PENGENALAN POLA SENYUM BERBASIS EKSTRAKSI CIRI EDGE DETECTION DENGAN PENDEKATAN JARINGAN SARAF TIRUAN
PROBABILISTIK
TUGAS AKHIR
Diajukan Untuk Memenuhi
Persyaratan Guna Meraih Gelar Sarjana Strata 1 Teknik Informatika Universitas Muhammadiyah Malang
Oleh : Kun Fawaid
08560035
JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNIK
UNIVERSITAS MUHAMMADIYAH MALANG 2013
ii
LEMBAR PERSETUJUAN
PENGENALAN POLA SENYUM BERBASIS EKSTRAKSI CIRI EDGE DETECTION DENGAN PENDEKATAN JARINGAN SARAF TIRUAN
PROBABILISTIK
TUGAS AKHIR
Oleh : Kun Fawaid
08560035
Telah Direkomendasikan Untuk Diajukan Sebagai Judul Tugas Akhir Di Teknik Informatika Universitas Muhammadiyah Malang
Menyetujui,
Pembimbing I
Eko Budi Cahyono, S.Kom, MT NIP.108.9504.0330
Pembimbing II
Wahyu Andhyka Kusuma, S.Kom NIDN.672.006.8701
iii
LEMBAR PENGESAHAN
PENGENALAN POLA SENYUM BERBASIS EKSTRAKSI CIRI EDGE DETECTION DENGAN PENDEKATAN JARINGAN SARAF TIRUAN
PROBABILISTIK
TUGAS AKHIR
Diajukan Untuk Memenuhi
Persyaratan Guna Meraih Gelar Sarjana Strata Satu Teknik Informatika Universitas Muhammadiyah Malang
Disusun Oleh : KUN FAWAID 0 8 5 6 0 0 3 5
Tugas Akhir ini telah diuji dan dinyatakan lulus oleh tim penguji pada tanggal 31 Januari 2013
Mengetahui/Menyetujui
Penguji I
Yudha Munarko, S.Kom, M.Sc NIP 108.0611.044
Penguji II
Saifuddin, S.Kom
Mengetahui
Ketua Jurusan Teknik Informatika
Eko Budi Cahyono, S.Kom, MT NIP108.9504.0330
iv
LEMBAR PERNYATAAN
Yang bertanda tangan di bawah ini:
Nama : Kun Fawaid
Tempat / Tgl Lahir : Banyuwangi, 20 Agustus 1988
NIM : 0 8 5 6 0 0 3 5
Fakulats / Jurusan : Teknik / Teknik Informatika
Dengan ini saya menyatakan bahwa Tugas Akhir dengan judul “Pengenalan Pola Senyum Berbasis Ekstraksi Ciri Edge Detection dengan Pendekatan Jaringan Saraf Tiruan Probabilistik” beserta seluruh isinya adalah karya saya sendiri dan bukan merupakan karya tulis orang lain, baik sebagian maupun keseluruhan, kecuali dalam bentuk kutipan yang telah disebutkan sumbernya.
Demikian surat pernyataan ini saya buat dengan sebenar-benarnya. Apabila kemudian ditemukan adanya pelanggaran terhadap etika keilmuan dalam karya saya ini, atau ada klaim dari pihak lain terhadap keaslian karya saya ini maka saya siap menanggung segala bentuk resiko/sanksi yang berlaku.
Malang, 21 Januari 2012 Yang Membuat Pernyataan
Kun Fawaid Mengetahui,
Dosen Pembimbing I
Eko Budi Cahyono, S.Kom, MT NIP 108.9504.0330
Dosen Pembimbing II
Wahyu Andhyka Kusuma, S.Kom NIDN 672.006.8701
v ABSTRAKSI
Pengenalan pola merupakan merupakan salah satu masalah yang umum yang sering dihadapi oleh sistem untuk dapat mengenali objek seperti layaknya manusia. Pengenalan pola senyum menggunakan jaringan saraf tiruan probabilistik dirancang untuk menciptakan sebuah sistem yang mampu mengenali pola tipe senyum dan mengelompokkan kedalam kelompok yang sesuai berdasarkan pola tipe senyum yang telah dilatih sebelumnya. Pengenalan pola tipe senyum ini diawali dengan tahapan pra-proses, ekstraksi ciri, pengukuran kemiripan dan penentuan hasil pengenalan. Dengan menggunakan 40 buah data latih dan 14 buah data uji, pengujian aplikasi pengenalan pola senyum ini menghasilkan akurasi sebesar 64.28%.
keyword: pattern recognition, preprocessing, grayscalling, sharpening, feature
vi ABSTRACT
Pattern recognition is one of the common problems faced by the system to be able to recognize objects such as the ability possessed by humans. Smile pattern recognition using a probabilistic neural network are designed to create a system capable of recognizing and classifying patterns of smile type into the appropriate clusters based on the pattern type of smile that had been trained previously. This type of pattern recognition smile begins with a pre-process stage, feature extraction, similarity measurement and determination of the identification results. By using the data of 40 train and 14 test data, test pattern recognition applications smile produces accuracy of 64.28%.
keyword: pattern recognition, preprocessing, grayscalling, sharpening, feature
vii
LEMBAR PERSEMBAHAN
Dengan mengucap uji dan syukur kehadirat Allah SWT atas berkat rahmat dan hidayah-Nya tugas akhir berjudul “Pengenalan Pola Senyum Berbasis Ekstraksi Ciri Edge Detection dengan Pendekatan Jaringan Saraf Tiruan Probabilistik” ini dapat terselesaikan dengan baik.
Dalam penyusunan tugas akhir ini, penulis menyadari sepenuhnya bahwa tanpa bantuan dan bimbingan dari berbagai pihak, tugas akhir ini tidak akan terwujud. Oleh sebab itu, pada kesempatan ini penulis menyampaikan rasa terimakasih yang banyak dan sebesar-besarnya kepada:
1. Ibu dan Bapak yang selalu memberikan dukungan dan serta doa, pengorbanan serta nasehat yang membuat penulis penuh semangat dalam menyelesaikan tugas akhir ini.
2. Dosen pembimbing saya, Bapak Eko Budi Cahyono, S.Kom.MT, dan Bapak Bapak Wahyu Andhyka Kusuma, S.Kom yang sudah membimbing dan memberikan arahan serta memberikan banyak pencerahan selama pengerjaan tugas akhir ini.
3. Seluruh dosen Teknik Informatika, saya ucapkan terima kasih banyak atas ilmu yang telah diberikan.
4. Saudara-saudara saya, Adib Zamroni, Umdatul Holidah dan Rifqotul Umami yang selalu memberikan dukungan dalam segala hal. Aira, Sazhia, Elnath yang selalu memberikan senyuman.
5. Teman-teman seperjuangan, Resa, Reza, Imam, Aan, Pi’i, Ainul, Farid, Bayu, Tomi, Anggit.
viii
KATA PENGANTAR
Bismillahirahmanirrahim. Dengan mengucap puji dan syukur kehadirat Allah SWT atas limpahan rahmat dan hidayah-Nya sehingga penulis dapat menyelesaikan dengan baik tugas akhir ini yang berjudul “Pengenalan Pola Senyum Berbasis Ekstraksi Ciri Edge Detection dengan Pendekatan Jaringan Saraf Tiruan Probabilistik”.
Pada penelitian tugas ahir ini, dirancang sebuah sistem yang bertujuan untuk dapat mengenali pola tipe senyum. Senyum merupakan salah satu ekspresi yang mewakili momen, kejadian ataupun perasaan bahagia dan banyak orang berusaha mengabadikan ekspresi ini. Oleh sebab itu penulis merancang sebuah sietem yang dapat mengenali senyum.
Penulis menyadari sepenuhnya, dengan keterbatasan waktu, kemampuan, pengetahuan dan pengalaman, Tugas Akhir ini masih jauh dari kesempurnaan oleh sebab itu penulis mengharapkan masukan berupa saran maupun kritikan yang membangun untuk pengembangan sistem pengenalan pola senyum ini lebih lanjut. Akhir kata penulis berharap semoga Tugas Akhir ini dapat bermanfaat dan menjadi tambahan ilmu pengetahuan.
Malang, 21 Januari 2013
ix
DAFTAR ISI
HALAMAN JUDUL ... i
LEMBAR PERSETUJUAN ... ii
LEMBAR PENGESAHAN ... iii
LEMBAR PERNYATAAN ... iv
ABSTRAKSI ... v
ABSTRACT ... vi
LEMBAR PERSEMBAHAN ... vii
KATA PENGANTAR ... viii
DAFTAR ISI ... ix
DAFTAR GAMBAR ... xii
DAFTAR TABEL ... xiii
BAB I PENDAHULUAN ... 1
1.1 Latar Belakang ... 1
1.2 Rumusan Masalah... 2
1.3 Tujuan ... 2
1.4 Batasan Masalah ... 3
1.5 Metodologi Penyelesaian Masalah ... 3
1.6 Sistematika Penulisan ... 4
BAB II LANDASAN TEORI ... 6
2.1 Citra (Image) ... 6
2.1.1 Definisi Citra ... 6
2.1.2 Jenis-jenis Format Citra ... 6
2.2 Pengolahan Citra (Image Processing) ... 8
2.2.1 Definisi Pengolahan Citra ... 8
2.2.2 Operasi Pengolahan Citra ... 9
2.3 Pengenalan Pola Citra ... 10
2.3.1 Definisi Pengenalan Pola Citra ... 10
2.4 Pra-proses (Preprocessing) ... 11
2.4.1 Grayscaling ... 11
x
2.5 Ekstraksi Ciri (Feature Extraction) ... 12
2.5.1 Definisi Ekstraksi Ciri ... 12
2.6 Deteksi Tepi (Edge Detection) ... 12
2.6.1 Definisi Deteksi Tepi ... 12
2.6.2 Operator Deteksi Tepi ... 13
2.7 Jaringan Saraf Tiruan ... 15
2.7.1 Definisi Jaringan Saraf Tiruan... 15
2.7.2 Arsitektur Jaringan Saraf Tiruan (JST) ... 16
2.8 Jaringan Saraf Tiruan Probabilistik (JSTP) ... 18
2.8.1 Definisi Jaringan Saraf Tiruan Probabilistik ... 18
2.8.2 Arsitektur Jaringan Saraf Tiruan Probabilistik ... 20
2.9 Senyum ... 21
2.9.1 Definisi Senyum ... 21
2.9.2 Pola Senyum ... 21
BAB III PERANCANGAN SISTEM ... 23
3.1 Perancangan Alur Sistem ... 23
3.2 Perancangan Jaringan Saraf Tiruan Probabilistik... 29
BAB IV MPLEMENTASI DAN PENGUJIAN ... 30
4.1 Implementasi Sistem ... 30
4.1.1 Citra... 30
4.1.2 Pemotongan Citra ... 30
4.1.3 Konversi Format File ... 32
4.1.4 Merubah Ukuran Citra ... 33
4.1.5 Pra-proses ... 34 4.1.6 Deteksi Tepi ... 35 4.1.7 Training Data ... 36 4.2 Pengujian ... 37 4.2.1 Perancangan Pengujian ... 37 4.2.2 Pengujian Sistem ... 37 4.2.3 Interface Aplikasi ... 43
BAB V KESIMPULAN DAN SARAN... 46
xi
5.2 Saran ... 46 DAFTAR PUSTAKA ... 48
xii
DAFTAR GAMBAR
Gambar 2.1 Arsitektur Jaringan Saraf Tiruan ... 16
Gambar 2.2 Arsitektur JSTP ... 20
Gambar 2.3 Senyum Tipis ... 22
Gambar 2.4 Senyum Lebar ... 22
Gambar 3.1 Flowchart sistem secara umum ... 23
Gambar 3.2 Flowchart grayscalling ... 24
Gambar 3.3 Flowchart sharpening ... 25
Gambar 3.4 Flowchart edge detection ... 26
Gambar 3.5 Flowchart pelatihan dengan JSTP ... 27
Gambar 3.6 Flowchart pengujian dengan JSTP ... 28
Gambar 3.7 Rancangan Jaringan JSTP senyum ... 29
Gambar 4.1 Pemotongan citra ... 31
Gambar 4.2 Hasil pemotongan ... 31
Gambar 4.3 Konversi format citra dari .jpg ke .bmp ... 32
Gambar 4.4 Format dan kedalaman warna... 33
Gambar 4.5 Resize image ... 33
Gambar 4.6 Hasil grayscalling ... 34
Gambar 4.7 Hasil sharpening ... 35
Gambar 4.8 Hasil deteksi tepi ... 35
Gambar 4.9 Struktur menu aplikasi ... 43
Gambar 4.10 Tampilan utama ... 43
Gambar 4.11 Tampilan pelatihan ... 44
Gambar 4.12 Tampilan pengujian ... 44
xiii
DAFTAR TABEL
Tabel 2.1 Proses umum komputer visi ... 10
Tabel 4.1 Hasil Pengujian pola senyum tipis ... 38
Tabel 4.2 Hasil Pengujian pola senyum lebar ... 40
xiv
DAFTAR PUSTAKA
Subchan Ajie Ari Bowo, Achmad Hidayatno, R. Rizal Isnanto. Analisis Deteksi Tepi Untuk Mengidentifikasi Pola Daun, Jurusan Teknik Elektro Fakultas Teknik Universitas Diponegoro.
Afnisyah Taurisna. 2009. Analisis Pengaruh Kualitas Resolusi Citra Terhadap Kinerja Metode Pendeteksi Tepi, Universitas Sumatera Utara, Medan.
Panji Novia Pahludi, Achmad Hidayatno, R. Rizal Isnanto. Klasifikasi Citra Berdasarkan Tekstur Menggunakan Jaringan Saraf Tiruan Perambatan Balik, Jurusan Teknik Elektro Fakultas Teknik Universitas Diponegoro.
Linggo Sumarno. 2007. Pengenalan Huruf Tulisan Tangan Berderau dan Terskala Berbasis Ekstraksi Ciri DCT Dengan Menggunalan Jaringan Saraf Probabilistik, Jurusan Teknik Elektro Fakultas Teknik Universitas Sanata Dharma, Yogyakarta.
Prasetyo, Eko. 2011. Pengolahan Citra Digital dan Aplikasinya Menggunakan Matlab. Yogyakarta: ANDI Yogyakarta.
Muntasa, Arif. 2010. Konsep Pengolahan Citra Digital dan Ekstrasi Fitur. Jakarta: Graha Ilmu.
Tjiharjadi, Semuil. 2006. Watermaking Citra Digital Menggunakan Teknik Amplitude Modulation. Jurusan Teknik Elektro Fakultas Teknik Universitas Kristen Maranatha, Bandung.
Gonzalez, Rafael C. 2002. Digital Image Processsing – Second Edition. University of Tennessee, United States
Gonzales, Rafael C. 2003. Digital Image Processing Using Matlab. University of Tennessee, United States.
xv
Febriani, Lussiana ETP. Agustus 2008. Analisis Penelusuran Tepi Citra Mengguankan Detektor Tepi Sobel dan Canny, Depok.
Afnisyah Taurisna. 2009. Analisis Pengaruh Kualitas Resolusi Citra Terhadap Kinerja Metode Pendeteksi Tepi, Universitas Sumatera Utara, Medan.