:

:

.

SOR =

168:33.6

1:1

 = 100.8 mg/L

Dengan nilai efisiensi yang telah ditentukan maka dapat dihitung nilai St St= 20% x 100.8 = 20.16 mg/L

4. Menghitung Dimensi Bak

Untuk menghitung dimensi bak digunakan rumus sebagai berikut : k2= k1 (D1/D2)

0.5

(S1/S2) 0.5

dengan nilai k1= 0.21 (L/s)0.5/ m2 untuk limbah domestik (Tabel 9.2 Metcalf & Eddy), maka :

k20= k1 (6.1/3)0.5(150/104.5)0.5 k20 = 0.358 (L/s)0.5m2

(13)

5. Menghitung k2 pada suhu 300C

kT = k20 (1.035)T - 20

k30= 0.358(1.035)10 = 0.5 (L/s)0.5m2

6. Menghitung Beban Hidrolik

Untuk menghitung beban hidrolik diasumsikan kedalamannya adalah 2 m. Sesuai dengan tabel pada buku Metcalf &Eddy dimana rentang kedalaman adalah 1.8 – 2.4 m. Untuk menghitung beban hidrolik digunakan rumus sebagai berikut :

q =







2

=

0.5  2



.

.

2

= 0.386 (L/m2.s) = 33.35 (m3/m2.hari)

Sesuai dengan kriteria dimana rentang untuk q adalah 10 m3/m2.hari < q < 40 m3/m2.hari.

7. Menghitung Luas

Untuk menghitung luas dapat digunakan rumus

A =

 ℎ

 =

2000 

/ℎ

33.35





 = 59.97 m2= 60 m2

8. Menghitung Volume Packing

Untuk menghitung Volume Packing dapat digunakan rumus V = A x H = 60 x 2 = 120 m3

9. Menghitung Diameter

Maka diperoleh diameter =

√ 

4

 =

√ 

4  60

 = 8.74 m = 9 m Setelah itu dilakukan koreksi volume packing:

(14)

10. Menghitung waktu detensi

Untuk menghitung waktu detensi digunakan rumus :

td = (H / beban hidrolik)0.67 =

2 

 (33.35

.



 



)

.

 = 1.6 jam

11. Menghitung Recirculation Rate dan Recirculation Ratio

Asumsi wet rate = 0.5 L/m2 (sumber : Metcalf & Eddy halaman 921) Beban Hidrolik = 0.386 L/m2.s

Beban sirkulasi = Asumsi rate – Beban Hidrolik Beban sirkulasi = 0.5 – 0.386 = 0.114 L/m2.s

Rasio resirkulasi = beban sirkulasi : beban hidrolik Rasio resirkulasi = (0.114/0.386) = 0.29

12. Menghitung Pumping Rate q + qr = 0.5 L/m

2 .s

Total pumping rate = (0.5 L/m2.s)(60 m2) = 30 L/s = 108 m3/jam

13. Menghitung BOD Loading BOD Loading = Q x S0/ V

=

2000  (

.



)

120

= 1.68 kg/m3.hari

Oleh karena BOD Loading 1.68 kg/m3.hari maka Dosis operasi dan Flushing dose menurut tabel 9.3 Metcalf & Eddy adalah

Dosis operasi = 70 mm/pass Flushing dose = 350 mm/pass

(15)

14. Menghitung kecepetan distributor a. Flushing n =

(1:)  (1000 /)

    60min/ℎ

n =

(1:0.29) 1.389 (1000 /)

2  350  60min/ℎ

n = 0.0426 rev/min b. Normal Operation n =

(1:)  (1000 /)

    60min/ℎ

n =

(1:0.29) 1.389 (1000 /)

2  70  60min/ℎ

n = 0.213 rev/min 15. Desain Pompa

Asumsi wet rate = 0.5 L/m2.s Rate pompa = Wet rate x A

= 0.5 L/m2.s x 60m2 = 30 L/s

= 108 m3/jam Efisiensi pompa = 80%

(16)

Daftar Pustaka

Metcalf & Eddy, Inc. 1991. Wastewater Engineering: Treatment, Disposal, and Reuse. 3d ed. The McGraw-Hill Companies. New York, New York.

U.S. EPA, 1991. Assessment of Single-Stage Trickling Filter Nitrification. EPA 430/09-91-005, EPA Office of Municipal Pollution Control. Washington, D.C

Martin, Edward J. and Edward T. Martin. Technologies for Small Water and Wastewater Systems. 1991. p. 122. NewYork, New York.

Liu and Liptak. 1997. Environmental Engineering Handbook. 2d ed. The CRC Press, LLC. Boca Raton Florida

U.S. EPA, 1993. Manual: Nitrogen Control. EPA Office of Research and Development. EPA/625/R-93/010. Cincinnati, Ohio. EPA Office of Water. Washington, D.C.

Mulligan, T. J. and O. K. Scheible. 1990. Upgrading Small Community Wastewater Treatment Systems for Nitrification. HydroQual. Inc. Mahwah : New Jersey.

Metcalf & Eddy, Inc. Wastewater Engineering Treatment and Reuse (Fourth Edition).

http://www.epa.gov/owmitnet/WastewaterTechnologyFactSheetTricklingFilters.h tm

Gambar

Gambar 1. Tipe Trickling Filter.
Gambar 2. Skema Trickling Filter.
Gambar 3. Diagram Proses Pengolahan Trickling Filter Sumber : Anounnymous.
Gambar 4. Penampang Bak Trickling Filter Sumber : Anounymous.
+4

Referensi

Dokumen terkait

Tahap Pengembangan Pengolahan dengan Lumpur aktif Mikroorganisme tersuspensi dalam lumpur yang akan digunakan untuk mengolah limbah secara biologis dapat dikembangkan

Flora transien adalah mikroorganisme yang secara normal tidak dijumpai pada permukaan tangan.. Flora transien berkoloni, bertahan dan berkembang biak pada

Herlambang dkk (1999) menyatakan proses lumpur aktif dalam pengolahan air limbah tergantung pada pembentukan flok lumpur aktif yang terbentuk oleh mikroorganisme (terutama

Dari hasil penelitian dapat dilihat bahwa pengolahan limbah deterjen menggunakan lumpur aktif sangat efektif dalam menurunkan BDS.. Kata kunci : Lumpur aktif, DBS,

1 Secara umum, plak dapat diartikan sebagai suatu lapisan lunak yang terdiri atas kumpulan mikroorganisme yang berkembang biak diatas suatu

Oleh karena itu pada penelitian kali ini akan dilakukan proses degradasi limbah pada reaktor trickling filter skala laboratorium menggunakan media bioball jenis

Kaji ulang sistem pengolahan limbah cair industri hasil perikanan secara biologis dengan lumpur aktif.. Ibrahim B, Erungan

15) Beban Permukaan adalah Debit air limbah yang masuk ke dalam pengolahan lumpur aktif per luas permukaan yang efektif pada tangki pengendapan. Hal-Hal Yang Diuji Pada