• Tidak ada hasil yang ditemukan

2008 SeniorFinalA2008 Apr22

N/A
N/A
Protected

Academic year: 2017

Membagikan "2008 SeniorFinalA2008 Apr22"

Copied!
2
0
0

Teks penuh

(1)

BRITISH COLUMBIA SECONDARY SCHOOL

MATHEMATICS CONTEST, 2008

Senior Final, Part A

Friday, May 2

1. Define(2n+1)!=1×2×3× · · · ×(2n+1), the product of all the positive integers from 1 to 2n+1. Define(2n+1)¡ = 1×3×5× · · · ×(2n+1), the product of all the odd positive integers from 1 to 2n+1. Then the expression

(2n+1)!

(2n+1)¡ is equal to:

(A) 2n

n! (B) 2(n!) (C) (2n)! (D) 1 (E) 2n+1 2. ABCDis a square of side 1. A pointPis chosen at random inside the square

and is connected to points Cand Dto form the triangle PDC as shown in the diagram. The probability that the measures of all of the angles in trianglePDCare less than 90◦is:

(A) π

8 (B)

7π

8 (C)

π 2

(D) 8−π

8 (E)

1 3

A B

C D

P

3. A 1×1×1 cube, a 2×2×2 cube, and a 3×3×3 cube are stacked as shown. The length of the portion of the line segment ABthat lies entirely in the 3×3×3 cube is:

(A) √3 (B) 3√3 (C) 3

6 2 (D) 3√6 (E) 6√3

A

B

4. The number of pairs of positive integers(x,y)that satisfy the equation

x2+y2=x3

is:

(A) 0 (B) 1 (C) 2 (D) Answer is

infinite (E) None ofthese

5. The number of solutions(x,y)to the inequality

|x|+|y|<50

for which bothxandyare integers is:

(2)

BC Secondary School

Mathematics Contest Senior Final, Part A, 2008 Page 2

6. A square has sides of unit length. A second square is formed whose vertices are the midpoints of the sides of the first square. A third square is formed whose vertices are the midpoints of the sides of the second square, and so on. The sum of the perimeters of all of the squares thus formed is:

(A) 4√2−4 (B) 4√2+4 (C) 4√2+8 (D) 16 (E) Infinite 7. The expression

212+222+232+· · ·+402202+192+182+· · ·+12

has a value of:

(A) 16359 (B) 16400 (C) 16441 (D) 19270 (E) 20000

8. The constant term in the expansion of

3x+ 2

x2 6

is:

(A) 15 (B) 324 (C) 4320 (D) 4860 (E) No constant term

9. Recall that for integersaandb, the remainder whenbis divided byais writtena (modb). The value

of h

20+21+22+23+· · ·+22008i (mod 15)

is:

(A) 0 (B) 1 (C) 8 (D) 9 (E) 11

10. In the diagramPQRis an equilateral triangle andPQis the diameter of the circle centred atO. Area A1is the area inside the triangle that is outside

the circle and the shaded areaA2is the area inside the triangle that is also

inside the circle. The ratio of areaA1to areaA2is:

(A) 2

3

π (B)

π−√3

π+√3

(C) 1 2

(D) 2

3 (E)

3√3π 3√3+π

A2

P Q

R

Referensi

Dokumen terkait

Dokumen Master Surat Masuk Daftar Distribusi Internal Daftar Dokumen Arsip Sekretariat SDM Mengagendakan Surat Masuk 1 Direktur SDM Mendisposisikan Surat Masuk 2

[r]

[r]

Dengan demikian diharapkan program pendidikan kesehatan akan mampu meningkatkan kepuasan pasien, yang berarti pula mampu meningkatkan kualitas pelayanan keperawatan

lancar dengan media kartu huruf dalam pembelajaran Bahasa Indonesia pada siswa.. kelas satu

Hasil penelitian menunjukkan: (1) Upaya peningkatan keaktifan dan prestasi belajar PKn pada siswa kelas IVA SD Negeri Krekah melalui penggunaan mind map dilakukan

belakang berkurang ramainya dan guru semakin dapat mengontrol kondisi para siswa. Tanya jawab terjadi dengan baik dan guru mulai mengurangi 'bantuan' dalam hal ini..

Pelaksanaan tindakan pada siklus 1 sesuai dengan rencana yaitu pertemuan pertama hari senin tanggal 3 Agustus 2009 dan pertemuan ke dua hari Jumat tanggal 7 Aguatus