• Tidak ada hasil yang ditemukan

Analisis Filogenetik Beberapa Kerapu Subfamili Epinephelinae (Serranidae) Indo-Pasifik Barat Dari Perairan Indonesia.

N/A
N/A
Protected

Academic year: 2017

Membagikan "Analisis Filogenetik Beberapa Kerapu Subfamili Epinephelinae (Serranidae) Indo-Pasifik Barat Dari Perairan Indonesia."

Copied!
50
0
0

Teks penuh

(1)

PHYLOGENETIC ANALYSIS OF SOME INDO

WEST-PACIFIC GROUPER SUBFAMILY EPINEPHELINAE

(SERRANIDAE) FROM INDONESIAN WATERS

YANTI ARIYANTI

GRADUATE SCHOOL

BOGOR AGRICULTURAL UNIVERSITY

BOGOR

(2)
(3)

STATEMENT LETTER

I hereby declare that thesis entitled

Phylogenetic Analysis of Some Indo-

West Pacific Grouper Subfamily Epinephelinae (Serranidae) from Indonesian

Waters

is original result of my own research supervised under advisory

committee and has never been submitted in any form at any institution before. All

information from other authors cited here are mentioned in the text and listed in

the reference at the end part of the thesis.

Bogor, October 2015

Yanti Ariyanti

(4)

SUMMARY

YANTI ARIYANTI. Pylogenetic Analysis of Some Indo West-Pacific Grouper

Subfamily Epinephelinae (Serranidae) from Indonesian Waters. Supervised by

ACHMAD FARAJALLAH and IRMA SHITA ARLYZA

The serranid Subfamily Epinephelinae comprises about 159 species of marine

fishes in 15 genera,

commonly known as groupers, rockcods, hinds, and

seabasses. These commercially important fishes are bottom-associated which is

found in tropical and subtropical waters. Most species occupies coral reefs, but

some inhabit estuaries or on rocky reefs. Grouper has potential economic value in

fisheries, however, the classification and their evolutionary relationship was often

constrained by the incredible number of species, wide distribution, and lack of

morphological key that

it’s used in classification

. It causes any kind fishes of this

subfamily members were caught in the field are often summed up as groupers.

The Indo-Pacific region has the most diverse types of grouper than the other areas

such as Western Atlantic, Eastern Atlantic, and Eastern Pacific. Therefore, it is

becoming a very interesting to understanding genetic relationship of groupers in

this region particularly in Indonesian water.

In this present work, we have used cytochrome oxidase c subunit 1 (CO1)

gene as a molekular marker in order to investigate the molecular relationship

among some Indo West-Pacific grouper. The specimens were obtained from

various sources including fishing rod, seafood market, and marine fishery station

in several sampling point as follow Aceh (Sumatera), Luwuk (Sulawesi), Kupang

(East Nusa Tenggara), Pangandaran (West Java), Raja Ampat (Papua), Sinjai, and

Selayar Island (South Sulawesi).

Tissue samples were used as the source of DNA

is part of the dorsal muscle, gill and fins tissue. All samples for molecular analysis

were stored in 95% alcohol.

The 26 sequences belonging to 5 generas (

Anyperodon, Cephalopholis,

Epinephelus, Plectropomus, and Variola

) and 14 species of some Indo-West

Pacific grouper from several places in Indonesia were obtained and studied herein.

Several sequences have been submitted in to GenBank. Based on the partial

Cytochorome oxidase subunit 1 and using

Haemulon scuderii

as outgroup, a

molecular phylogenetic tree was constructed by Neighbor-Joining (NJ) method

(Kimura 2-parameter). Appearance of the

Anyperodon

within group of

(5)

Epinephelus

(

Epinephelus erythrurus

). Analysis were conducted by combining

morphological and molecular identification (CO1) that showed also within this

report.

This result will be helpful in taxonomy and to understanding phylogenetic

relationship analysis among some West Indo-Pacific grouper in Indonesian

waters.

(6)

RINGKASAN

YANTI ARIYANTI. Analisis Filogenetik Beberapa Kerapu Subfamili

Epinephelinae (Serranidae) Indo-Pasifik Barat dari Perairan Indonesia. Dibimbing

oleh ACHMAD FARAJALLAH dan IRMA SHITA ARLYZA

Kelompok ikan serranid dari subfamili Epinephelinae terdiri atas sekitar 159

spesies yang termasuk dalam 15 genera, umumnya dikenal sebagai ikan kerapu,

rockcods, hinds, dan seabasses

. Ikan komersial penting ini merupakan ikan

penghuni dasar perairan yang dapat ditemukan di daerah perairan tropis maupun

subtropis. Sebagian besar spesies ikan ini menghuni habitat terumbu karang,

sedangkan sebagian lainnya hidup di muara atau karang berbatu. Kerapu memiliki

nilai ekonomi tinggi, namun kalsifikasi dan hubungan evolusi mereka seringkali

terkendala oleh jumlah spesies yang luar biasa banyak, distribusi yang luas, serta

kurangnya keahlian dalam identifikasi morfologi. Hal ini menyebabkan apapun

jenis ikan yang tertangkap di lapangan dari anggota subfamili Epinephelinae

seluruhnya disebut sebagai kerapu. Wilayah Indo-Pasifik memiliki jenis ikan

kerapu yang paling beragam daripada daerah lain seperti di Atlantik Barat,

Atlantik Timur, dan Pasifik Timur. Oleh karena itu perairan Indo-Pasifik menjadi

wilayah yang sangat menarik untuk memahami hubungan filogenetik ikan kerapu

khususnya di wilayah perairan Indonesia.

Dalam penelitian ini, digunakan ruas gen sitokrom oksidase c subunit 1 (CO1)

sebagai penanda molekuler untuk menganalisis hubungan antara beberapa jenis

kerapu dari wilayah perairan Indonesia.

Spesimen diperoleh dari berbagai macam

sumber termasuk hasil pancing tradisional, pasar ikan, dan tempat pelelangan ikan

dari beberapa titik sampling yaitu Banda Aceh (Sumatera), Luwuk (Sulawesi),

Kupang (East Nusa Tenggara), Pangandaran (West Java), Raja Ampat (Papua),

Sinjai, and Selayar Island (South Sulawesi).

Jaringan

yang digunakan sebagai

sumber DNA berasal dari otot dorsal, insang, serta sirip

.

Seluruh sampel jaringan

untuk keperluan analisis molekuler disimpan dalam alkohol 95%.

Sebanyak 26 urutan sekuen DNA dari 14 spesies kerapu dari wilayah perairan

Indonesia yang termasuk ke dalam 5 genera (

Anyperodon, Cephalopholis,

Epinephelus, Plectropomus,

dan

Variola

) berhasil diperoleh dan dipelajari

hubungan kekerabatannya dalam penelitian ini. Beberapa sekuen juga telah

didepositkan ke GenBank. Sebuah pohon filogeni yang dibangun menggunakan

metode Neighbor-Joining (NJ) (Kimura 2-parameter) berhasil diperoleh

berdasarkan runutan parsial gen CO1 dengan menggunakan

Haemulon scuderii

sebagai outgroup. Kemunculan

Anyperodon

dalam kelompok

Epinephelus

menyebabkan kelompok ini menjadi tidak monofiletik. Genus

Cephalopholis

lebih primitif dibandingkan genus

Epinephelus

.

Plectropomus

dan

Variola

(7)

identifikasi berdasarkan pola warna dan beberapa karakter morfologi tersebut

seringkali terkendala oleh adanya variasi intraspesifik serta perbedaan morfologi

yang sangat mencolok pada satu spesies yang sama antara individu yang masih

juvenil dengan individu yang telah dewasa sehingga menimbulkan kebingungan

dalam penentuan spesies kelompok ikan serranid. Berkaitan dengan hal tersebut,

salah satu contoh kasus yang diungkap dalam penelitian ini adalah penentuan

spesies dari individu yang masih juvenile pada genus

Epinephelus

(

Epinephelus

erythtrurus)

. Analisis dilakukan dengan mengombinasikan identifikasi secara

morfologi dan secara molekuler (CO1).

Hasil penelitian ini diharapkan dapat berguna untuk dunia taksonomi dalam

memahami analisis hubungan filogenetik antara beberapa jenis kerapu Indo

Pasifik Barat di perairan Indonesia.

(8)

Copyright © 2015 Bogor Agricultural University

All rights reserved

It is prohibited to cite all or a part of this thesis without referring to and

mentioning the source. Citation only permitted for the purpose of education,

research, scientific paper, report, or critical writing only; and it does not defame

the name and honour of Bogor Agricultural University.

(9)

Thesis

As partial fulfilment of the requirements for a Master Degree in

Animal Biosciences Master Program of Graduate School of

Bogor Agricultural University

PHYLOGENETIC ANALYSIS OF SOME INDO-WEST

PACIFIC GROUPER SUBFAMILY EPINEPHELINAE

(SERRANIDAE) FROM INDONESIAN WATERS

GRADUATE SCHOOL

BOGOR AGRICULTURAL UNIVERSITY

BOGOR

2015

(10)
(11)
(12)

PREFACE

This thesis would not have been possible without the help and support of

many people. I would like to thank my committee supervisors: Dr Ir Achmad

Farajallah M.Si, my advisor, allowed me to pursue my research interests and

provided me with endless support and knowledge throughout my graduate thesis,

to Dr Irma Shita Arlyza for support and a chances how to learn become a real

researcher, and to my examiner Dr. Ir. Mohammad Mukhlis Kamal, M.Sc for a

great discussion. Thanks to many people who help me in collecting samples;

Irwan Hikmawan, Mihwan Sataral, Maulana Syafril Yusuf, Meutya Agustina, and

Vice Tantri. I am deeply indebted to Mrs. Maria Ulfah for all her help that has

been given. Also to my partner in laboratory for their kindness and sincerity; Mrs.

Tini, Mr. Adi Surahman, Sister Sianturi, Asri Febriana, Puji Utari Ardika, Novita

Anggraeni, and Esa Ayu Pratama. Thanks to all people in Zoo Corner and BSH

2013 have I regard as my second family. Lastly, I would like to thank all my

family and I am especially grateful for my parents and the loved ones, who have

always been my biggest fans and have encouraged me by all means to achieve my

success. Above all, I thank God Allah

Subhanahu Wa T

a’ala

for His almighty.

Bogor, October 2015

Yanti Ariyanti

(13)

CONTENTS

LIST OF TABLES

xi

LIST OF FIGURES

xi

LIST OF FIGURES

vi

INTRODUCTION

1

Background

1

Research objective

2

MATERIALS AND METHOD

2

Study Site and Time

2

Sample Collection

2

Morphological identification

2

DNA Extraction and PCR Reaction

2

Visualization

3

Data Analysis

4

RESULT AND DISCUSSION

4

Result

4

Discussion

6

CONCLUSION

17

LIST OF REFERENCES

17

APPENDICES

20

(14)

LIST OF TABLES

1

Sampling location and GenBank Accession number of species

grouper in this study

3

2

Average nucleotide frequencies of CO1 sequences in present study

4

3

Maximum Likelihood Estimate of Substitution Matrix

5

4

Mean percentage group distance (Kimura 2-parameter)

5

5

Genetic distance of CO1 sequences in present study

9

6

Morphometric comparison of the

E. erythrurus

specimens in

the present study with those in the literature

13

7

Genetic distance of CO1 sequences from Indonesian

E. erythrurus

and reference sequences from GenBank

14

8

DNA Sequences details of

Epinephelus erythrurus

in GenBank

file version

16

LIST OF FIGURES

1 Schematic structure of

E. erythrurus

(107 mm standard length)

6

2 Neighbour-joining tree based on the CO1 nucleotide sequences of the

grouper specimens analysed in the present work and of species from

GenBank.

7

3 Representative illustration congruence between tree topological and shape

types of generas

4 Neighbour-joining tree based on the CO1 nucleotide sequences

8

of the

E. erythrurus

specimens analysed in the present work and of

species from GenBank (without Thai

E. erythrurus

)

15

5 Neighbour-joining tree based on the CO1 nucleotide sequences of the

E. erythrurus

specimens analysed in the present work and of species

from GenBank (with Thai

E. erythrurus

)

15

APPENDICES

1

Juveniles of

E. erythrurus

photograph at present study

20

2

Type shapes of 5 genera sub family Epinephelinae at present study based

on Heemstra and Randall 1993

21

3

List of GenBank Accession number for references sequences in the present

study

22

(15)

1

INTRODUCTION

Background

The Serranid subfamily Epinephelinae comprises about 159 species of marine

fishes in 15 genera, commonly known as groupers, rockcods, hinds, and seabasses

(Heemstra and Randall 1993). Various fishes of this family are known as Kerapu

or Belong in Bahasa (Burhanudin

et al

. 1980). Serranidae are demersal fish that

occupies coral reefs and rocky substrates. Most members of Serranidae inhabit sea

water, while others inhabit freshwater in tropical and temperate regions in around

the world (Craig and Hastings 2007).

Indonesia has a vast water areas with coral reefs, so that there are potentially

groupers (Syaifudin

et al.

2007). According to Allen (2000), Indonesia has

become the leading country for endemism and also boast the highest overall

species diversity including subfamily Epinephelinae. The Indo-Pacific region has

the most diverse types of grouper than the other areas such as Western Atlantic,

Eastern Atlantic, and Eastern Pacific. Therefore, it is becoming interesting to

understanding genetic relationship of groupers in this region particularly in

Indonesian water.

Recently, the reef fishes of the family Serranidae especially subfamily

Epinephelinae still continues studied, however, the classification and their

evolutionary relationship is often constrained by the incredible number of species,

wide distribution, and lack of morphological characters

that it’s used in

classification. Phenotypic identification of the grouper commonly based on color

pattern and some morphological characters. The colour pattern is usually

distinctive enough to identify large adult groupers at the species level, but

intra-specific variations in colour pattern exist for each species (

Heemstra and Randall

1993;

Govindaraju and Jayasankar 2004). In many cases, fishes, and especially

their diverse developmental stages, are difficult to identify using morphological

characters (Teletchea 2009). Furthermore, difficulties in reconstructing the

evolutionary relationship among grouper species is due to their homogeneous

morphology (Smith 1971).

In this present work, we have used cytochrome oxidase c subunit 1 (CO1)

gene as a molekular marker in order to investigate the molecular relationship

among some West Indo-Pacific grouper. A partial sequence of the mitochondrial

cytochrome oxidase c subunit 1 (CO1) gene is commonly used as a barcode with a

size of about 650 bp, has been used in several animal taxa such as insects, birds,

and fish (Hebert

et al

. 2007). CO1 gene has been used in rapid analyses for

commercial purposes, especially for the confirmation of fish species (Ward

et al

.

2005; Barber and Boyce 2006; Wong and Hanner 2008; Sachithanandam

et al

.

2012).

(16)

2

juvenile individual of

Epinephelus

genus (

Epinephelus erythrurus

) by combining

morphological identification and molecular based analysis (CO1).

Research objective

This study aimed to analyse the molecular characteristics of grouper species

(subfamily Epinephelinae) collected from several major islands in Indonesia and

to understanding phylogenetic relationship analyses among some Indo

West-Pacific grouper in Indonesian waters by mean of phylogenetic tree construction

through the use of partial CO1 gene segment.

MATERIALS AND METHOD

Study Site and Time

The research was conducted in April 2014 - April 2015 in the Laboratory of

Molecular, Research Center for Oceanography, Indonesian Institute of Sciences

(LIPI-P2O)

and the Laboratory of Animal Function and Behaviour, Departement of

Biology.

Sample Collection

Several collection samples of fishes is belonging to Dr. Achmad Farajallah

and Dr. Irma Shita Arlyza (LIPI, Oceanography). The specimens were collected

from 2013-2015 were obtained from various sources including fishing rod,

seafood market, and marine fishery station in several sampling point as follow

Aceh (Sumatera), Luwuk (Sulawesi), Kupang (East Nusa Tenggara), Pangandaran

(West Java), Raja Ampat (Papua), Sinjai, and Selayar Island (South Sulawesi)

(Table 1). All samples for molecular analysis were stored in 95% alcohol. Tissue

samples were used as the source of DNA is part of the dorsal muscle, gill and fins

tissue.

Morphological identification

Phenotypic characterization was conducted using the FAO species catalogue

of groupers of the world. The length and the morphometric parameters (body

shape, colour and the rays of the dorsal fins etc.) was measured and counted by

the calliper,

lup, and counter.

DNA Extraction and PCR Reaction

Total DNA was extracted from ethanol preserved muscle using DNA

Extraction Kit for animal tissue (Qiagen and Geneaid) by following the

manufacturer's protocol.

Approximately 648 bp were amplified from the 5′ region

of the COI gene using combinations of the fish-specific primers FishF1

(5’

-TCAACCAACCACAAAGACATTGGCAC-

3’)

and

FishR1

(5’

-TAGACTTCTGGGTGGCCAAAGAATCA-

3’) described in

Ward

et al

. (2005)

and pair of AF28

2 (5’

-TCTACCAACCACAAAGACATCGG-

3’) and AF283

(5’

TACTTCTGGGTGTCCRAAGAATCA-

3’) with some modification from

Ivanova (2007, FishBol). The 25

μL PCR mixes included 18.75 μL of nuclease

free water, 2.25

μL of 10× PCR buffer, 1.25 μL of MgCl

2

, 0.25 μL of each primer

(17)

3

Visualization

Separation of the products was performed using two methods. Amplicon was

performed using 1 % agarose gel that run at a voltage of 100 volts for 30 minutes.

Then proceed with Ethidium Bromide and visualized under Ultra Violet light.

While separation of the products using 6% polyacrilamide gel was run at a voltage

of 200 V for 40 min. Visualization was facilitated by silver staining (Byun

et al

.

Table 1 Sampling location and GenBank Accession number of species grouper in this study

Species

Code of

Speciment

Collection site

GenBank Accession

number

Anyperodon

Anyperodon leucogrammicus

RJ3

Raja Ampat

Epinephelus

E. coeruleopunctatus

RJ1

Raja Ampat

E. coioides

K1

Pangandaran

KP998435

K2

Pangandaran

KP998436

K3

Pangandaran

KP998437

K4

Pangandaran

KP998438

K5

Pangandaran

KP998439

K6

Pangandaran

KP998440

RJ4

Raja Ampat

E. epistictus

KA2

Banda Aceh

E. erythrurus

K7

Pangandaran

KP998441

K8

Pangandaran

KP998442

K9

Pangandaran

K10

Pangandaran

E. fasciatus

RJ6

Raja Ampat

E. melanostigma

RJ7

Raja Ampat

E. ongus

RJ5

Raja Ampat

E. quoyanus

RJ9

Raja Ampat

Cephalopholis

Cephalopholis miniata

RJ11

Raja Ampat

Cephalopholis urodeta

IA23

Sinjai

IA24

Sinjai

IA25

Selayar Island

Plectropomus

Plectropomus leopardus

KL3

Luwuk (Sulawesi)

KP998444

Variola

Variola albimarginata

KL1

Luwuk (Sulawesi)

KK2

Kupang (NTT)

KP998443

(18)

4

2009). (Kimura 1980), including genetic distance calculations and

neighbour-joining (NJ) analysis.

Data Analysis

All amplicons were sequenced commercially following the m

anufacturer’s

protocol. The DNA

sequences were proofread, aligned and edited using MEGA6

(Tamura

et al

. 2013) and BioEdit

(Hall 1999). A Kimura 2-parameter metric was

employed for sequence comparisons (Kimura 1980), including genetic distance

calculations and to generate neighbour-joining trees based on the CO1

region,

with node frequencies calculated based on 1000 bootstrap replicates.

RESULT AND DISCUSSION

Result

We obtained 5 genera and 14 species of some Indo West-Pacific grouper from

several places in Indonesia. Cytochrome oxidase subunit 1 (CO1) were partially

sequenced at least 1 specimens for each species. To form the analysis matrix, the

resulting data were combined with the 14 homologous sequences of the grouper

species downloaded from the

GenBank. A total of 47 taxa were used for the

analysis of which 26 amplified and sequenced in this study, while the rest

(including outgroup) are reference sequence acquired from GenBank database.

Sequence characters

The partial CO1 sequences was 520 base pairs (bp) which translated to 173

amino acids with 200 variable sites, and 182 parsimony informative sites. The

frequencies of mean base composition of all codon was 31.4%, 27.2%, 25.1% and

16.3% for thymine, cytosine, arginine, and guanine, respectively. The content of

A+T (56.5%) was higher than that of C+G (43.5%). The three codon position

differed greatly in their base composition. The nucleotides frequencies of base

composition were almost similar for C, A, and G at the first codon positions,

while T was 18%. At the second position T was 43% and at third G was 6.9%. An

anti-guanine bias was observed for the second (G=12.7%) and third codon

(G=6.9%), it exihibited a strong bias anti-G (Table 2). The estimated

transition/tranversion bias (R) was 3.23 (Kimura 2-parameter), which showed that

transition was obviously more than tranversion (Table 3).

Table 2 Average nucleotide frequencies of CO1 sequences in present study

Base content of CO1 (%)

1

st

2

nd

3

rd

T

C

A

G

T

C

A

G

T

C

A

G

(19)

5

Phylogenetic relationship

Except the outgroup, the mean percentage divergence among those 5 genera

was 16.3%. The mean percentage group distance between

Epinephelus

and

Anyperodon

was 13.5% as the lowest, while between

Cephalopholis

and

Plectropomus

was 24% as the highest (Table 4). The minimum pairwise

nucleotide divergence value in CO1 among all taxa was 0.081 between

E.

erythrurus

and

E. coeruleopunctatus,

while the maximum pairwise nucleotide

divergence value was 0.262 between

Epinephelus ongus

and

Variola louti

(Table

5).

Based on the partial Cytochorome oxidase subunit 1 and using

Haemulon

scuderii

as outgroup, a molecular phylogenetic tree was constructed by

Neighbor-Joining (NJ) method (Kimura 2-parameter). The values of bootsrap confidence

level of nodes were indicated above the branch. Fig. 2 shows that all GenBank

sequences and sequences of subfamily Epinephelinae acquired in this study. NJ

tree clearly exhibited 4 separate groups. The representative illustration congruence

between tree topological and shape types of generas are shown in Fig. 3.

Based on molecular data that the minimum pairwise nucleotide divergence

value in CO1 among all taxa was 0.08 between

E. erythrurus

and

E.

coeruleopunctatus.

According to Noitokr

et al

. (2013), the top ten homologous

analysis results (BLAST) showed that the sequences of

E. erythrurus

were highly

similar to those of

E. coeruleopunctatus

. The other distinctive genus which

comprises two very similar species

V. albimarginata

and

V. louti

has pairwise

nucleotide divergence ranged from 0.09-0.10. Whereas pairwise nucleotide

divergence between

C. urodeta

and

C. miniata

ranged is 0.09.

Epinephelus

cluster

Table 4 Mean percentage group distance (Kimura 2-parameter)

Genera

Mean percentage of group distance (%)

1

2

3

4

5

1.

Epinephelus

-

2.

Anyperodon

13.5

3.

Cephalopholis

18.5

19.1

4.

Variola

21.9

22.1

21.7

5.

Plectropomus

19.9

20.1

24.0

21.6

-

Table 3 Maximum Likelihood Estimate of Substitution Matrix

Original

nucleotide

A

T/U

C

G

A

-

2.96

2.96

19.09

T/U

2.96

-

19.09

2.96

C

2.96

19.09

-

2.96

G

19.09

2.96

2.96

-

(20)

6

become not monophyletic because appearance of the

Anyperodon

within the

group.

Plectropomus

and

Variola

stand on the other clade basal position and it is

seem like the primitive group among the subfamily Epinephelinae in this study.

Morphological and molecular based analysis (CO1) identification to confirm

juveniles of Epinephelus erythrurus

Diagnostic features.

Morphometric comparisons of

E. erythrurus

with the existing literature are

shown in Table 6, while the Fig. 1 shows schematic structure of

E. erythrurus

.

Specimen voucher K7_PND has a body depth 2.74 times in the standard length

(SL) and a head length of 2.37 in SL, with SL and total length of 107 mm and of

135 mm, respectively. Specimen voucher K8_PND has a body depth of 2.58 in SL

and a head of length 2.33 in SL, with SL and of 93 mm and 125 mm, respectively.

Both specimens have dorsal fins with XI spines and 16 rays, anal fins with III

spines and 8 rays, pectoral fins with 19 rays, rounded caudal fins and a dark gray

body.

CO1-based analysis.

The two

E. erythrurus

DNA sequences were submitted individually to

GenBank under accession numbers KP998441 for the K7_PND specimen voucher

and KP998442 for the K8_PND specimen voucher (Table 8). Of the 640

651-bp

basic taxonomic sequence length, we were able to obtain 548 bp.

Discussion

Based on sequence character analysis of the CO1 demonstrate that there is

transition and transversion (Table 2). An anti-guanine bias was observed for the

second (G=12.7%) and third codon (G=6.9%) position commonly observed in

fishes (Cantatore

et al

. 1994). As Magio

et al

. (2005) stated that the presence of

compositional bias in every case causes the transition/transversion ratios to vary

for different positions within the codons due to differences in selection pressure,

the third codon position is more likely to be silent than the first and second.

Epinephelinae sequence analysis showed values and characteristic which similar

to data reported on other fishes (Cantatore

et al

. 1994; Ward

et al

. 2005).

Figure 1 Schematic structure of

E. erythrurus

(107 mm standard length)

Caudal fin well

rounded

Anal fin with III spines and 8 rays Pelvic fins not reaching

anus

(21)

7

(Photo credits: A. Farajallah, IS. Arlyza, M. Agustina, MS. Yusuf, Y. Ariyanti)

Figure 2 Neighbour-joining tree based on the CO1 nucleotide sequences of the grouper

specimens analysed in the present work and some sequences from GenBank. The

numbers at the nodes indicate bootstrap values for 1000 replicates.

JN208608_E. erythrurus JN208612_E. erythrurus K10_E. erythrurus K9_E. erythrurus K8_E. erythrurus K7_E. erythrurus E. erythrurus JQ349961_E. coeruleopunctatus RJ1_E. coeruleopunctatus KF929848_E. coeruleopunctatus E. coeruleopunctatus RJ5_E. ongus DQ107858_E. ongus E. ongus RJ4_E. coioides NC011111_E. coioides DQ107890_E. coioides K6_E. coioides K5_E. coioides K2_E. coioides K1_E. coioides K3_E. coioides K4_E. coioides E. coioides NC012709_Anyperodon leucogrammicus RJ3_Anyperodon leucogrammicus KM077918_Anyperodon leucogrammicus A. leucogrammicus KA2_E. epistictus NC021462_E. epistictus FJ237768_E. epistictus E. epistictus RJ6_E. fasciatus EU392207_E. fasciatus E. fasciatus RJ7_E. melanostigma JQ349966_Epinephelus melanostigma E. melanostigma RJ9_E. quoyanus NC021450_E. quoyanus E. quoyanus RJ11_Cephalopholis miniata KM077909_Cephalopholis miniata NC024100_C. miniata C. miniata IA23_C. urodeta IA24_C. urodeta IA25_C. urodeta FJ583013_C. urodeta C. urodeta NC022139_Variola albimarginata KK2_Variola albimarginata KL1_Variola albimarginata V. albimarginata NC022138_Variola louti KK1_Variola louti V. louti NC008449_Plectropomus leopardus KL3_Plectropomus leopardus P. leopardus

(22)

8

Figure 3 Representative illustration congruence between tree topological and

shape types of generas

The phylogentic analysis showed the lowest mean group distance between

Epinephelus

and

Anyperodon

(Table 4). It shows in the Fig. 2 that

Anyperodon

leucogrammicus

was grouped among

Epinephelus

genera, so that the cluster

become not monophyletic. This fact confirm the paraphyletic status of the

Epinephelus

(Craig

et al.

2001; Zhu

et al

. 2008; You

et al

. 2013). Currrent

classification,

Anyperodon

is distinctive monotypic genus is probably most closely

related to

Epinephelus

, with which it shares XI dorsal-fin spines and the absence

of trisegmental ptetrygiophores, but it differs from

Epinephelus

(and all other

groupers) in its lacking teeth on the palatines.

Anyperodon

is also unique among

groupers in its elongate groupers, but none of these are as compressed as

Anyperodon

(Hemstra & Randall 1993).

The genera position between

Epinephelus

and

Cephalopholis

was also similar

with Craig

et al

(2001), using 16S gene, and then confirmed by Craig and Hasting

(2006) that support the valid genus of the

Cephalopholis

separate from

Epinephelus

.

Cephalopholis

is more primitive than genus

Epinephelus.

Cephalopholis

is one of the largest genera (besides

Mycteroperca

and

(23)

9

Table 5

Genetic distance of CO1 sequences in present study (below the diagonal), with standard error estimates (above the diagonal)

Sequence RJ1 RJ5 RJ6 RJ7 RJ9 KA2 RJ4 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 RJ3 RJ11 IA23 IA24 IA25 KK1 KK2 KL1 KL3

(24)

10

Cephalopholis

spp. has often been misidentified as

Epinephelus

spp., for

example, species of

Chepalopholis

have only IX dorsal-fin spines, and

Epinephelus acanthistius

of the Eastern Pacific

also has the same dorsal-fin

spines. According to Hemstra and Randall (1993), another useful generic

character separating both genera is the presence of 3 to 6 trisegmental

pterygiophores in the dorsal fin of

Cephalopholis

species.

In the separate clade, there was genus of

Variola

and

Plectropomus

that

occupied the basal position among all taxa. This molecular analysis concordant

with previous studies that said all genera with VIII-IX spines includes

Aetheloperca, Cephalopholis, Gracila, Paranthias, Plectropomus, Saloptia

, and

Variola

occupy basal positions in both the ML and MP analyses (Craig and

Hasting 2007; Zhu and Yue 2008). Position of

Epinephelus

is located at the top of

the phylogenetic tree indicating that is the most recently diverged species, which

is in concordant with the fact that it is also the most advanced genus in

Epinephelinae (Craig

et al

. 2001; Craig and Hasting 2006, Ding

et al

. 2006).

E.

erythrurus

and

E. coeruleopunctatus

has the lowest value in pairwise nucleotide

divergence (0.079) among all taxa. According to Noitokr

et al

. (2013), the top ten

homologous alignment results in GenBank showed that the sequences of

E.

erythrurus

were highly similar to those of

E. coeruleopunctatus

.

The

E. erythrurus

-

E. coeruleopunctatus

group has

E. ongus

as its sister taxa in

the CO1 tree.

E. quoyanus

is basal to the other species representing a sister taxa.

E. quoyanus

is one of 9 shallow-water coral reef species that have a rounded

caudal fin and close-set dark brown spots with the pale interspaces forming a

network on the body. This reticulated groupers have been much confused in the

literature, and many museum specimen have been misidentified with the other

species such as

E. bilobatus, E. faveatus, E. hexagonatus, E. macrospilos, E.

maculatus, E. melanostigma, E. merra, and E. spilotoceps

(Hemstra and Randall

1993). The representative illustration congruence between tree topological and

shape types of generas are shown in Fig. 3. The shape of grouper illustrated in Fig.

3 which is shows 5 shape types representation to recognize each generas. There

are 5 symbols to illustrate the shape types of grouper:

=

Epinephelus

=

Anyperodon

=

Cephalopholis

=

Variola

= Plectropomus

(25)

11

Fujian provinces of China (You

et al

. 2013). Whereas,

E. epistictus

(dotted

grouper) and

E. fasciatus

(black tip grouper) is known from continental localities

in the tropical Indo-West Pacific region.

E. epistictus

probably of some

commercial importance fish, while the

E. fasciatus

is abundance in shallow water.

Morphological and molecular based analysis (CO1) identification to confirm

juveniles of Epinephelus erythrurus

Based on the criteria shown in Table 6, both of our specimens diagnosed as

juvenile

E. erythrurus

. According to Carpenter and Niem (1999), that the female

species become mature at 15 cm of the SL. Also, the adult colour pattern of this

species is usually irregular pale spots and blotches that join randomly to form an

irregular dark reticulum of the background colour. Some specimens, especially

larger ones, are nearly uniform brown or have pale blotches on the body that are

only faintly visible (Randall and Heemstra 1993)

.

According to Noitokr

et al

. (2013), the top ten homologous analysis results

(BLAST) showed that the sequences of

E. erythrurus

were highly similar to those

of

E. coeruleopunctatus

. In the current classification an adult of

E.

coeruleopunctatus

has XI dorsal spines and 15 to 17 rays, the third or fourth spine

longest, its length contained 2.7 to 3.6 times in head length; anal fin with III

spines and 8 rays; pectoral fins large and fleshy, with 17-19 rays; caudal fin

rounded. The colour is brownish grey, the body covered with small pale spots

overlain with large pale blotches; oblique black saddle on rear half of peduncle; 4

to 5 indistinct black blotches at baseof dorsal fin, prominent black streak on

maxillary groove. While juveniles (less than 20 cm standard length) dark grey to

black, covered with prominent pupil-size white spots and smaller white dots

(Randall and Heemstra 1993)

.

BLAST searches using the two sequences indicated only nine sequences of

E.

erythrurus

from Thailand and Malaysia in GenBank with the query coverage was

91% and the maximum identity was 99

100% with existing

E. erythrurus

sequences in GenBank

.

So that, we used those of nine sequences as the references

to construct phylogenetic tree and to understand genetic distances.

Based on the partial CO1 sequences, a molecular phylogenetic tree was

constructed using the neighbour-joining method (Kimura 2-parameter). The

bootstrap confidence values of the nodes are indicated above each branch.

Interestingly, Thai

E. erythrurus

had the smallest number of nucleotides (420 bp).

We constructed two phylogenetic trees, with and without the Thai

E. erythrurus

sequences (Figures 4 and 5). Intra- and inter-specific genetic distances are shown

in Table 7.

Figure 4 show a phylogenetic tree without the Thai

E. erythrurus

sequence.

The two sequences in the present study were grouped with similar Malaysian

E.

erythrurus

sequences. Some

E. coeruleopunctatus

sequences formed a sister

group with

E. erythrurus

, while the other sequences formed a separate clade.

Furthermore, the intra-specific genetic distance of

E. erythrurus

ranged from 0.00

to 0.02 with the same species from other countries, while the inter-specific genetic

distance between

E. erythrurus

and

E. coeruleopunctatus

ranged from 0.01 to

0.07. However, the phylogenetic tree with the first barcode for Thai

E. erythrurus

(26)

12

some

E. coeruleopunctatus

from the other separated clades of

E. erythrurus

and

E.

coeruleopunctatus.

It was suggested that

E. erythrurus

and

E. coeruleopunctatus

are not monophyletic.

The genetic distance between pairs of Indonesian

E. erythrurus

and Thai

E.

erythrurus

ranged from 0.066 to 0.068 (Table 7), suggesting two main genotypes

of this species. Based on the two phylogenetic trees, both of our samples were

grouped with the Indonesian and Malaysian

E. erythrurus

that possessed a

genotype different from the Thai

E. erythrurus

.

E. erythrurus

is a fish of minor commercial importance (Heemstra and

Randall 1993) that is often caught with other grouper species. The species is found

in Pakistan, India, Laccadive Island, Sri Lanka, the Gulf of Thailand, Indonesia,

Singapore, Borneo and the Malaysian Peninsula (Heemstra and Randall 1993;

Carpenter and Niem 1999; Allen

et al

. 2003). Based on the FishBase database,

E.

erythrurus

was recorded in Indonesia from Sulawesi to Java. In museums, we

identified RMNH 13525 (Java, Batavia), RMNH 13524 (Surabaya market), SU

61470 (Sangi Island), FMNH 22515-17 (Borneo, Kalimantan, Balikpapan

Harbour), AMS I.19355-039 (Sabah, Sandakan Island), USNM 183241 (North

Borneo) and FMNH 51717. In 2003, Allen and Adrim stated that the distribution

of the species in Indonesia stretched from Sulawesi to Sumatra, and specimens

were stored in the Western Australia Museum. In Thailand, these species was

recorded in a preliminary checklist of coral reef fishes of the Gulf of Thailand

(Satapoomin 2000). Hegde

et al

. (2013) reported that these species included in the

list of the new record along with their habitats from Goa, West coast of India.

Sluka (2013) also stated that

E. erythrurus

was recorded in the three locations

in nearshore rocky or corral habitats of western India, further that report about

these species can be used as an opportunity to remedy it is Data Deficient (DD)

status in IUCN Red List.

The samples in the present study originated from Bojongsalawe Beach

(7

o

43’8.31”S 108

o

30’11.59”E)

in the Pangandaran district of West Java,

Indonesia. The shoreline of Bojongsalawe Beach directly faces the Indian Ocean.

Due to a lack of data, the species has not yet been assessed for the IUCN Red List

and also is not included in the Catalogue of Life. Another important result from

this research is that the barcode sequence for Indonesian

E. erythrurus

, which was

previously absent from GenBank, is presented here for the first time.

(27)

13

Table 6 Morphometric comparison of the E. erythrurus specimens in the present study with those in the literature

Morphometric characters E. erythrurus (KP998441 [K7_PND]) (Present study) E. erythrurus (KP998442 [K8_PND]) (Present study) E. erythrurus

(Hemstra & Randall 1993)

E. erythrurus

(Carpenter & Niem 1998)

E. erythrurus

(Allen et al. 2003)

Body depth 2.74 times in SL 2.58 times in SL 2.8-3.2 times in SL Standard length 107 mm 93 mm 110-280 mm

Total length 135 mm 125 mm - 430 mm To 430 mm

Head length 2.37 times in SL 2.33 times in SL 2.4-2.7 times in SL

Dorsal fin XI XI XI

Dorsal rays 16 16 15 or 17

Anal spines III III III

Anal rays 8 8 8

Caudal fin Rounded Rounded Rounded

Pectoral fins 19 19 17 - 19

Lateral scales series 97 92 92 - 107

Colour Dark gray Dark gray Olive to reddish brown, usually with irregular pale spots and blotches that join randomly to form an irregular dark reticulum of the background colour. Some specimens, especially the larger ones, nearly uniform brown or with the pale blotches on body only faintly visible

Dark gray with irregular pale spots and randomly joined to form maze-like pattern

Geographical distribution Bojongsalawe beach - Pangandaran district, Indonesia

Pakistan, India, Laccadive Island, Sri Lanka, Gulf of Thailand, Indonesia, Singapore, and Borneo

Pakistan, India, Laccadive Is. Sri Lanka, Gulf of Thailand, Indonesia, and Singapore

Pakistan, Laccadive Is. off India to Malaysian Peninsula and W. Indonesia

Habitat Harbours and estuaries with muddy or

silty-sand bottoms

In harbours and estuaries with muddy or silty-sand bottoms

Solitary, turbid harbours and estuaries with mudy or silty-sand bottoms

Depth 1-20

(28)

14

Table 7 Genetic distance of CO1 sequences from Indonesian E. erythrurus and reference sequences from GenBank (below the diagonal),

with standard error estimates (above the diagonal)

Accession number K P 9 9 8 4 4 1 K P 9 9 8 4 4 2 JN 2 0 8 6 1 3 JN 2 0 8 6 1 2 JN 2 0 8 6 0 9 JN 2 0 8 6 1 1 JN 2 0 8 6 1 4 JN 2 0 8 6 0 8 JN 2 0 8 6 0 7 JN 2 0 8 6 1 0 JQ 2 6 8 5 7 6 JQ 3 4 9 9 6 1 JQ 3 4 9 9 6 2 JX 6 7 4 9 9 2 JX 6 7 4 9 9 3 JX 6 7 4 9 9 0 JX 6 7 4 9 9 1 K F 9 2 9 8 4 8 JF 4 9 3 4 3 8 JX 0 9 3 9 0 8

KP998441 E. erythrurus (Indonesia) 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

KP998442 E. erythrurus (Indonesia) 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 JN208613 E. erythrurus (Malaysia) 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

JN208612 E. erythrurus (Malaysia) 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 JN208609 E. erythrurus (Malaysia) 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

JN208611 E. erythrurus (Malaysia) 0.01 0.01 0.02 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 JN208614 E. erythrurus (Malaysia) 0.01 0.01 0.02 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

JN208608 E. erythrurus (Malaysia) 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 JN208607 E. erythrurus (Malaysia) 0.00 0.01 0.00 0.00 0.01 0.02 0.02 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

JN208610 E. erythrurus (Malaysia) 0.00 0.01 0.00 0.00 0.01 0.02 0.02 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 JQ268576 E. erythrurus (Thailand) 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01

JQ349961 E. coeruleopunctatus 0.07 0.07 0.08 0.07 0.07 0.07 0.07 0.07 0.08 0.08 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 JQ349962 E. coeruleopunctatus 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.06 0.07 0.07 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01

JX674992 E. coeruleopunctatus 0.02 0.02 0.03 0.02 0.01 0.01 0.01 0.02 0.03 0.03 0.05 0.06 0.05 0.00 0.00 0.00 0.01 0.01 0.01 JX674993 E. coeruleopunctatus 0.02 0.02 0.03 0.02 0.01 0.01 0.01 0.02 0.03 0.03 0.05 0.06 0.05 0.00 0.00 0.00 0.01 0.01 0.01

JX674990 E. coeruleopunctatus 0.02 0.02 0.03 0.02 0.01 0.01 0.01 0.02 0.03 0.03 0.05 0.06 0.05 0.00 0.00 0.00 0.01 0.01 0.01 JX674991 E. coeruleopunctatus 0.02 0.02 0.03 0.02 0.01 0.01 0.01 0.02 0.03 0.03 0.05 0.06 0.05 0.00 0.00 0.00 0.01 0.01 0.01

KF929848 E. coeruleopunctatus 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.06 0.07 0.07 0.01 0.02 0.01 0.05 0.05 0.05 0.05 0.00 0.01 JF493438 E. coeruleopunctatus 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.01 0.01 0.00 0.05 0.05 0.05 0.05 0.01 0.01

(29)

15

Figure 4 Neighbour-joining tree based on the CO1 nucleotide sequences of

the

E. erythrurus

specimens analysed in the present work and of species from

GenBank (without Thai

E. erythrurus

). The numbers at the nodes indicate

bootstrap values for 1000 replicates.

Figure 5 Neighbour-joining tree based on the CO1 nucleotide sequences of

E. erythrurus

specimens analysed in the present work and of species fr

(30)
[image:30.595.44.800.95.501.2]

16

Table 8 DNA Sequences details of Epinephelus erythrurus in GenBank file version

Definition Locus

K7_PND

Epinephelus erythrurus

CO1 gene CDS

K8_PND

Epinephelus erythrurus

CO1 gene CDS

Accession Number

KP998441

KP998442

Submitted Date

VRT 20-Mar-2015

VRT 20-Mar-2015

Classification

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

Actinopterygii; Neopterygii; Teleostei; Euteleostei; Neoteleostei;

Acanthomorpha; Eupercaria; Perciformes; Serranoidei; Serranidae;

Epinephelinae; Epinephelini; Epinephelus

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;

Euteleostomi; Actinopterygii; Neopterygii; Teleostei;

Euteleostei; Neoteleostei; Acanthomorpha; Eupercaria;

Perciformes; Serranoidei; Serranidae;

Epinephelinae; Epinephelini; Epinephelus

(31)

17

CONCLUSION

The 26 sequences belonging to 5 genera and 14 grouper species were obtained

and studied herein. DNA analysis based on partial mitochondrial CO1 gene

sequencing successfully identified and confirmed

E. erythrurus

juveniles; these

DNA sequences have been submitted individually to GenBank. Partial sequencing

of the mitochondrial CO1 gene may be used in rapid analyses for commercial

species purposes, especially species identification at various developmental

stages.

For further work we hope to include more specimens per species to reveal any

hidden polyphyletic taxa. Moreover, we propose more species sampling and

molecular genetic analyses to be done on Indonesian grouper, as it will greatly

improve our understanding of the species relationship.

LIST OF REFERENCES

Allen GR, Burhanuddin. 1976.

Anthias hutomoi

, a new species of Serranidae fish

from Indonesia (Perciformes, Serranidae).

Mar Res Indones.

16: 45-50.

Allen GR, Steene R, Humann P, DeLoach N. 2003. Reef fish identification

Tropical Pacific. Singapore (SG): Star Standard Industries Pte Ltd.

Baldwin C.C, Johnson G.D. 1993. Phylogeny of Epinephelinae (Teleostei:

Serranidae).

Bull Mar Sci.

52(1): 240-283.

Barber P, Boyce SL. 2006. Estimating diversity of Indo-Pacific coral reef

stomatopods through DNA barcoding of stomatopod larvae.

Proc R Soc

Lond B

. 273: 2053-2061.

Burhanudin S, Martosewojo, Djamali A.1980. Ikan- ikan demersal di perairan

Teluk Jakarta. Di dalam: Nontji A dan Djamali A, editor. Teluk Jakarta:

Pengkajian Fisika, Kimia, Biologi dan Geologi Tahun 1975-1979. Jakarta

(ID): Lembaga Oseanologi Nasional. LIPI. 337-360.

Byun SO, Fang Q, Zhou H, Hickford JGH. 2009. An effective method for silver

staining DNA in large numbers of polyacrylamide gels.

Anal Biochem.

385:

174-175.

Cantatore P, Roberti M, Pesole G, Ludovico A, Milella F, Gadaletal MN, Saccone

C. 1994. Evolutionary analysis of cytochrome b sequences in some

perciformes: Evidence for a slower rate of evolution than in mammals

. J

Mol Evol

. 39 (6): 589-597.

Carpenter KE, Niem VH. 1999. FAO Species identification guide for fishery

purposes: The Living marine resources of the Western Central Pacific.

Volume 4 Bony fishes part 2 (Mugillidae to Carangidae). Rome (IT): FAO

of the United Nations.

Craig MT, Pondella DJ, Franck JPC, Hafner JC. 2001. On the Status of the

Serranid Fish Genus

Epinephelus

: Evidence for paraphyly Based upon 16S

rDNA sequence.

Mol Phyl Evol.

19: 121-130.

Craig MT, Hastings PA. 2007. Molecular phylogeny of the groupers of the

subfamily Epinephelinae (Serranidae) with a revised classification of the

Epinephelini.

Ichthyol Res

. 54: 1-17.

(32)

18

based on 16S rDNA fragment sequences.

Acta Zoologi Sinica

.52 (3):

504-513.

Govindaraju GS, Jayasankar P. 2004. Taxonomic relationship among seven

species of groupers (genus

Epinephelus

; family Serranidae) as revealed by

RAPD fingerprinting.

Mar Biotechnol.

6: 229-237.

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010.

New algorithms and methods to estimate Maximum-Likelihood

Phylogenies: Assessing the performance of PhyML 3.0.

Sys Biol

. 59

(3):307-21.

Hall TA. 1999. Bioedit: a user-friendly biological sequence alignment editor and

analysis program for Windows 95/98/NT.

Nucl Acids Symp Ser.

4: 95-98.

Hebert PDN, Ratnasingham S, De Waard JR. 2003. Barcoding animal life:

cytochrome c oxidase subunit 1 divergences among closely related species.

Proc R Soc

Lond

B.

270: 96

99.

Heemstra PC, Randall JE. 1993. FAO species catalogue: An annotated and

illustrated catalogue of the grouper, rockcod, hind, coral grouper, and

lyretail species known to date. Volume 16 Groupers of the world (Family

Serranidae, subfamily Epinephelinae). Rome (IT): FAO of the United

Nations.

Hegde MR, Padate VP, Velip DT, Rivonker CU. 2013. An update inventory of

new records of coastal macrofauna along Goa, west coast of India.

Ind J

Geo Mar Sci.

42 (7): 898-902.

Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN. 2007. Universal primer

cocktails for fish DNA barcoding.

Mol Ecol Notes.

7: 544-548.

Kimura M. 1980. A simple method for estimating evolutionary rate of base

edsubstitions trough comparative studies of nucleotide sequences.

J Mol

Evol.

16: 111-120.

Maggio T, Andaloro F, Hemida F, Arculeo M. 2005. A molecular analysis of

some Eastern Atlantic grouper from the

Epinephelus

and

Mycteroperca

genus.

J Experiment Mar Biol Ecol

. 321: 83-92.

Noitkr K, Chaveerach A, Pinthong K, Tanomtong A, Sudmoon R, Tanee T. 2013.

RAPD and barcode analyses of groupers of the genus

Epinephelus

.

Gen Mol

Res

. 12 (4): 5721-5732.

Sachithanandam V, Mohan PM, Chaaithanya IK, Dhivya P, Baskara R. 2012.

DNA barcoding, phylogenetic study of

Epinephelus

spp. from Andaman

coastal region, India.

Indian J Geo Mar Sci.

41(3): 203-211.

Satapoomin U. 2000. A preliminary checklist of coral reef fishes of the Gulf of

Thailand, South China Sea.

Raffles B Zool.

48 (1): 31-53.

Sluka RD. 2013. Coastal marine fish biodiversity along the Western coast of

India.

J Threat Taxa

5

(1): 3574-3579.

Smith CL. 1971. A revision of the American groupers:

Epinephelus

and allied

genera.

Bull Am Mus Nat Hist

. 146: 67-241.

Syafiudin M, Aliah RS, Muslim, Sumantadinata K. 2007. Keterkaitan jumlah

induk terhadap frekuensi pemijahan dan produksi telur ikan kerapu tikus

(

Cromileptes altivelis

).

J Akuakul Indones

. 6(2): 191-196.

(33)

19

Teletchea F. 2009. Molecular identification methods of fish species: reassessment

and possible applications.

Rev Fish Biol Fisheries.

19: 265-293.

Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PD. 2005. DNA Barcoding of

Australia’s fish species.

Phil Trans

R Soc B.

360: 1847-1857.

Wong EHK, Hanner RH. 2008. DNA barcoding detect market substitution in

North American seafood.

Food Res Int.

41: 828-837.

You X, Shu L, Li S, Chen j, Lou J, Lu J, Mu Q, Bai J, Xia Q, Chen Q

et al.

2013.

Construction of high-density genetic linkage maps for orange-spotted

grouper

Epinephelus coioides

using multiplex shotgun genotyping.

BMC

Genetics.

14: 113.

Zhu S, Yang Y, Zheng W, Shen X, Zou J. 2008. Molecular phylogenetic

relationship of

Epinephelus

base on sequences of mtDNA Cyt b.

Front Biol

China

. 3 (2): 207-212.

Zhu ZY, Yue GH. 2008. The complete mitochondrial genome of red grouper

(34)

20

APPENDICES

Appendix 1 Juveniles of

E. erythrurus

photograph

at present study

E. erythrurus

K8_PND (93 mm standard length)

(35)

21

Appendix 2 Type shapes of 5 genera sub family Epinephelinae at present study

based on Heemstra and Randall 1993

Fig 1

Anyperodon

Fig 2

Cephalopholis

Fig 3

Epinephelus

Fig 4

Plectropomus

[image:35.595.34.551.107.761.2]
(36)

22

Appendix 3 List of GenBank Accession number as references sequences in this

study

No

Species

GenBank Accession number

1

Anyperodon leucogrammicus

NC012709

KM077918

2

E. coeruleopunctatus

JQ349961

KF929848

3

E. coioides

NC011111

DQ107890

NC012709

KM077918

4

E. epistictus

NC021462

FJ237768

5

E. eryhtrurus

JN208608

JN208612

6

E. fasciatus

EU392207

7

E. melanostigma

JQ349966

8

E. ongus

DQ107858

NC012709

9

E. quoyanus

NC021450

10

C. miniata

KM077909

NC024100

11

C. urodeta

FJ583013

12

Plectropomus leopardus

NC008449

13

Variola albimarginata

NC022139

14

Variola louti

NC022138

(37)

23

Appendix 4 Alignment of partial CO1 gene sequences in the present study and homologous sequences from GenBank

(38)

24

FJ237768_E.epistictus ..A ..C ... ..A ..A ... ..T ... ... ... ..C ..A ... ... ... ... ... ..C ... ... [ 60] DQ107858_E.ongus ..A ... ... ... ... ..T ... ... ... ... ... ..A ... ... ..C ... ..C ... ... ... [ 60] JQ349966_Epinephelus_melanostigma ..A ..C ..G ..C ... ... C.. ... TAT ... ..C ..A ... ... ... ... ... ... ..C ... [ 60] NC021450_E._quoyanus ..A ... T.G ..C ... ..T ..T ... ... ... ... ..A ... ..C ... ..G ... ..G ... ... [ 60] NC011111_E.coioides ..A ... ... ..A ... ... ... ... ... ... ... ..A ... ... ... ... ... ... ... ... [ 60] DQ107890_E.coioides ..A ... ... ..A ... ... ... ... ... ... ... ..A ... ... ... ... ... ... ... ... [ 60] JN208608_E.erythrurus ... ... ... ..A ..T ... ..T ... ... ... ... ..A ... ... ... ... ..C ... ... ... [ 60] JN208612_E.erythrurus ... ... ... ..A ..T ... ..T ... ... ... ... ..A ... ... ... ... ..C ... ... ... [ 60] JQ349961_E._coeruleopunctatus ..T ... ... ... ..T ... ... ... TA. ... ... ... ... ... ... ... ... ... ... ... [ 60] KF929848_E.coeruleopunctatus ... ... ... ... ..T ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... [ 60] KM077909_Cephalopholis_miniata ..C ... T.. ..C ... ..T ..T ..A ... ..C ... ..A ... ... ... ... ... ... ..C ... [ 60] NC024100_C._miniata ..C ... T.. ..C ... ..T ..T ..A ... ..C ... ..A ... ... ... ... ... ... ..C ... [ 60] FJ583013_C._urodeta ..T ... T.. ..C ... ..T ..T ..A ... ..C ... ..A ... ... ..G ... ... ... ..C ... [ 60] NC022138_Variola_louti ..A ... ..C T.A ... ..T ... ... ..T ..C ... ..A ..C ... ..T ..C ..C ..G ..C ..G [ 60] NC022139_Variola_albimarginata ... ... ..C T.A ... ..T ... ... ... ... ... ..A ..C ... ..T ..C ..C ..A ..C ..G [ 60] NC008449_Plectropomus_leopardus ..T ... ..T T.A ..A ... ... ..A ... ... ..C ... ... ... ..C ... ..C ..A ... ... [ 60] EU697542_Haemulon_scudderi ..C ..A ..C ..A ..G ... ... ..A ..T ... ..C ..A ... ... ..T ..G ... ..G ..C ... [ 60]

(39)

25

K10_E._erythrurus ... ... ... ... ... ... ... ... ... ... ... ... ... ..T ... ... ... ... ... ..G [120] RJ3_Anyperodon_leucogrammicus ... ... ... ... ... ... ..G ... ..T ... ... ... ... ..T ... ... ... ... ..T ... [120] RJ11_Cephalopholis_miniata ... ..T ..C ... ... ... ... ... ... ... ... ... ..G ... ... ..T ..G ... ..T ... [120] IA23_C._urodeta ... ..T ..C ... ... ... ... ... ..T ... ... ... ..G ... ... ... ... ..T ... ... [120] IA24_C._urodeta ... ..T ..C ... ... ... ... ... ..T ... ... ... ..G ... ... ... ... ..T ... ... [120] IA25_C._urodeta ... ..T ..C ... ... ... ... ... ..T ... ... ... ..G ... ... ... ... ..T ..T ... [120] KK1_Variola_louti ..G ..T ..C ... ... ... ..G ... ... ... ..C ... ..G ... ... ... ... ..T ... ..G [120] KK2_Variola_albimarginata ..G ... ..C ... ... ... ..G ... ... ... ... ..C ..G ... ... ... ... ..T ..T .AT [120] KL1_Variola_albimarginata ..G ... ..C ... ... ... ..G ... ... ... ... ..C ..G ... ... ... ... ..T ..T ..T [120] KL3_Plectropomus_leopardus ... ... ... ... ... ... ... ... ... ..A ..C ..A ... ... ... ..T ... ..T ..T ..T [120] NC012709_Anyperodon_leucogrammicus ... ... ... ... ... ... ..G ... ..T ..A ... ... ... ..T ... ... ... ... ..T ... [120] KM077918_Anyperodon_leucogrammicus ... ... ... ... ... ... ..G ... ..T ... ... ... ... ..T ... ... ... ... ..T ... [120] EU392207_E._fasciatus ... ..T ..C ... ... ... ..G ... ... ... ... ..A ... ..T ... ... ... ... ... ... [120] NC021462_E.epistictus ... ..T ..C ... ... ... ... ... ... ... ... ... ..T ..T ... ... ... ..T ... ... [120] FJ237768_E.epistictus ... ..T ..C ... ... ... ... ... ... ... ... ... ..T ..T ... ... ... ..T ... ... [120] DQ107858_E.ongus ... ... ... ... ... ... ... ... ... ... ... ... ... ..T ... ... ... ..T ... ... [120] JQ349966_Epinephelus_melanostigma .A. ..T ..C ... ... ... ..G ... ... ... ... ... ... ... ... ... ... ..T ... ..C [120] NC021450_E._quoyanus ... ..T ... ... ... ... ... ... ... ... ... ... ... ... ... ... ..G ... ..T ..T [120] NC011111_E.coioides ... ... ... ... ... ... ... ... ..T ... ... ... ... ..T ... ... ... ..T ..T ... [120] DQ107890_E.coioides ... ... ... ... ... ... ... ... ..T ... ... ... ... ..T ... ... ... ..T ..T ... [120] JN208608_E.erythrurus ... ... ... ... ... ... ... ... ... ... ... ... ... ..T ... ... ... ... ... ..G [120] JN208612_E.erythrurus ... ... ... ... ... ... ... ... ... ... ... ... ... ..T ... ... ... ... ... ..G [120] JQ349961_E._coeruleopunctatus ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... [120] KF929848_E.coeruleopunctatus ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... [120] KM077909_Cephalopholis_miniata ... ..T ..C ... ... ... ... ... ... ... ... ... ..G ... ... ..T ..G ... ..T ... [120] NC024100_C._miniata ... ..T ..C ... ... ... ... ... ..T ... ... ... ..G ... ... ... ..G ... ..T ... [120] FJ583013_C._urodeta ... ..T ..C ... ... ... ... ... ..T ... ... ... ..G ... ... ... ... ..T ..T ... [120] NC022138_Variola_louti ..G ..T ..C ... ... ... ..G ... ... ... ..C ... ..G ... ... ... ... ..T ... ..G [120] NC022139_Variola_albimarginata ..G ... ..C ... ... ... ..G ... ... ... ... ..C ..G ... ... ... ... ..T ..T ..T [120] NC008449_Plectropomus_leopardus ... ..T ..C ... ... ... ... ... ... ..A ..C ..A ... ... ... ..T ... ..T ..T ..T [120] EU697542_Haemulon_scudderi ... ..T ..C ... ... ... ..G ... ..T C.C ... ..A ..A ... ... ... ... ... G.. ..C [120]

(40)

26

(41)

27

JN208608_E.erythrurus ... ... ..T ... ..C ... ..T ..A ... ... ..T ... ... ... ..T ... ... ... ... ... [180] JN208612_E.erythrurus ... ... ..T ... ..C ... ..T ..A ... ... ..T ... ... ... ..T ... ... ... ... ... [180] JQ349961_E._coeruleopunctatus ... ... ..T ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... [180] KF929848_E.coeruleopunctatus ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... [180] KM077909_Cephalopholis_miniata T.. ... ... ..A ..C ..C ..T ..A ... ... ..T ... ..G ... ..T ... ... ... ..G ..C [180] NC024100_C._miniata ... ... ..T ..G ..C ..C ..T ..A ... ... ..T ... ... ... ..T ... ... ... ..G ..C [180] FJ583013_C._urodeta T.. ... ... ... ... ..C ..T ... ... ... ... ... ..G ... ..T ... ... ..T ... ..C [180] NC022138_Variola_louti T.G ... ..T ..C ... ..T ..T ..A ... ... ..T ... ... ..C ... ..A ... ... ..G ... [180] NC022139_Variola_albimarginata ..G ... ... ..C ... ..T ..T ..A ... ..T ..T ... ... ... ... ..A ... ... ... ... [180] NC008449_Plectropomus_leopardus ... ... ... ..C ..C ... ..T ..A ... ... ..T ... ... ..C ..T ..A ... ... ..G ... [180] EU697542_Haemulon_scudderi ... ..G ..T ..A ..G ..C ... ... ... ... ... ..G ..G ... ... ... ... ..T ... ..C [180]

(42)

28

KK1_Variola_louti ... ..T ..T ..T ... T.A ..A ..C ..T ..C ..A ... ..T ... A.G ..A ... ... ... ..A [240] KK2_Variola_albimarginata ... ..T ..T ..T ... T.A ..A ..C ..T ..C ..G ... ..C ... ... ..G ... .G. ... ... [240] KL1_Variola_albimarginata ... ..T ..T ..T ... T.A ..A ..C ..T ..C ..G ... ..C ... ... ..G ... ... ... ... [240] KL3_Plectropomus_leopardus ..A ..T ..T ..T ... ..C ..C ... ..A ..C ..A ..A ..C ..T ... ..A ... ... ..G ..A [240] NC012709_Anyperodon_leucogrammicus ..T ... ... ..T ... ..A ... ..C ..T ... ... ... ..T ... ... ..T ... ... ... ... [240] KM077918_Anyperodon_leucogrammicus ..T ... ... ..T ... ... ... ..C ..T ... ... ... ..T ... ... ... ... ... ... ... [240] EU392207_E._fasciatus ... ..A ... ..T ... ..C ... ... ... ..C ... ..C ..G ... ... ..T ..A ..C ..C ... [240] NC021462_E.epistictus ..T ... ... ..T ... ... ... ... ..T ..C ... ... ..T ..T ... ... ..A ... ... ... [240] FJ237768_E.epistictus ..T ... ... ..T ... S.. ... ... ..T ..C ... ... ..T ..T ... ... ..A ... ... ... [240] DQ107858_E.ongus ... ... ... ..T ... ... ... ... ... ... ... ... ... ... ... ... ... ..C ..C ... [240] JQ349966_Epinephelus_melanostigma ... ... ... ..T ... ... ... ... ..A ..C ... ... ... ... ... ..T ... ... ... ... [240] NC021450_E._quoyanus ... ..T ... ... ... ..A ... ... ..A ... ... ... ... ... ..G ..T ... ..C ... ... [240] NC011111_E.coioides ..T ... ... ... ... ... ... ... ..T ..C ... ... ..T ... ... ... ... ... ..C ... [240] DQ107890_E.coioides ..T ... ... ... ... ... ... ... ..T ..C ... ... ..T ... ... ... ... ... ..C ... [240] JN208608_E.erythrurus ... ... ... ... ... T.A ... ... ... ... ... ... ... ... ... ... ... ... ... ... [240] JN208612_E.erythrurus ... ... ... ... ... T.A ... ... ... ... ... ... ... ... ... ... ... ... ... ... [240] JQ349961_E._coeruleopunctatus ... ... ... ... ... ... ... ... ... ... ... ... ..G ... ... ... ... ... ... ... [240] KF929848_E.coeruleopunctatus ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... [240] KM077909_Cephalopholis_miniata ... ..T ... ... ... T.A ... ..G ..A ... ..C ... ... ... ... ... ... ... ... ... [240] NC024100_C._miniata ... ..T ... ... ... T.A ... ..G ..A ... ..C ... ..G ... ... ... ... ... ... ... [240] FJ583013_C._urodeta ... ... ... ... ... ..A ... ..G ..A ..C ..C ... ... ... ... ..T ... ... ... ... [240] NC022138_Variola_louti ... ..T ..T ..T ... T.A ..A ..C ..T ..C ..A ... ..T ... ..G ..A ... ... ... ..A [240] NC022139_Variola_albimarginata ... ..T ..T ..T ... T.A ..A ..C ..T ..C ..G ... ..C ... ... ..G ... ... ... ... [240] NC008449_Plectropomus_leopardus ..A ..T ..T ..T ... ..C ..C ... ..A ..C ..A ..A ..C ..T ... ..A ... ... ..G ..A [240] EU697542_Haemulon_scudderi ... ... ..T ..T ... ..T ..C ... ... ..C ... ..A ... ... ..G ... ..G ... ..G ... [240]

(43)

29

(44)

30

FJ583013_C._urodeta ... ... ..G ..G ... ... ..T T.. ..T ..T ... ... ... ... ... ... ..C ..C ..T ..T [300] NC022138_Variola_louti ..A ... ... ..C ... ... ... T.G ..A ... ..T T.. ..T ..C ... ... ..T ... ..T ... [300] NC022139_Variola_albimarginata ..A ... ... ..C ... ... ... ..G ..A ..T ..T ... ... ..C ... ... ..T ... ..T ... [300] NC008449_Plectropomus_leopardus ..A ... ... ... ..C ..T ..T ... ..A ... ... ... ... ... ... ... ... ..C ... ..T [300] EU697542_Haemulon_scudderi ..G ... ..T ..C ..C ..T ... T.. ..T ..T ... ... ..G ..C ..C ..A ... ..A ..T ..T [300]

(45)

31

EU392207_E._fasciatus ... ..C ... ..C ..A ... ..C T.. ... ... ..T ... ... ... ..G ..G ..T ... ..C ... [360] NC021462_E.epistictus ... ... ..T ... ..C ..G ..C T.. ..C ..A ... ..G ... ... ... ..G ... ..T ..C ... [360] FJ237768_E.epistictus ... ... ..T ... ..C ..G ..C T.. ..C ..A ... ..G ... ... ... ..G ... ..T ..C ... [360] DQ107858_E.ongus ... ..C ... ... ..A T.. ..C T.. ... ... ... ..C ... ... ... ... ... ..T ..C ... [360] JQ349966_Epinephelus_melanostigma ... ..C ... ..C ..A T.. ..C T.G ... ..T ..T ... ... ... ... ..A ... ..T ..C ... [360] NC021450_E._quoyanus ... ...

Gambar

Table 1 Sampling location and GenBank Accession number of species grouper in this study
Figure 1 Schematic structure of E. erythrurus (107 mm standard length)
Figure 2 Neighbour-joining tree based on the CO1 nucleotide sequences of the grouper
Figure 3 Representative illustration congruence between tree topological and
+7

Referensi

Dokumen terkait

Berdasarkan survey awal yang dilakukan di RSU Imelda Pekerja Indonesia Medan masih ada bidan yang belum melakukan tindakan pencegahan infeksi sesuai standar

[r]

[r]

a) Perusahaan yang bersangkutan dan manajemennya tidak dalam pengawasan pengadilan, tidak pailit, kegiatan usahanya tidak sedang dihentikan dan/atau direksi

[r]

Fourth Edition, International Edition, New York: McGraw-Hill International Editions.. Guide to Performance Appraisals: Doing at

PembinaanPerilaku Sosial Siswa Smp Di Kecamatan Rangkasbitung Kabupaten Lebak-Banten Universitas Pendidikan Indonesia | Repository.Upi.edu.

ANALISIS KINERJA PENGELOLA PKBM DALAM MENYELENGGARAKAN LAYANAN PENDIDIKAN KESETARAAN DI MASYARAKAT DESA HANJUANG KEC.. BUNGBULANG (Studi deskriptif di PKBM