• Tidak ada hasil yang ditemukan

Makalah : PENGUJIAN ROTOR DAN STATOR GENERATOR SINKRON 50 MW

N/A
N/A
Protected

Academic year: 2021

Membagikan "Makalah : PENGUJIAN ROTOR DAN STATOR GENERATOR SINKRON 50 MW"

Copied!
13
0
0

Teks penuh

(1)

Makalah Seminar Kerja Praktek

PENGUJIAN ROTOR DAN STATOR GENERATOR SINKRON 50 MW

DI PLTU UNIT 1 PT INDONESIA POWER SEMARANG

Eko Parjono (L2F 004 473)

Email: echo_jhonthit@yahoo.com

Jurusan Teknik Elektro Fakultas Teknik Universitas Diponegoro

Abstrak

Generator Sinkron memegang peranan yang sangat penting dalam produksi energi listrik di PT Indonesia Power Tambak Lorok Semarang. Generator ini digunakan untuk mengkonversi energi mekanik putaran dari turbin menjadi energi listrik. Kebanyakan tipe generator sinkron yang digunakan di PT Indonesia Power adalah generator sinkron dengan pendingin hidrogen, karena dengan pendingin hidrogen akan didapatkan kelembaban yang kecil / kering didalam generator.

Untuk menjaga kehandalan sistem diperlukan perawatan dan pengujian secara berkala dengan tidak mengesampingkan system proteksinya. Generator sinkron dengan kapasitas besar membutuhkan perawatan ataupun pengujian untuk menjaga agar tetap dapat beroperasi secara normal dan terhindar dari bermacam macam gangguan misalnya adalah vibrasi pada rotor, hubung singkat pada lilitan stator maupun rotor, dsb. Beberapa langkah dilakukan untuk meminimalisasi gangguan tersebut. Salah satunya adalah dengan pengujian rotor dan stator yang terdiri dari banyak pengujian diantaranya adalah High Potensial Test, Megger Test , dan Balancing Voltage Rotor Test.

Dalam kerja praktek ini, penulis ingin belajar tentang pengujian pada rotor dan stator generator sinkron 50 MW dengan pendingin hidrogen. Dengan laporan ini, para mahasiswa dapat belajar jenis- jenis pengujian pada generator sinkron dengan kapasitas daya besar dan mengetahui bagaimana cara melakukan pengujian pada rotor dan stator generator.

Kata kunci: Generator Sinkron, Proof Test, Analytical Test, Pengujian rotor dan stator. I. PENDAHULUAN

1.1 Latar Belakang

Di dalam pusat pembangkitan terdapat generator yang digunakan untuk mengkonversi

energi dari energi

mekanik putar dari turbin ke energi

listrik. Generator yang digunakan

dalam p

usat listrik tenaga uap (PLTU) adalah generator sinkron. Di dalam PLTU, generator sinkron berperan penting bagi kelangsungan operasi di

dalam

penyediaan listrik ke konsumen.

Sedangkan, pada saat peralatan listrik

tersebut mengalami gangguan

misalnya hubung singkat pada

lilitannya dan sebagainya, maka

diambil suatu tindakan preventif untuk

mengatasi gangguan tersebut. Untuk

mengatasi hal tersebut, mutlak

diperlukan suatu pemeliharaan. Salah

satu pemeliharaan tersebut adalah

dengan pengujian pada rotor dan stator

generator sinkron.

1.2 Tujuan

Tujuan penulisan laporan ini adalah untuk mempelajari pengujian yang dilakukan pada rotor dan stator generator sinkron 50 MW di PLTU Unit 1 PT. Indonesia Power Tambak Lorok Semarang.

1.3 Batasan Masalah

Dalam penulisan makalah ini, penulis hanya menjelaskan tentang pengujian yang dilakukan pada rotor dan stator generator sinkron 50 MW yang meliputi atas Proof Test dan Analitycal Test, khususnya Insulation Resistance/ Megger, Balancing Voltage Rotor Test dan Tahanan Dalam (Rd) Rotor di PLTU Unit 1 PT. Indonesia Power Tambak Lorok Semarang.

II. DASAR TEORI

2.1 Spesifikasi Teknis Turbin dan Generator PLTU Unit 1

Generator sinkron adalah sebuah peralatan listrik yang berfungsi untuk

(2)

mengubah energi gerak menjadi energi listrik AC. Besarnya kapasitas daya yang dihasilkan generator PLTU Unit 1 adalah 50 MW. Berikut adalah data spesifikasi Generator PLTU Unit 1.

Tabel 1. Data spesifikasi Generator PLTU Unit 1

Jumlah 1 buah/ unit

Pabrik General Electric (GE) Nomor seri 316X150

Jumlah kutup 2

Type Hidrogen cooled-generator Suhu maksimum gas

pendingin 46°C Putaran 3000 rpm Tegangan jangkar 11500 V Tegangan eksitasi 250 V Faktor daya 0,85 Rating KVA 62500 Kapasitas KVA 57500

Sedangkan, sebagai penggerak mula atau prime mover adalah turbin uap generator merk General Electric dengan spesifikasi listrik sebagai berikut (tabel 2):

Tabel 2. Data turbin uap

Jumlah 1 buah/ unit Pabrik General Electric Nomor seri 197709 Rating 50001 KW Steam Conditions Pressure 88,90 kg/cm 2 Temperatur 5100C

Exhaust Pressure 87,87 mm.Hg abs

Putaran 3000 rpm

2.2 Generator Sinkron 2.2.1 Dasar Teori

Generator sinkron atau alternator berfungsi untuk mengubah energi gerak (mekanis) menjadi energi listrik AC dimana kecepatan putaran medan dan kecepatan putaran rotornya sama atau tidak ada slip. Kumparan medan generator sinkron terletak pada rotornya sedangkan kumparan jangkarnya terletak pada stator.

Prinsip kerja generator sinkron adalah menggunakan prinsip induksi elektromagnetik dimana disini rotor berlaku sebagai kumparan medan (yang menghasilkan medan magnet) dan akan menginduksi stator sebagai kumparan jangkar yang akan menghasilkan energi listrik. Pada belitan rotor diberi arus eksitasi DC yang akan menciptakan medan magnet. Rotor ini dikopel dengan turbin putar dan ikut berputar sehingga akan menghasilkan medan magnet putar. Medan magnet putar ini akan memotong kumparan jangkar yang berada di stator. Oleh karena adanya perubahan fluks magnetik pada tiap waktunya maka pada kumparan jangkar akan mengalir gaya gerak listrik yang diinduksikan oleh rotor.

2.2.2 Konstruksi Generator Sinkron Dalam semua generator bolak-balik medan diletakkan pada bagian yang berputar atau rotor, dan lilitan jangkar pada bagian yang diam atau stator dari mesin.

Medan yang berputar dicatu/dieksitasi dengan arus searah melalui cincin slip dan sikat-sikat, atau melalui hubungan kabel langsung antara medan dan penyearah yang berputar jika digunakan sistem eksitasi tanpa sikat-sikat (brushless).

Ada dua jenis yang berbeda dari struktur medan generator sinkron, yaitu tipe kutub-sepatu (salient) dan silinder.

§ Rotor tipe kutub-sepatu

Generator kepesatan rendah yang digerakkan oleh mesin diesel atau turbin air mempunyai rotor dengan kutub medan yang menonjol atau kutub medan sepatu seperti rotor yang ditunjukkan dalam gambar 2.

Gambar 2. Rotor kutub sepatu untuk generator sinkron kepesatan rendah

§ Rotor tipe silinder

Generator kepesatan tinggi atau tipe turbo mempunyai rotor silinder seperti yang ditunjukkan dalam gambar 3. Rotor yang

(3)

ditunjukkan pada gambar 2 dirancang untuk bekerja pada 3000 rpm. Konstruksi silinder penting dalam mesin kepesatan tinggi karena tipe kutub sepatu sukar dibuat untuk menahan tekanan pada kepesatan tinggi. Generator sinkron dengan konstruksi rotor silinder digerakkan oleh turbin uap atau gas.

Gambar 3. Rotor tipe silinder untuk generator sinkron 3000 rpm

2.2.3 Memparalelkan Generator

Jika beban pada stasiun pembangkit menjadi sedemikian besar sehingga nilai (rating) generator yang sedang bekerja dilampaui, maka perlu penambahan generator lain secara paralel untuk menaikkan penyediaan daya dari stasiun pembangkit tersebut.

Sebelum dua generator sinkron diparalelkan harus dipenuhi beberapa syarat – syarat berikut ini:

1. Urutan fasanya harus sama 2. Tegangan terminalnya harus sama 3. Tegangannya harus sefase

4. Frekuensinya harus sama

Jika dua generator beroperasi dan persyaratan ini dipenuhi maka dikatakan dalam keadaan sinkron. Operasi agar mesin dalam keadaan sinkron dinamakan penyinkronan.

2.2.4 Ayunan (Swing)

Generator sinkron yang bekerja paralel mempunyai kecenderungan untuk berayun (swing). Jika kopel penggerak yang dikenakan pada generator berdenyut, seperti yang dihasilkan oleh mesin diesel, rotor generator dapat tertarik maju atau mundur secara periodik dari posisi normalnya ketika berputar. Aksi osilasi ini dinamakan ayunan atau hunting. Daya osilasi ini menjadi kumulatif dan cukup kuat untuk menyebabkan generator menjadi tak sinkron.

Lilitan peredam, kerap kali disebut lilitan amortisseur atau damper winding, dipasang pada permukaan beberapa rotor generator untuk mengurangi kecenderungan berayun. Rotor yang ditunjukkan dalam gambar 2 dilengkapi dengan lilitan peredam yang terdiri dari konduktor yang dihubung singkat dan dibenamkan pada muka kutub. Jika ayunan terjadi, ada pergeseran fluksi jangkar melewati muka kutub, sehingga menginduksikan arus dalam lilitan peredam. Karena setiap arus induksi melawan aksi yang menimbulkannya, aksi ayunan dilawan oleh aliran arus induksi. Generator yang digerakkan oleh turbin uap umumnya tidak mempuyai kecenderungan berayun karena kopel yang dikenakan tidak berdenyut.

III. ISI

3.1 Sistem Isolasi Lilitan Rotor dan Stator

Sistem isolasi generator menggabungkan beberapa material berbeda untuk memproteksi lilitan medan dan lilitan stator, sehingga bagian utama sistem melibatkan banyak pengujian untuk mendapatkan batasan – batasan isolasi. Ini meliputi kekuatan dielektrik yang telah berhasil dengan menggunakan mika dalam bermacam – macam bentuk. Generator yang disusun dengan isolasi lilitan asphalt-mika mempunyai sejarah dapat menyerap kelembaban yang dalam beberapa kasus membutuhkan pengeringan lilitan untuk mendapatkan level resistansi isolasi yang memuaskan. Sekarang lilitan menggunakan isolasi epoxy-mica karena mempunyai

kekuatan mekanik dan kekedapan terhadap air, oli atau kontaminasi lain terhadap isolasi, yang ditimbulkan selama kondisi abnormal.

Gambar 4. Sistem isolasi pada lilitan stator generator

(4)

Gambar 5. Sistem isolasi pada lilitan rotor generator

Fungsi utama isolasi adalah membatasi tegangan pada isolasi, jika tegangan yang berlebihan diterapkan pada lilitan, stress tegangan akan mengakibatkan pemanasan pada isolasi dan dapat mengakibatkan kerusakan. Mempertahankan kekompakan dan kualitas sistem isolasi adalah sangat penting terhadap pemanasan, kehampaan, kerusakan mekanis atau ketidaknormalan lain yang mengakibatkan kelemahan terhadap isolasi.

3.2 Pengujian Rotor dan Stator Ada beberapa pengujian pada sistem isolasi untuk mengevaluasi kekuatan dielektrik untuk menjamin keandalan. Perbedaan dari satu pengujian ke pengujian yang lain adalah perbedaan level tegangan yang diterapkan, pengukuran dan penunjukkan hasil.

Secara garis besar pengujian rotor dan stator pada generator dibagi atas dua kategori yaitu Proof test dan Analytical

test.

3.2.1 Proof Test

Proof test yaitu pengujian yang

menggunakan level tegangan yang lebih tinggi daripada tegangan kerja.

Argumen yang sering digunakan dalam pengujian tegangan lebih adalah mungkin akan menimbulkan breakdown pada lilitan. Breakdown biasanya mengalir selama kondisi beban puncak. Jika satu atau lebih titik lemah pada lilitan mengalir gangguan, ini kemudian akan menjadi titik grounding dari lilitan, menggantikan netral dan kemudian menerapkan tegangan yang besar ke bagian lain lilitan. Breakdown susulan dapat mengalir kemudian, dimana dapat menghasilkan arus sirkulasi yang tinggi seperti gangguan fasa ke fasa. Ini akan menghasilkan

kerusakan inti, yang mengharuskan inti diperbaiki dan kemungkinan seluruhnya diganti lilitannnya. Tujuan dari pengujian ini adalah untuk mencari kelemahan, dan kemungkinan breakdown. Contoh proof test pada generator adalah pengujian High Potensial Test.

3.2.2 Analytical Test

Analytical test yaitu pengujian dengan

menggunakan level tegangan yang biasanya dibawah tegangan kerja.

Beberapa diantaranya jenis – jenis

analytical test adalah sebagai berikut :

a. Insulation Resistance Test / Megger Test

b. DC Leakage c. Dissipation Factor

d. Balancing Voltage Rotor Test

e. Tahanan Dalam (Rd) Rotor f. Partial Discharge Test

Pengujian pada peralatan berdasarkan standar ANSI dan dilakukan oleh perusahaan sebelum pengiriman. Jika pengguna memilih menggunakan pengujian tambahan pada peralatan, juga harus berdasarkan standar yang dipublikasikan oleh ANSI.

3.3 Ulasan Pengujian 3.3.1 High Potensial Test

High Potensial Test atau Hi-Pot Test

paling umum diterapkan pada lilitan stator generator untuk mencari kerusakan pada lilitan. Pengujian ini merupakan pengujian yang dimaksudkan untuk memperkirakan kekuatan dielektrik isolasi dari lilitan stator generator.

Prinsip kerja pengujian ini adalah jika ada kerusakan isolasi yang cukup besar, tegangan yang cukup besar diterapkan pada lilitan maka akan mengakibatkan breakdown pada isolasi tersebut, pengujian ini jarang dilakukan karena sifatnya merusak sehingga perlu melilit ulang rotor atau stator jika terjadi breakdown.

Selama pengujian masing – masing fasa terpisah, salah satu fasa dites sedangkan dua fasa lainya digroundkan.

High Potensial Test dapat

(5)

3.3.1.1 AC High Potensial Test

AC High Potensial Test /AC Hi-Pot Test atau pengujian tegangan 50/60 hertz

adalah pengujian dengan menggunakan tegangan pengujian normal 50/60 hertz.

Tegangan yang diterapkan dalam pengujian AC Hi-Pot Test adalah sebesar satu setengah kali dari tegangan

line-to-line RMS generator (1,5E) untuk

keserasian dengan peralatan dan setelah penggantian kumparan atau bar dipasang, sedangkan pada saat sebelum penggantian kumparan dipasang adalah sebesar 1,5 E + 2000.

3.3.1.2 Very-Low-Frequency Test Voltage

Very-Low-Frequency Test Voltage atau VLF Test Voltage adalah pengujian

dengan menggunakan tegangan frekuensi 0.1 hertz.

Tegangan pada pengujian 0,1 hertz harus 15% lebih besar daripada nilai RMS tegangan pada pengujian AC Hi-Pot Test. 3.3.1.3 DC High Potensial Test

Pada Hi-Pot Test selain dengan menggunakan tegangan AC juga dapat dengan menggunakan tegangan DC atau biasa disebut dengan DC Hi-Pot Test.

Besarnya tegangan pengujian DC seharusnya 70 % lebih besar daripada tegangan RMS pengujian AC Hi-Pot Test.

Tabel 3. Tegangan yang digunakan pada Hi-Pot Test

Dimana E :Tegangan RMS line-to-line generator

3.3.2 Insulation Resistance Test

Insulation Resistance Test/Megger Test

merupakan pengujian yang paling mudah dan sederhana untuk menentukan kemampuan isolasi. Megger Test ini dilakukan pada rotor dan stator generator, selain itu juga dapat diterapkan pada semua mesin atau lilitan. Peralatan yang digunakan untuk pengujian ini disebut Mega Ohm Meter atau Megger Tester atau Megger saja.

Indeks yang biasa digunakan dalam menunjukkan pembacaan megger dikenal sebagai dielectric absorbtion, yang diperoleh dengan pembacaan yang berkelanjutan untuk periode waktu yang lebih lama. Jika pengujian berkelanjutan untuk periode selama 10 menit, megger akan mempunyai kemampuan untuk mempolarisasikan atau mencharge kapasitansi tinggi ke isolasi stator, dan pembacaan resistansi akan meningkat jika isolasi bersih dan kering. Rasio pembacaan 10 menit dibandingkan pembacaan 1 menit dikenal sebagai Polarization Index atau Indeks

Polarisasi (IP). Nilai Indeks polarisasi adalah 2,5 atau lebih tinggi pada stator dan 1,25 atau lebih tinggi pada rotor/medan.

Hasilnya mengindikasikan apakah ada atau tidak bagian lilitan yang terhubung singkat pada atau disekitar sistem isolasi. Jika IP terlalu rendah ini mengindikasikan bahwa lilitan mungkin terkontaminasi oli, kotoran, serangga, atau terbasahi oleh air.

Besarnya Polarization Index (IP) dapat dirumuskan sebagai berikut :

menit menit

R

R

IP

1 10

=

Pembacaan megger yang sangat rendah dan juga indeks polarisasi yang kecil biasanya mengindikasikan adanya kelembaban dan pengeringan harus segera dilakukan.

Secara garis besar megger pada generator dibagi menjadi dua yaitu megger stator dan megger rotor.yang membedakan adalah tegangan yang diterapkan.

Berdasarkan standar IEEE no 43-2000 besarnya tegangan yang diterapkan untuk pengujian berdasarkan tegangan kerja pada lilitan generator dapat dilihat pada tabel 4.

Pengujian Tegangan Pengujian 50/60-Hertz AC (RMS) Tegangan Pengujian 0,1-HertzAC (puncak) Tegang an Penguji an DC Sebelum penggantian kumparan 1,5 E + 2000

2

x 15

1

,

x

)

2000

5

,

1

(

E

+

1.7x(1,5 E) = 2,25E Keserasian dengan peralatan 1,5 E

2x

1

,

15

)

5

,

1

(

E

x

1.7x(1,5 E) = 2,25E Setelah penggantian kumparan 1,5 E

2x

1

,

15

)

5

,

1

(

E

x

1.7x(1,5 E) = 2,25E

(6)

Tabel 4. Tegangan DC yang diterapkan untuk pengujian megger berdasarkan tegangan kerja lilitan. VAC (tegangan kerja lilitan (line-to-line)) VDC (tegangan DC yang diterapkan) <100 500 1000 – 2500 500 – 1000 2501 – 5000 1000 – 2500 5001 – 12000 2500 – 5000 >12000 5000 -10000

Alat yang digunakan dalam megger adalah Metriso 5000A dengan tegangan yang diterapkan untuk megger stator sebesar 5000 Volt DC sedangkan dalam megger rotor tegangan yang diterapkan adalah 500 Volt DC karena melihat kemampuan rotor untuk menahan tegangan.

3.3.2.1 Megger Stator

Secara garis besar megger stator sendiri dibagi menjadi dua yaitu megger fasa ke fasa dan fasa ke ground. Berikut adalah rangkaian megger stator :

Gambar 6. Rangkaian megger stator fasa – ground

Gambar 7. Rangkaian megger stator fasa – fasa

Dalam pengukuran megger stator tidak hanya dilakukan sekali saja, pengukuran megger stator tersebut dilakukan berdasarkan suatu tahapan/proses.

§ Megger awal stator

§ Megger stator sebelum penambahan resin

§ Megger stator setelah penambahan resin § Megger stator sebelum divarnis

§ Megger stator setelah rotor dimasukkan § Megger stator sebelum busbar di

connect

Maksud megger stator yang berkelanjutan ini dimaksudkan untuk memastikan bahwa kelembaban lilitan stator tetap terjaga dan tidak terjadi hubung singkat atau kerusakan isolasi selama proses perawatan. Jika dalam proses didapatkan nilai indeks polarisasi (IP) yang terlalu kecil itu mengisyaratkan bahwa stator terlalu lembab maka perlu dipanasi dengan lampu halogen.

Tabel 5. Megger fasa – ground stator sebelum busbar di connect.

R (G ) S (G ) T (G )

0,95 0,75 0,6

Tabel 6. Megger fasa – fasa stator sebelum busbar di connect. R - S, T-Ground (G ) R - T , S-Ground (G ) S - T, R-Ground (G ) 1,7 1,5 1,7

Megger stator sebelum busbar di

connect ini dimaksudkan untuk memastikan

bahwa lilitan stator tidak ada yang mengalami hubung singkat. Apabila terjadi hubung singkat pada lilitan maka pada megger akan menghasilkan nilai hambatan sebesar nol (Z= 0).

Dengan hasil IP seperti pengujian diatas maka stator masih lembab sehingga perlu dikeringkan supaya dapat didapatkan nilai IP yang sesuai. Kelembaban sangat mempengaruhi nilai IP karena resistansi pada awal pertama besar dan hanya meningkat sedikit pada saat menit ke-10 sehingga didapatkan IP yang kecil. Ini berbeda pada saat kondisi kering pada saat awal menit pertama nilai resistansi kecil dan meningkat secara bertahap sampai menit ke 10 sehingga akan didapatkan nilai IP yang bagus.

Selain dengan menggunakan acuan indeks polarisasi sebagai penentu apakah lilitan generator dalam keadaan lembab atau

(7)

mengalami hubung singkat juga dapat digunakan acuan berdasarkan nilai resistansi minimum dengan syarat besarnya nilai resistansinya adalah sebesar tegangan operasi dalam KV ditambah 1 untuk kemudian dikalikan dengan 100

yang dapat dirumuskan sbb :

+

=

Vrms

x

M

R

min

(

1

)

100

.

Dimana :

Rmin : resistansi minimum lilitan (M ) Vrms : tegangan rms dalam KV (line-to-line)

Contoh pada generator 50 MW

dengan tegangan operasi 11,5 KV maka resistansi minimumnya adalah sebesar : Rmin = (11,5 + 1) x 100 M

= 1250 M = 1,25 G

3.3.2.2 Megger Rotor

Pada Megger rotor tegangan yang dikenakan tidak boleh besar karena akan merusak isolasi pada rotor, karena tegangan yang dapat ditahan rotor terbatas menyesuaikan tegangan eksitasinya. Pada megger rotor ini digunakan tegangan sebesar 500 V DC.

Gambar 8. Rangkaian Megger rotor

Berdasarkan tahapannya megger rotor pada saat overhaul tidak jauh berbeda dengan megger stator, berikut tahapan megger rotor :

§ Megger awal rotor

§ Megger rotor (sebelum Retaining Ring di lepas)

§ Megger rotor sebelum injeksi DC (Retaining Ring dilepas)

§ Megger rotor (setelah Retaining Ring masuk)

§ Cek Megger rotor (Retaining Ring masuk)

Megger awal rotor ini dilakukan ketika rotor baru saja dikeluarkan dari

generator sebelum dilakukan sebelum heating dan cleaning.

Tabel 7. Megger awal rotor

Cuaca setelah hujan ( 29 °C ) Tegangan 500 V

Waktu ( t ) 1 menit Hasil Z = 800 M

Resistansi rotor dan stator sangat dipengaruhi oleh kelembaban disekitarnya karena akan mempengaruhi kelembaban lilitan, semakin besar kelembaban maka impedansi semakin besar.

Tabel 8. Megger rotor sebelum Retaining Ring di lepas

Cuaca mendung (30 °C)

Tegangan 500 V

Waktu ( t ) 1 menit

Megger Rotor Z = 2,5 G Megger Rotor diberi Resin Z = 1 G

Tabel 9. Megger rotor setelah Retaining Ring masuk

Cuaca Mendung (30 °C) Tegangan 500 V

Waktu ( t ) 1 menit Megger Rotor Z = 90 M

Setelah Retaining Ring masuk ini sangat mempengaruhi resistansi rotor sehingga didapatkan nilai hasil megger yang besar.

Tabel 10. Cek megger rotor setelah Retaining Ring masuk Menit ke Z (M ) 1 65 2 100 3 100 4 105 5 110 6 120 7 121 8 125 9 125 10 130 IP = 2

(8)

Dengan hasil pada cek megger rotor setelah Retaining Ring masuk didapatkan hasil bahwa indeks polarisasi sudah memenuhi standar yang ditentukan yaitu sebesar 1,25. Selain itu cek megger rotor setelah Retaining Ring masuk ini dimaksudkan untuk memastikan bahwa tidak ada hubung singkat pada lilitan rotor setelah Retaining Ring masuk karena dalam pemasangan atau pelepasan Retaining Ring dengan memakai suhu yang sangat tinggi.

3.3.3 DC Leakage

DC Leakage adalah tipe

pengukuran lain untuk menentukan resistansi isolasi. Ini diperoleh dengan pengujian dengan set tegangan yang berubah - ubah dimana tegangan yang diterapkan pada isolasi dinaikkan secara bertahap dan arus bocor yang melewati isolasi diukur pada masing – masing tegangan. Pengujian ini telah digunakan secara ekstensif dalam peralatan elektris yang sudah tua, terutama menyangkut sistem isolasi, yang didasarkan kepada penyerapan kelembaban.

Tegangan dc yang diterapkan secara bertahap pada pengujian dc leakage tegangan maksimumnya dibatasi sampai dua kali nilai RMS tegangan kerja ac dari generator.

rms

xV

maksimum

V

DC

=

2

AC Dimana :

VDC maksimum : Tegangan dc maksimum pada pengujian dc leakage

VAC rms : Tegangan RMS generator 3.3.4 Dissipation Factor

Pengukuran ini juga biasa disebut

power factor atau tan delta dan

merupakan parameter untuk memperlihatkan efisiensi isolasi. Pengujian tan delta dilakukan pada lilitan stator.

Pengujian ini efektif untuk mendeteksi kontaminasi isolasi, kualitas semikonduktor, jumlah kandungan kehampaan, dan kerusakan parsial.

Isolasi yang sempurna adalah mempunyai PF 0 dan tidak mempunyai rugi – rugi internal. Peningkatan faktor disipasi sebagai fungsi tegangan mengindikasikan angka peningkataan ionisasi, rugi – rugi internal dan pemanasan.

Pengujian ini merupakan pengujian AC yang menggunakan frekuensi kerja peralatan. Pada saat tegangan dengan frekuensi kerja diterapkan pada isolasi stator, jumlah arus yang mengalir terdiri dari dua komponen arus kapasitif yang relatif besar ( ic ), yang mendahului tegangan 90°, dan arus resistif yang lebih kecil ( ir ) yang sefasa dengan tegangan. Dielektrik kapasitor yang disimulasikan adalah sistem isolasi yang meliputi dua elektroda, konduktor tembaga tegangan tinggi dan inti besi stator. Faktor daya adalah cos , sudut antara tegangan yang diterapkan dan total arus.

VA Watts Ei W Ei Ei i i Cos t t r t r = = = = θ

Gambar .9. Rangkaian dielektrik dasar.

Gambar 10. Arus pengisian total.

3.3.5 Balancing Voltage Rotor Test

Sebelum melakukan balancing voltage

rotor test maka dilakukan dahulu pengukuran

Impedansi Karakteristik Rotor untuk menentukan kelinearan impedansi rotor apabila diterapkan tegangan baik dengan pengujian tegangan naik maupun tegangan turun dengan tegangan AC sampai dengan tegangan yang akan diterapkan pada pengujian balancing tegangan rotor.

Dalam balancing voltage rotor ini dibutuhkan alat – alat antara lain adalah supply tegangan yang dapat divariasi berupa

(9)

voltage regulator, tang Amperemeter dan AVO meter. V Power Supply (Regulator ) 10 - 130 V Pole A Pole B Center Pole A

Gambar 11. Rangkaian pengukuran impedansi karakteristik.

3.3.5.1 Pengukuran Impedansi Karakteristik Rotor sebelum Pemasangan Retaining Ring.

Tabel 11. Data pengukuran impedansi karakteristik tegangan naik sebelum pemasangan Retaining Ring.

Vac- regulator (V) Vac(V) (A)I Z) 10 10 0.53 18.86 20 19.9 1.04 19.13 30 30.2 1.56 19.36 40 40 2.03 20.7 50 50.2 2.47 20.32 60 60.1 2.9 20.72 70 70 3.31 21.14 80 80 3.7 21.62 90 90 4.1 21.95 100 100 4.47 22.37 110 110 4.85 22.68 120 120 5.23 22.94 130 130 5.6 23.21

Gambar 12. Grafik impedansi karakteristik tegangan naik sebelum pemasangan Retaining Ring.

Tabel 12. Data pengukuran impedansi karakteristik tegangan turun sebelum pemasangan Retaining Ring. Vac- regulator (V) Vac(V) (A)I Z) 130 130 4.99 26.05 120 120 4.95 24.24 110 110 4.58 24.01 100 100 4.23 23.64 90 90 3.87 23.25 80 80 3.78 21.16 70 70 3.11 22.5 60 60 2.73 21.97 50 50 2.33 21.45 40 40 1.94 20.61 30 30 1.51 19.86 20 20 1.04 19.23 10 10 0.54 18.51

Gambar 13. Grafik impedansi karakteristik tegangan turun sebelum pemasangan Retaining Ring.

Pada waktu uji impedansi karakteristik seharusnya nilai Z perubahannya tidak terlalu besar baik pada saat pengujian tegangan naik maupun pada saat tegangan turun. Tegangan tertinggi pada saat melakukan pengujian impedansi karakteristik adalah sebesar tegangan yang akan dinjeksikan sewaktu pengujian balancing rotor yaitu 130 Volt AC. Ukur Impedansi Karakteristik dilakukan sebelum dan sesudah pemasangan Retaining Ring (R-R), ini dimaksudkan untuk memastikan impedansi karakteristik rotor masih linear dengan peningkatan tegangan yang diterapkan.

(10)

3.3.5.2 Pengukuran Impedansi Karakteristik Rotor setelah Pemasangan Retaining Ring.

Tabel 13. Data pengukuran impedansi karakteristik tegangan naik setelah pemasangan Retaining Ring.

Vac- regulator (V) Vac (V) I (A) Z ) 10 10.1 0.62 16.29 20 20.3 1.21 16.77 30 29.9 1.7 17.58 40 39.9 2.19 18.21 50 50.8 2.71 18.74 60 60.9 3.18 19.15 70 70.9 3.64 19.47 80 80.3 4.05 19.82 90 90 4.46 20.18 100 100.6 4.94 20.36 110 110.4 5.34 20.67 120 120.6 5.75 20.97 130 130.1 6.14 21.18

Gambar 14. Grafik impedansi karakteristik tegangan naik setelah pemasangan Retaining Ring.

Tabel 14. Data pengukuran impedansi karakteristik tegangan turun setelah pemasangan Retaining Ring.

Vac- regulator (V) Vac (V) I (A) Z ) 130 130.1 6.14 21.19 120 120.6 5.74 21.01 110 110.5 5.27 20.96 100 100.5 4.89 20.55 90 90.5 4.46 20.29 80 80.5 4 20.12 70 70.6 3.55 19.88 60 60.2 3.05 19.73 50 50.3 2.61 19.27 40 40.3 2.1 19.19 30 30.4 1.57 19.36 20 20.1 1.06 18.96 10 10.4 0.6 17.33

Gambar 15. Grafik impedansi karakteristik tegangan turun setelah pemasangan Retaining Ring.

Dari pengukuran impedansi karakteristik tersebut diatas didapatkan hasil impedansi karakteristik yang linear terhadap tegangan yang diterapkan secara bertahap.

3.3.5.3 Balancing Voltage Rotor Test

Balancing voltage rotor test adalah

mengukur ketidakseimbangan tegangan

(unbalance voltage) antara kutup A dan kutup

B terhadap center pole pada rotor.

Caranya adalah dengan cara menginjeksi tegangan AC sebesar 130 Volt AC pada kedua ujung kutup rotor kemudian mengukur besarnya tegangan kutup A terhadap center pole kemudian mengukur kutup yang lain (kutup B) sehingga akan didapatkan tegangan masing masing tegangan kutup A terhadap center pole (VA) dan tegangan kutup B terhadap center pole (VB). Rangkaian pengujian balancing voltage rotor adalah sebagai berikut :

(11)

Gambar 12. Rangkaian pengujian balancing tegangan rotor

Dari hasil pengukuran didapatkan hasil percobaan untuk masing masing kutup terhadap center pole adalah sebagai berikut :

Vkutup A - center pole = 68,8 V Vkutup B - center pole = 59,4 V Syarat seimbang adalah tegangan diantara kutup terhadap center pole adalah harus sama atau masih dalam batas toleransi yaitu maksimal drop tegangannya ( V) adalah tidak boleh lebih dari 10 % dari total tegangan yang diinjeksikan ke rotor.

Dimana drop tegangannya dapat dirumuskan sebagai berikut :

persen

x

V

V

V

V

R C B C A

100

− −

=

Dimana :

V = drop tegangan dalam %

VR = tegangan yang diinjeksikan ke lilitan rotor

VA-C= tegangan hasil pengukuran kutup A terhadap center pole

VB-C= tegangan hasil pengukuran kutup B terhadap center pole

Dari pengujian diatas total tegangan yang diinjeksikan adalah 130 Volt. Jadi dalam perhitungan drop tegangan adalah sebesar :

100

130

4

,

59

8

,

68

x

V

=

= 7,076 %

Jadi besarnya drop tegangan masih dalam toleransi yaitu sebesar 7,076 %. 3.3.6 Tahanan Dalam (Rd) Rotor

Pengujian tahanan dalam atau coil

resistance test adalah pengujian untuk

mengetahui kesetidaktimbangan antar fasa/kutup. Masalah yang timbul biasanya

adalah hubung singkat dengan rotor, hubung singkat diantara lilitan baik antara fasa yang sama atau berbeda, dan lepas atau rusaknya koneksi lilitan.

Peralatan yang digunakan untuk mengukur tahanan dalam adalah Winding

Resistance Meter, produk dari Vanguard

Instruments Company type WRM-40. Winding Resistance Meter dapat mengukur resistansi secara akurat dengan range dari 1 mikro ohm sampai ratusan ohm, alat ini dapat digunakan untuk mengukur resistansi lilitan motor, lilitan trafo atau pengujian resistansi rendah yang lain.

Dari hasil pengukuran didapatkan besarnya tahanan dalam masing – masing lilitan dari kedua kutup adalah sebagai berikut.

R1 : 118,6 miliohm R2 : 119,4 miliohm

Besarnya batas maksimum perbedaan tahanan dalam adalah tidak boleh melebihi dua persen dari total tahanan dalam.

persen

x

R

R

R

R

R

100

2 1 2 1 max

+

=

Dimana :

Rmax = selisih maksimum antara tahanan dalam R1 dan R2

R1 = besarnya tahanan dalam kutup A terhadap center pole.

R2 = besarnya tahanan dalam kutup B terhadap center pole.

Berdasarkan hasil pengukuran

didapatkan besarnya selisih maksimum

antara tahanan dalam R1 dan R2 adalah

sebesar :

persen

persen

x

persen

x

R

3361

.

0

100

238

8

,

0

100

4

,

119

6

,

118

4

,

119

6

,

118

max

=

=

+

=

Dari hasil pengukuran dapat

disimpulkan bahwa nilai tahanan dalam

rotor masih memenuhi standar karena

besarnya selisih maksimum antara tahanan

dalam R1 dan R2 masih dibawah 2 %

yaitu sebesar 0,3361 %.

(12)

Perbedaan antara megger rotor dengan pengukuran tahanan dalam (Rd) rotor adalah level tegangan yang digunakan untuk pengujian, dalam megger rotor tegangan pengujian adalah besar dengan arus yang kecil hanya dalam orde miliampere. Sedangkan dalam pengukuran tahanan dalam rotor tegangan pengujian hanya sampai beberapa Volt dengan arus yang besar hingga orde puluhan Ampere. 3.3.7 Partial Discharge Test

Partial Discharge Test atau PD test telah dipakai untuk mengukur kualitas

isolasi, dan kadang – kadang untuk mendeteksi penurunan isolasi yang terjadi pada peralatan tegangan tinggi.

PD test dapat dilakukan pada saat

generator beroperasi (on-line PD test) dan pada saat generator berhenti operasi atau mengenergize peralatan tegangan tegangan tinggi dengan trafo eksternal

(off-line PD test). Pengujian partial discharge secara langsung mengukur

pulsa arus yang dihasilkan dari PD pada lilitan. Jadi proses kegagalan yang dihasilkan PD sebagai gejala dapat dideteksi dengan metode ini.

IV. PENUTUP 4.1 Kesimpulan

1. PT. Indonesia Power membangkitkan energi listrik dengan Unit Pembangkit Listrik Tenaga Uap (PLTU) dan Pembangkit Listrik Tenaga Gas dan Uap (PLTGU).

2. Pembangkit Listrik Tenaga Uap (PLTU) PT. Indonesia Power Tambak Lorok Semarang memiliki daya terpasang 300 MW, terdiri atas unit 1 sebesar 50 MW, unit 2 sebesar 50 MW dan unit 3 sebesar 200 MW 3. Komponen utama Pembangkit Listrik

Tenaga Uap, yaitu:

a. Boiler (Economizer, Superheater, burner dll.)

b. Turbin (Tekanan tinggi, tekanan menengah ,dan tekanan rendah) c. Generator sinkron

4. Sistem isolasi yang digunakan dalam rotor dan stator generator sinkron 50

MW Unit 1 adalah isolasi epoxy-mica karena mempunyai kekuatan mekanik dan kekedapan terhadap air, oli atau kontaminasi lain.

5. Berdasarkan tegangan yang diterapkan pengujian rotor dan stator generator dibagi atas Proof Test dan Analitycal Test. 6. Pada pengujian Proof Test/High Potensial

Test dapat menimbulkan breakdown pada

isolasi karena tegangan yang diterapkan diatas tegangan kerja.

7. Macam – macam pengujian rotor dan stator generator sinkron adalah sebagai berikut:

a. High Potensial Test

b. Insulation Resistance Test c. DC Leakage

d. Dissipation Factor

e. Balancing Voltage Rotor Test

f. Tahanan Dalam (Rd) Rotor g. Partial Discharge Test

4.2 Saran

1. Untuk menghindari masalah - masalah kerusakan sistem isolasi maka seharusnya dilakukan pemeliharaan secara berkala terhadap semua komponen dari sistem isolasi sehingga kita dapat mencegah masalah - masalah tersebut sebelum terjadi.

2. Kerja sama dengan lingkungan akademis agar lebih ditingkatkan, dengan mengadakan berbagai macam kegiatan yang bisa bermanfaat bagi mahasiswa pada khususnya dan dunia kerja pada umumnya.

DAFTAR PUSTAKA

1. C. Stone. Greg, “Recent Important

Changes in IEEE Motor and Generator Winding Insulation Diagnostic Testing Standards”, IEEE Fellow, Iris Power

Engineering, 1 Westside Drive Unit 2 Toronto, Canada, PCIC – XX, 2004. 2. Lister,“Mesin dan Rangkaian Listrik”,

Edisi keenam, Erlangga, Jakarta, 1993. 3. Marsudi, Ir. Djiteng, “Pembangkitan

(13)

4. Theraja. BL, “Electrical Technology

Volume II”, S. Chand & Company

LTD, Ram Nagar, New Delhi, 1994. 5. United States Department of The

Interior, “Testing Solid Insulation of

Electrical Equipment, Facilities Instructions, Standards, and Tecniques”, Volume 3-1, Facilities

Engineering Branch Denver, Colorado, 2000.

6. www.gmc-instruments.com 7. www.gepower.com

8. www.indonesiapower.co.id 9. www.vanguard-instruments.com 10. ..., “Drying Turbine Generator

Windings, GEI-69534B”, Manual

Book PLTU Unit 1&2 PT. Indonesia Power UBP Semarang.

11. ..., “Drying Turbine Generator

Windings-Hidrogen Cooled Turbine Generator, GEI-53946D”, Manual

Book PLTU Unit 1&2 PT. Indonesia Power UBP Semarang.

12. ..., “Insulation Testing of

Turbine-Generator Windings, GEK-7613A”,

Manual Book PLTU Unit 1&2 PT. Indonesia Power UBP Semarang. 13. ..., “Insulation Testing of

Turbine-Generator Windings (Epoxy-Bonded Mica Insulation System), GEK-7613F”, Manual Book PLTU Unit

1&2 PT. Indonesia Power UBP Semarang.

BIODATA

Nama : Eko Parjono NIM : L2F 004 473 Lahir di Boyolali pada tanggal 21 Oktober 1985. Riwayat pendidikan : TK Pertiwi Jatirejo, SD N Klabang, SLTP N 1 Sawit, SMU N 1 Kartasura. Saat ini sedang menempuh pendidikan di Jurusan Teknik Elektro Universitas Diponegoro Semarang, semester 8 dengan Konsentrasi Ketenagaan. Kerja Praktek di PLTU Unit 1 PT. Indonesia Power UBP Semarang pada tanggal 3 sampai dengan 31 Desember 2007.

Mengetahui, Dosen Pembimbing

Abdul Syakur, ST, MT NIP. 132 231 132

Gambar

Tabel 1. Data spesifikasi Generator PLTU Unit 1
Gambar 5. Sistem isolasi pada lilitan rotor generator
Tabel  3. Tegangan yang digunakan pada Hi- Hi-Pot Test
Gambar 8. Rangkaian Megger rotor Berdasarkan  tahapannya  megger rotor pada saat overhaul tidak jauh berbeda dengan megger stator, berikut tahapan megger rotor :
+5

Referensi

Dokumen terkait

ABSTRAK Estimasi Pengaruh Indeks Harga Saham Gabungan IHSG, Harga Minyak Dunia dan Harga Emas Dunia Terhadap Perubahan Harga Emas Indonesia Kenaikan harga emas akan mendorong

(2) WIUP yang IUP-nya berakhir sebagaimana dimaksud pada ayat (1), dapat ditawarkan kepada badan usaha, koperasi, atau perseorangan melalui mekanisme sesuai

Sebelum dan sesudah dilakukan promosi kesehatankemudian dilakukan uji statistik dengan uji kendal tau diperoleh hasil yang signifikan yang berarti ada pengaruh antara

Saya amat berharap dengan perhatian dan komitmen penuh Tuan demi menjayakan program yang dirancang mencapai matlamatnya.Segala perhatian dan kerjasama Tuansaya dahului dengan

Rencana Strategis Badan Ketahanan Pangan Daerah Provinsi Lampung Tahun 2010 - 2014 merupakan bagian integral dari kebijakan dan program pemerintahDaerah Provinsi Lampung

Sampel percobaan yang digunakan dalam praktikum ini adalah nugget yang terbuat dari ampas tahu dan ampas kedelai yang telah siap. dimasak artinya nugget tersebut masih dalam

Kami melihat bahwa langkah KINO untuk melebarkan pasar dengan produk khusus wanita menjadi strategi bisnis yang tepat dalam merespon permintaan pasar.. Refleksi dari

negatif menurut Arifin (dalam Dasril dan Marwadah, 2014) dampak positifnya adalah 1) pacaran dapat menjadi motivasi untuk mendorong siswa untuk lebih meningkatkan