• Tidak ada hasil yang ditemukan

2. Spektrum Atom Hidrogen

N/A
N/A
Protected

Academic year: 2021

Membagikan "2. Spektrum Atom Hidrogen"

Copied!
7
0
0

Teks penuh

(1)

Struktur Atom

1. Teori Atom (Model Atom)

1.1 Dalton

Hukum Lavoisier & Proust ⇒ konsep: atom

1.2 Thomson

Hantaran listrik Tabung

sinar katoda Ö Penemuan elektron konsep: elektron Radioaktifitas

1.3 Rutherford

Percobaan berkas sinar α konsep: inti atom melalui lempeng tipis.

Sinar α

1.4 Niels Bohr

Spektrum atom H (deret Balmer, dll.) Ø

Persamaan Rydberg konsep: orbit, kulit elektron

1.5 Mekanika Kuantum

Spektrum yang lebih kompleks

untuk atom berelektron banyak. konsep: subkulit, Penemuan sifat gelombang dari materi bil. kuantum, (deBroglie, Heisenberg, Schrodinger) orbital

(2)

3. Teori Atom Niels Bohr & Spektrum Atom H

2. Spektrum Atom Hidrogen

2.1 Percobaan Balmer

Sinar putih dilewatkan pada atom H (berupa gas), lalu didispersikan (lewat prisma) dan ditangkap oleh “layar”.

Diperoleh garis-garis hitam pada beberapa panjang gelombang.

2.2 Percobaan Lymann

Percobaan serupa, tetapi yang diamati adalah daerah UV.

Setelah itu diikuti percobaan Paschen, Bracket, Pfund, Humphrey.

2.3 Persamaan Rydberg

Lymann: λ   =  2  1 1 1 H R n Balmer: λ   =  2  1 1 4 H R n 1 Secara umum: λ   =  21 22  1 1 H R n n 1 atau:

3.1 Teori Atom Niels Bohr

Niels Bohr menyatakan bahwa:

• Elektron bergerak di sekeliling inti pada lintasan tertentu (disebut orbit), dengan energi tertentu dengan mengikuti hukum-hukum mekanika klasik.

• Elektron dapat berpindah dengan menyerap atau memancarkan energi (dalam bentuk gelombang elektromagnetik, dengan

frekuensi sesuai hukum Planck: E h= ν ).

• Momentum sudut elektron merupakan kelipatan dari 2

h

π (sering disebut sebagai postulat Niels Bohr).

2

h mvr n

π

(3)

3.2 Jari-Jari Atom (Jari-Jari Lintasan Elektron)

Mekanika klasik: 2 2 2 0 1 4 c sp F F e mv r r πε = =

Postulat Niels Bohr: mvr = …

Dari kedua persamaan di atas, diperoleh jari-jari lintasan elektron:

2 2 0 2 n n h r me ε π = 2 a 0 n n rnr = a n2 0 = 0,529 8

3.3 Energi Elektron

Dari jumlah EK + EP:

4 2 2 2 2 2 1 13,6 8 n o me E R n h ε n n = − = − = − eV En 12 n − ∼

3.4 Spektrum H

Elektron yang berpindah dari lintasan n1 ke n2 (n2 > n1), akan menyerap energi sebesar:

∆ = − = −   − − =  −      2 1 2 2 2 2 1 1 1 1 n n R R E E E R n n n    2 2 n

Berdasarkan Planck, gelombang elektromagnetik yang diserap, akan memiliki frekuensi yang memenuhi hubungan:

ν λ λ ∆ = =   =  12 22  1 1 c E h h R hc n n 1

3.5 Atom Serupa H (He

+

, Li

2+

, O

7+

)

2 2 2 o n h r mZe ε π = 2 n r Z

(

)(

)

(

) (

)

4 31 19 2 4 2 2 2 2 2 2 34 12 2 2 2 2 2 9,1 10 1,6 10 8 8 6,6 10 8,85 10 13,6 o n kg mZ e Z E n h Js n Z Z eV E n n ε − − − − × × = − = − × × = − ∼−

(4)

4. Sejarah Mekanika Kuantum/Mekanika

Gelombang

4.1 Sifat Diskrit dari Gelombang

Gelombang elektromagnet bersifat diskrit. Sifat diskrit ini bisa menjelaskan percobaan radiasi benda hitam.

E = hν (E foton) h = tetapan Planck ν= frekuensi (Dapat menjelaskan radiasi benda hitam) Fenomena sifat diskrit gelombang: efek fotolistrik Einstein: hν = Eo + EKe

4.2 Sifat Partikel dari Gelombang

Efek Compton ~~~~~~~~~~

hν = hν + EKe

Jika foton dianggap mempunyai massa, maka bisa diturunkan hubungan momentum foton dengan panjang gelombang foton.

hν = mc2 h =mc

λ (Einstein + Planck)

4.3 Sifat Gelombang dari Partikel

Hipotesis deBroglie: λ = h

mv

Postulat Niels Bohr dapat dinyatakan secara berbeda: bahwa keliling lintasan elektron merupakan kelipatan bulat dari panjang gelombang deBroglie.

Percobaan Davisson & Germer:

Berkas elektron dilewatkan pada kisi kristal menghasilkan pola difraksi elektron. Panjang gelombang yang dihitung berdasarkan pola difraksi itu bersesuaian dengan panjang gelombang deBroglie. Lebih jauh lagi, sifat-sifat sistem partikel kecil (yang menunjukkan sifat kuantum atau sifat gelombang) dapat diturunkan lewat

(5)

5. Teori Atom Mekanika Gelombang

5.1 Penyelesaian Pers. Schrodinger untuk Atom

Persamaan diferensial Schrodinger yang diterapkan untuk atom, menghasilkan penyelesaian berupa:

• berbagai tingkat energi elektron dalam atom

• fungsi gelombang yang menggambarkan daerah gerak elektron. Daerah gerak elektron disebut orbital. Orbital adalah daerah

kebolehjadian terbesar untuk menemukan elektron.

Penyelesaian persamaan Schrodinger, memunculkan beberapa parameter, yang disebut sebagai bilangan kuantum.

Atom H Atom He dan yang lebih besar ... n E = , , ... n l m Ψ = , ... n l E = , , ... n l m Ψ =

5.2 Bilangan Kuantum

Bilangan kuantum utama: n = 1, 2, 3, …

Konsep: menunjuk pada kulit elektron

Fisik: menggambarkan ukuran orbital Bilangan kuantum orbital (azimut): l = 0, 1, 2, …, (n-1)

Konsep: menunjuk pada subkulit 0 s, 1 p, 2 d, dst. Fisik: menggambarkan bentuk orbital

Bilangan kuantum magnetik: m = -l, …, 0, …, +l

Konsep: menunjuk pada orbital dalam subkulit (px, py, pz) Fisik: menggambarkan orientasi orbital

Bilangan kuantum spin: s = ±½

(6)

5.3 Aturan Pengisian Elektron

Prinsip Aufbau: elektron mengisi orbital dimulai dari subkulit dengan energi terendah. (Aturan n+´, n, berlaku untuk selain H) Larangan Pauli: tidak mungkin ada 2 elektron yang mempunyai spin yang sama dalam orbital yang sama, ATAU

Dalam suatu atom, tidak mungkin ada 2 elektron yang mempunyai keempat bilangan kuantum yang sama.

Aturan Hund: Pada pengisian orbital-orbital dalam subkulit yang sama (yang energinya sama), elektron-elektron cenderung tak berpasangan. 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f Subkulit p: __ __ __ px py pz

Aturan subkulit penuh dan setengah penuh: …

5.4 Konfigurasi elektron

Konf.el. ~ suatu cara untuk menggambarkan pengisian elektron dalam (sub)kulit-(sub)kulit.

11Na: 1s2 2s2 2p6 3s1

Pengisian dalam orbital-orbital digambarkan dalam diagram elektron.

Elektronvalensi ~ elektron di kulit terluar (dengan n terbesar). Konfigurasi yang stabil: konfigurasi dengan pengisian sesuai Aufbau dan Hund, kecuali:

3d4 4s2 → 3d5 4s1 3d9 4s2 → 3d10 4s1

(7)

6. Sifat-Sifat Atom

6.1 Energi Ionisasi

~ energi yang dibutuhkan oleh suatu atom untuk melepaskan elektron di kulit terluarnya dalam fasa gas.

Energi ionisasi pertama (EI1), energi ionisasi kedua (EI2), dst. Na(g) → Na+(g) + e 1 H EI ∆ = Na+(g) → Na2+(g) + e 2 H EI ∆ =

Ionisasi dimulai dari elektronvalensi, bukan dari elektron dalam subkulit dengan energi terbesar.

Dari data EI1, EI2, dst. dapat diketahui jumlah elektronvalensi. Contoh:

6.2 Afinitas Elektron

~ energi yang dilepaskan ketika suatu atom menerima elektron dalam fasa gas.

Cl(g) + e → Cl-(g) ∆ = −H AE ∆ <H 0 O(g) + e → O-(g) ∆ <H 0

O-(g) + e → O=(g) ∆ >H 0

6.3 Sifat Magnet

Sifat magnet ditentukan oleh jumlah elektron tak berpasangan. Diamagnetik: tidak ditarik magnet, bahkan kadang agak ditolak. (tidak memiliki elektron yang tak berpasangan). Paramagnetik: ditarik magnet dengan lemah.

Referensi

Dokumen terkait

Metode just in time merupakan metode yang tepat digunakan untuk pencatatan biaya produksi pada perusahaan manufaktur seperti CV Hoki, karena perusahaan dapat mengetahui

Meningkatkan kualitas pelayanan penyelenggaraan Pelayanan Administrasi Terpadu Kecamatan (PATEN) melalui pemenuhan pelayanan keliling ke setiap desa di wilayah Kecamatan

Pengeringan merupakan faktor penting dari pengolahan kopi, tanpa pengeringan yang tepat baik itu pengeringan mekanis maupun secara tradisional kualitas biji kopi tidak akan

Kedua tahap experiencing yaitu siswa mengalami sendiri proses belajarnya sehingga siswa lebih mudah dalam memahami suatu konsep, hal ini diperoleh ketika siswa

panelis karena komposisi gula lebih banyak dari formula yang

PENGARUH MODEL PEMBELAJARAN TEACHING GAMES FOR UNDERSTANDING TERHADAP KETERAMPILAN SOSIAL DAN KETERAMPILAN BERMAIN BOLA BASKET.. Universitas Pendidikan Indonesia |

The study of compound words here hopefully could helpedme as a learner as well, the other learners who learn about compound word from novel as their media teaching, and readers