• Tidak ada hasil yang ditemukan

FILE06 prokaryotic communication Iman

N/A
N/A
Protected

Academic year: 2019

Membagikan "FILE06 prokaryotic communication Iman"

Copied!
59
0
0

Teks penuh

(1)

•Overview of cell-to-cell communication

or quorum sensing

Prokaryotic cell

Communication

Iman Rusmana

Department of Biology

(2)

Introduction

Quorum sensing is cell to cell signaling mechanism that

enables the bacteria to collectively control gene expression.

This type of bacterial communication is achieved only at

higher cell densities.

Bacteria release various types of molecules called as

autoinducers in the extracellular medium, these molecules are

mediators of quorum sensing.

(3)

Quorum Sensing

Tomasz (1965)

Gram-positive

Streptococcus pneumoniae

produce a

competence factor

that controlled factors for

uptake of DNA (natural transformation)

Nealson

et al.

(1970)

luminescence in the marine

Gram-negative bacterium

Vibrio fischeri

controlled by self-produced

chemical signal termed autoinducer

Eberhard

et al

. (1981) identified the

V. fischeri

autoinducer

signal to be

N

-3-oxo-hexanoyl-L-homoserine lactone

Engebrecht

et al.

(1983) cloned the genes for the signal

(4)

• Fuqua

et al

. (1994) introduced the term

quorum

sensing

to describe cell-cell signaling in bacteria

• Early 1990

s

homologs of LuxI were discovered in

different bacterial species

V. fischeri

LuxI-LuxR signaling system becomes the

paradigm for bacterial cell-cell communication

(5)
(6)

Symbiosis between

(7)

Quorum Sensing PubMed Citations

Year (2006. 03.15)

N

u

m

b

e

r

o

f

C

it

a

ti

o

n

s

0

50

100

150

200

250

(8)

TABLE

1

Organisms possessing LuxI/LuxR homologues: the regulatory

proteins, the HSL autoinducers, and the regulated functions

a
(9)

LuxI/LuxR Target Genes and Organism Homologue(s) Autoinducer Identity Functions

Vibrio fischeri LuxI/LuxR N-(3-oxohexanoyl)- luxICDABE

(biolumin- HSL  escence) (28, 31)

Aeromonas AhyI/AhyR N-butanoyl-HSL Serine protease and metal-  hydrophila  loprotease production

 (154)

Aeromonas AsaI/AsaR N-butanoyl-HSL aspA (exoprotease) (155)   salmonicida

Agrobacterium TraI/TraR N-(3-oxooctanoyl)- tra, trb (Ti plasmid

conju-  tumefaciens  HSL  gal transfer) (124, 174)

Burkholderia CepI/CepR N-octanoyl-HSL Protease and siderophore

  cepacia  production (87)

Chromobacterium CviI/CviR N-hexanoyl-HSL Violacein pigment, hydro-  violaceum  gen cyanide, antibiotics,

 exoproteases and

chitino- lytic enzymes (14, 96)

Enterobacter EagI/EagR N-(3-oxohexanoyl)- Unknown (156)

  agglomerans  HSL

Erwinia (a) ExpI/ExpR N-(3-oxohexanoyl)- (a) Exoenzyme synthesis,

  carotovora (b) CarI/CarR  HSL  (72, 125) (b) Carbapenem antibiotic

 synthesis (4)

Erwinia ExpI/ExpR N-(3-oxohexanoyl)- pecS (regulator of   chrysanthemi  HSL  pectinase synthesis)

  (103, 132)

Erwinia stewartii EsaI/EsaR N-(3-oxohexanoyl)- Capsular polysaccharide  HSL  biosynthesis, virulence

 (10)

Escherichia coli ?/SdiA ? ftsQAZ (cell division),  chromosome replication

 (44, 144, 170)

Pseudomonas PhzI/PhzR N-hexanoyl-HSL phz (phenazine antibiotic

  aereofaciens  biosynthesis) (123, 171)

Pseudomonas (a) LasI/LasR (a) N-(3-oxodode- (a) lasA, lasB, aprA, toxA

  aeruginosa  canoyl)-HSL  (exoprotease virulence  factors), biofilm

forma- tion (19, 22 and  references therein; 114) (b) RhlI/RhlR (b) N-butyryl-HSL (b) lasB, rhlAB

 (rhamnoli-pid), rpoS

  (stationary phase)

 (22 and references  therein; 82, 115)

Ralstonia SolI/SolR N-hexanoyl-HSL, Unknown (34)   solanacearum   N-octanoyl-HSL

Rhizobium etli RaiI/RaiR Multiple, unconfirmed Restriction of nodule

 number (134)

Rhizobium (a) RhiI/RhiR (a) N-hexanoyl-HSL (a) rhiABC (rhizosphere   leguminosarum  genes) and stationary

 phase (18, 51, 133) (b) CinI/CinR (b) N-(3-hydroxy-7- (b) Quorum sensing

  cis-tetradecenoyl)-  regulatory cascade

 HSL  (90)

Rhodobacter CerI/CerR 7,8-cis-N- Prevents bacterial

  sphaeroides  (tetradecanoyl)-HSL  aggregation (130)

Salmonella ?/SdiA ? rck (resistance to   typhimurium  competence killing),

 ORF on Salmonella

 virulence plasmid (1)

Serratia SwrI/? N-butanoyl-HSL Swarmer cell differen-  liquefaciens  tiation, exoprotease

 (30, 47)

Vibrio anguillarum VanI/VanR N-(3-oxodecanoyl)- Unknown (97)  HSL

Yersinia YenI/YenR N-hexanoyl-HSL, Unknown (157)   enterocolitica N

-(3-oxohexanoyl)- HSL

Yersinia (a) YpsI/YpsR (a) N-(3-oxohexanoyl)- Hierarchical quorum   pseudotuberculosis  HSL  sensing cascade

(b) YtbI/YtbR (b) N-octanoyl-HSL  regulating bacterial  aggregation and

 motility (3)

aMuch of the information in this table comes from (22) with permission.

(10)

Vast array of molecules are used as chemical

signals

enabling bacteria to talk to each other,

and in many cases, to be multilingual

Quorum Sensing

Gram-negative

bacteria

Gram-positive

bacteria

(11)

O N O O O N O O OH O N O O O N N O O N N O O OH N O OH O O OH Br H Br O O O O OH O O O R1 R3 R2

QS signals - Autoinducers

acyl homoserine lactones

N-butanoyl-L-homoserine lactone (BHL)N-(3-hydroxybutanoyl)- L-homoserine lactone (HBHL)

N-(3-oxohexanoyl)- L-homoserine lactone (OHHL)

diketopiperazines

cyclo(L-Pro-L-Tyr)

cyclo-(vAla-L-Val)

YSTCDFIM

S C O

ERGMT

ERGMT

Oligopeptides

Furanones

3-Hydroxypalmitic acid methyl ester (3OH PAME)

2-Heptyl-3-hydroxy-4-quinolone (PQS) butyrolactone

4-bromo-5-(bromomethylene)-3-(1 P -hydroxybutyl)-2(5H)-furanone

(12)

The three general classes of quorum-sensing systems

Modified oligopeptides Processin g and secreatio n S H K A R A T PADP

Class

Autoinducer

Strain

O O R 1 H N O R 2

P. aeruginisa

V. fisheri

E. carotovora

A. tumefaciens

Y. enterocolitica

E. coli O157:H7

(13)

QS upregulates virulence gene expression

Quorum sensing controlled processes

Bioluminescence

Biofilm formation

Virulence gene expression

Sporulation

Competence

It occurs in various marine bacteria

such as

Vibrio harveyi

and

Vibrio fischeri.

Takes place at high cell density.

It iscompact mass of differentiated microbial cells, enclosed

in a matrix of polysaccharides. Biofilm resident bacteria

are antibiotic resistant. Quorum sensing is responsible for

development of thick layered biofilm.

QS upregulates spore-forming genes in

Bacillus subtilis

(14)

How quorum sensing works?

Signalling compounds, autoinducers

AI synthases (

luxI

gene products)

cell density indicators

- non-essential aa, acyl homoserine lactones

lactone ring part - binding to a receptor site

acyl chain tail – determining the species specificity

- oligopeptides

- diketopiperazines

- quinolone

- furanones

Recognition systems

LuxR

transcriptional regulator

specific binding sites for AHL and DNA (sensor/transducer)

Genetic basis

(15)

Cell density and quorum sensing

R gene I gene

 

R protein       I protein

AHL diffuse out

R gene I gene

 

R protein       I protein

AHL diffuse

 out

+

AHL diffuse in

Cell 

density

(16)

Time (min)

0

60

120

180

240

300

C

el

l d

e

n

s

it

y

(

O

D

66

0

n

m

)

0.01

0.1

1

B

io

lu

m

in

e

s

ce

n

ce

(

R

L

U

/m

l)

0.1

1

10

Cell density (OD660nm)

0.0

0.1

0.2

0.3

0.4

B

io

lu

m

in

es

ce

n

ce

/c

e

ll

(

R

L

U

/m

l/O

D

6

00

n

m

)

0

5

10

15

20

25

Nealson (1977) Arch. Microbiol. 112:73-79

(17)

In

V. fisheri

, bioluminsecence only occurs when

V.

fischeri

is at high cell density

Quorum Sensing

(18)

Quorum Sensing in

Pseudomonas aeruginosa

P. aeruginosa

uses a hierarchical quorum sensing

(19)

Quorum Sensing in Gram-Positive Bacteria

Gram-positive bacteria utilizes modified

oligopeptides as signaling molecules

secreted via

an ATP-binding cassette (ABC) transporter complex

Detectors for these signals are two-component

signal transduction systems

sensor kinase

- binding of autoinducer leads to

autophosphorylation at conserved

histidine residue

response regulator

(20)

Quorum sensing control of competence and sporulation in 

Bacillus subtilis. B. subtilis

 employs two processed peptide 

autoinducers, 

ComX (

gray circles) and 

CSF

(white diamonds), to regulate the competence and sporulation processes. 

Accumulation of the processed ComX peptide enables it to interact with the ComP sensor kinase. ComP 

autophosphorylates on a histidine residue (H), and subsequently phosphate is transferred to an aspartate residue (D) on 

the ComA response regulator. 

Phospho-ComA

 activates the transcription of 

comS

. The ComS protein increases the 

level of 

ComK

 protein (+) by inhibiting ComK proteolysis. ComK is a transcription factor that activates the 

expression of genes required for development of the competent state. 

The second peptide autoinducer, competence and sporulation factor (CSF), while accumulating extracellularly in a 

density-dependent manner, has an intracellular role. CSF is transported into the cell via the Opp transporter (gray 

protein complex). 

At low internal concentrations CSF

inhibits the 

ComA-specific phosphatase RapC

. Inhibition of RapC increases the 

level of phospho-ComA, which leads to competence (dashed lines). 

At high internal CSF concentrations

, CSF inhibits competence and promotes spore development (black lines). 

Specifically, CSF inhibits ComS. CSF inhibition of ComS activity reduces transcription of competence genes, 

promoting sporulation instead. Additionally, CSF inhibits the 

RapB phosphatase

. The role of RapB is to 

dephosphorylate the response regulator Spo0A. 

Phospho-Spo0A

 induces sporulation. Therefore, CSF inhibition of the 

RapB phosphatase increases the phospho-Spo0A levels, and this leads to sporulation. 

[Miller et al., 2001.

Annu. Rev. Microbiol. 55:165-199]

.

(21)

Hybrid quorum sensing circuit in

Vibrio harveyi

V. harveyi

marine bacterium, but unlike

V. fischeri

,

does not live in symbiotic associations with higher

organisms, but is free-living

Similar to

V. fischeri

, V

. harveyi

uses quorum sensing

to control bioluminescence

Unlike

V. fischeri

and other gram-negative bacteria,

V.

harveyi

has evolved a quorum sensing circuit that has

characteristics typical of both Gram-negative and

(22)

V. harveyi

uses acyl-HSL similar to other

Gram-negatives but signal detection and relay

apparatus consists of two-component proteins

similar to Gram-positives

V. harveyi

also responds to AI-2 that is designed

for interspecies communication

Hybrid quorum sensing circuit in

Vibrio harveyi

AI-1

AI-2

LuxN and LuxQ –

autophosphorylating kinases at low cell densities

Accumulation of autoinducers – LuxN and LuxQ  phosphatases draining phosphate from LuxO via LuxU

Dephosphorylated LuxO is inactive

 repressor X not transcribed

(23)
(24)

Quorum-sensing and the regulation of

bioluminescence in

V. harveyi

.

A: At low cell density,

in the absence of HBHL and AI-2,

LuxN and LuxQ autophosphorylate. A multistep

phosphorelay continues through the shared

phosphotransfer protein, LuxU, ultimately phosphorylating

the response regulator, LuxO. Phosphorylated LuxO, in

conjunction with

    

54

, is thought to indirectly repress

transcription of the genes required for bioluminescence

by activating the transcription of an unidentified negative

regulator (repressor X).

B: At high cell density, corresponding to a critical

concentration of signal molecules, LuxN and LuxQ/P sense

their cognate signals and switch from kinases to

phosphatases. Consequently, dephosphorylation of LuxO

results in its inactivation thereby preventing the

up-regulation of repressor X activity. Such de-repression

(25)

AI-2

Lux

P

H1

D1

H1

D1

LuxQ

LuxN

p

H2

D2

HTH

54

LuxO

Repressor

LuxCDABE

IM OM

H1

D1

H1

D1

p

H2

D2

HTH

LuxO

LuxCDABE

LuxR

LuxS

LuxM

AI-1

Low Cell

density

High Cell

density

QS mechanisms in

V. harveyi

LuxU

(26)

LuxS and interspecies communication

LuxS homologs found in both Gram-negative and

Gram-positive bacteria; AI-2 production detected

in bacteria such as

E. coli

,

Salmonella

typhimurium

,

H. pylori

,

V. cholerae

,

S.aureus, B.

subtilis

using engineered

V. harveyi

biosensor

Biosynthetic pathway, chemical intermediates in

AI-2 production, and possibly AI-2 itself, are

identical in all AI-2 producing bacteria to date

reinforces the proposal of AI-2 as a

universal

(27)

'Bacterial esperanto' — a universal language?

The initial description of Vibrio fischeri quorum sensing was paralleled by a similar description in the related

luminescent marine bacterium Vibrio harveyi103. Before we had any mechanistic understanding of acyl-homoserine

lactone (acyl-HSL) signalling, it was shown that many other marine bacteria made something that signalled V. harveyi to induce its luminescence genes104.

It seemed that V. harveyi might measure the total bacterial load in its local environment rather than simply its own population size104.

There are, in fact, two integrated quorum-controlled circuits that govern the V. harveyi lux genes, either of which can induce luminescence independently43. The signal for one is the acyl-HSL 3-OH-C4-HSL105. The second

quorum-sensing system is based on a signal originally described as autoinducer-2 (AI-2), and it is this system that responds to interspecies bacterial signals106, 107. There is an increasing amount of evidence that bacteria other than V. harveyi

respond to AI-2-type signals and that, by analogy with V. harveyi, these microbes might also monitor the abundance of other AI-2-synthesizing bacteria in their local environment108.

A gene called luxS, which is conserved in a diverse range of bacteria, is responsible for the production of AI-2 by

Escherichia coli109. LuxS is an enzyme that can synthesize a molecule derived from S-ribosylhomocysteine, an

intermediate in methionine recycling110, 111. Despite this information and tremendous efforts, the true nature of the

AI-2 signal remained elusive. Only recently have Bonnie Bassler and colleagues identified the enigmatic signal,

associated with its receptor protein: receptor-bound AI-2 is a furanosyl borate diester112. Apparently, the sugar from

S-ribosylhomocysteine is cyclized and an atom of boron is incorporated to form the diester. Not only does this work provide at least one view of the interspecies signal, but it also suggests an unexpected role for elemental boron in the signalling pathway.

LuxS quorum sensing: more than just a

(28)

Infect Immun. 2000 Jun;68(6):3193-9.

Alignment of the deduced H.pylori LuxS sequence with deduced LuxS sequences from four other bacterial species. LuxS sequences from H.pylori 26695 (GenBank accession no. AE000532), S.aureus (preliminary sequence data obtained from The Institute for Genomic Research website at http://www.tigr.org/), B.subtilis (accession no. Z9919),

(29)

Genes and functions controlled by LuxS in bacteria

(30)

The molecular basis of bioluminescence regulation

(31)

The LuxI family of acyl HSL synthase proteins

A putative scheme for HHL synthesis, catalysed by LuxI. SAM binds to the active site on LuxI, and

the hexanoyl group is transferred from the appropriately charged ACP. The hexanoyl group forms

an amide bond with the amino group of SAM. 5 -Methylthioadenosine is released, and a

(32)

O

O

R

1

H

N

O

R

2

(33)

The quorum-sensing molecules. A–H: Some of the more common microbial acyl HSLs: (A)

N-butanoyl-L-homoserine lactone (BHL); (B) N-(3-hydroxybutanoyl)-L-homoserine lactone (HBHL); (C)

N-hexanoyl-L-homoserine lactone (HHL); (D) N-(3-oxohexanoyl)-L-homoserine lactone (OHHL); (E)

N-octanoyl-L-homoserine lactone (OHL); (F) N-(3-oxooctanoyl)-L-homoserine lactone (OOHL); (G)

N-(3-hydroxy-7-cis-tetradecenoyl)-L-homoserine lactone (HtdeDHL); (H)

N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL). I,J: Two microbial diketopiperazines: (I) cyclo( -Pro-L-Tyr); (J)

cyclo(ΔAla-L-Val). K: 2-Heptyl-3-hydroxy-quinolone (PQS). L: A furanone of Delisea pulchra,

4-bromo-5-(bromomethylene)-3-(1′-hydroxybutyl)-2(5H)-furanone. M: The butyrolactone putatively

produced by Xanthomonas campestris. N: 3-Hydroxypalmitic acid methyl ester (3OH PAME).

(34)

Structure and function of LuxI-type acyl-homoserine-lactone (acyl-HSL) synthases.   Residues conserved in all LuxI-type proteins are labelled with an asterisk. Residues whose mutation in LuxI and RhlI results in significant loss of activity are shown in red; residues for which inactivating mutations have been isolated in LuxI only are

shown in blue; residues for which an inactivating mutation has been isolated in RhlI only are shown in green. The threonine residue that is conserved in LuxI homologues that synthesize 3-oxo-acyl-HSL derivatives is shown in grey. Numbering is relative the LuxI sequence. Blue and red bars define the areas that are proposed to be involved in catalysis and specificity, respectively. [Fuqua C. et al., 2002. Nature Rev./Molecular Cell Biol. 3:685-695]

(35)

N H2 CH

CH2

CO2H

CO2H

N H2 CH

CH2

CO2H

COPO3 O

N H2 CH

CH2

CO2H

CHO

N H2 CH

CH2

CO2H

CH2OH

N H2 CH

CH2

CO2H

CH2OPO3

N H2 CH

CH2

CO2H

CH3 O O N H2 N N N N NH2 O OH OH O N H2 O S C H3 Aspartate Aspartyl phosphate Aspartate semialdehyde Homoserine Homoserine phosphate Threonine Homoserine lactone Lysine Methionine Isoleucine S-adenosyl methionine + .. .. _

(?)

ATP

Pi + PPi

(36)
(37)

Model of acyl-homoserine-lactone (acyl-HSL) quorum sensing in a single generalized bacterial cell. 

Tentative mechanisms for acyl-HSL synthesis and acyl-HSL interaction with LuxR-type proteins are shown. Double arrows with filled yellow circles at the cell envelope indicate the potential two-way diffusion of acyl-HSLs into and out of the cell. The proposed dimerization of LuxR (red) is based on genetic evidence and biochemical analysis of TraR; other LuxR-type proteins might form higher-order multimers. Binding of the acyl-HSL to LuxR and multimerization are represented as distinct events, although they might occur simultaneously. The LuxI label indicates LuxI-type proteins. 5'-MTA, 5'-methylthioadenosine; ACP, acyl carrier protein; SAM, S-adenosylmethionine. Modified with permission from Ref. 22 © (2001) Annual Reviews.

(38)

Stereo view of the structure of the TraR

OOHL

DNA complex. Domains in the two monomers

are shown in different colours (light/dark orange and light/dark green), whereas the DNA is

coloured blue and the OOHL is coloured red. Note that the two-fold dyad axis of the DNA and

DNA-binding domains lies in the plane of the page (horizontal red line), whereas that relating

to the pheromone-binding domains is swiveled by approximately 90° (short red line). Side

chains of residues in the upper monomer (light/dark green) that mediate interaction between

DNA-binding and pheromone-binding domains are shown in red and residues that affect

(39)

Modular structure of

Vibrio fischeri

LuxR protein

A

(2-20th a.a.)

region for the negative autoregulation of LuxR

B

(79-127th a.a.)

binding region for the acylated homoserine lactone

C

(116-161st a.a.)

multimerization site of 2 LuxR proteins

D

(193-197th a.a.)

putative transcriptional activation element

E

(200-220th a.a.)

helix-turn-helix DNA-binding motif

F

(240-250th a.a.)

region for LuxR-dependent transcription of

lux

operon

N-terminus C-terminus

(40)

..

C

N

A

R

C

S

T

T

G

G

V

T

A

A

G

X

G

G

A

A

T

T

C

N

G

X

T

T

A

R

C

C

A

A

G

S

G

R

T

T

V. fischeri

MJ1

lux

box

lux

box-like consensus sequence

(41)

The pheromone-binding site.

a

, Surface around the pheromone, which is coloured by the pK

(red for acidic and blue for basic residues) of the residues of the pheromone-binding cavity.

b

,

Four hydrogen bonds between the pheromone and TraR. The hydrogen bond between the

3-keto group and protein is water-mediated. The distance between interacting atoms is shown in

(42)

Vibrio fischeri lux

-gene organization and symbiotic bioluminescence

 

(43)

Examples of signaling molecules used for bacterial quorum sensing regulation. The figure shows the names and principal structures of quorum sensing molecules and lists their producers as well as their sensing mechanisms.

(44)

The three steps in quorum sensing regulation. (1) In the first step, the signaling molecules are produced either by employing the intracellular machinery and subsequent outward-bound transport or by secreting a protease and subsequent cleavage from bacterial or even adjacent host structures. The signaling molecules may stay bound to the bacterial surface or could be secreted to the environment. (2) In the second step, the signaling molecules accumulate outside the bacteria either due to the continuous production of a growing number of bacteria, a decrease of available space even without further production of signaling molecules, or due to the vicinity of an impermeable structure in combination with a low level production of the molecules. (3) In the third step, the

signaling molecules reach a threshold level, at which it is sensed at the bacterial surface or after passive or active passage through the cell membrane by intracellular receptors. As a consequence, specific regulators will be

activated and start their quorum sensing control of gene expression. [Podbielski A. et al., 2004. Int J Infect Dis. 8(2):81-95.]

Introduction

three steps in

(45)

Quorum-sensing

vs

. central metabolism

AI 2;

furanosyl borate diester

bioluminescence (

V. harveyi

)

ABC transporter (

S. typhimurium

)

type III secretion (EH

EC

)

virulence factor, VirB (

S. flexneri

)

protease (

S. pyogenes

)

in vivo

fitness (

N. meningitidis

)

(46)

Chen et al., 2002. Nature

415: 545 -

549

The autoinducer AI-2, synthesized by LuxS, is bound by the sensor protein LuxP. a, Biosynthesis of the AI-2 precursor 4,5-dihydroxy-2,3-pentanedione (DPD) from S-adenosylmethionine9–13. b, Induction of bioluminescence in the V.

harveyi bioassay13 was measured following the addition of the products of an in vitro reaction of S

-adenosylhomocysteine with Pfs and LuxS proteins13, reaction buffer, or AI-2 released from LuxP overproduced in

LuxS+ or LuxS- E. coli BL21. Concentrations of AI-2 in the Pfs/LuxS and LuxP (BL21) reactions were estimated to be

(47)

Structure of LuxP-AI-2 complex. a, Overview. bd, Fo - Fc difference electron density (contoured at 4 ) calculated using phases derived from the model before AI-2 addition. The final refined model for AI-2 is shown superimposed on this density. Boron, oxygen, nitrogen and carbon are coloured yellow, red, blue and grey, respectively. In the

stereoviews shown in cd, hydrogen bonds are shown as dashed red lines. Figure prepared using O26, Molscript28/

Bobscript29 and Raster 3D30.

(48)

Quorum-Sensing in (Eu)bacterial Systems

Bioluminescence:

Vibrio fischeri, V. harveyi

Symbioses:

V. fischeri

Biofilm architecture:

Pseudomonas aeruginosa

Virulence:

Erwinia stewartii, P. aeruginosa

Antibiotics/exoenzyme release:

Chromobacterium

violaceum,

Erwinia carotovora, Pseudomonas aurefaciens, Streptomyces

spp

.

Conjugation:

Agrobacterium tumefaciens

Cell division:

E. coli

(Social gliding) Motility:

Serratia liquifaciens

Stationary phase-related:

Rhizobium leguminosarum

Lag phase-related:

Nitrosomonas europea

Competence:

Streptomyces

spp

. Bacillus

spp

.

(49)
(50)

Antibiotic resistance

Antibiotic

 

Antibiotic

Antibiotic sensitive bacteria

Antibiotic resistant bacteria

 Now a days most of bacteria are antibiotic resistant 

(51)

Strategies for quorum sensing inhibition

3 strategies can be applied

Targeting AHL signal

dissemination

Targeting the signal 

receptor

Targeting signal 

generation

Signal precursor

Signal

Signal receptor

Signal precursor

Signal precursor

Signal

Signal

Signal receptor

Signal receptor

X

(52)

Targeting signal generation

 Signal generation can be inhibited by using analogue of precursor of

   signal molecule.

   

 AHL signals are generated from precursors : acyl –ACP and SAM.     

    

  Analogues of acyl-ACP and SAM can be used to reduce synthesis of

    quorum sensing signals.

(53)

Effect of substrate analogues on RhlI

activity in

P. aeruginosa

Inhibitors

Inhibition,%

 In 

P. aeruginosa

 RhlI acts as autoinducer synthase 

(54)

Targeting AHL signal dissemination

QS molecules can be degraded by:

Increasing pH (>7): as at higher pH AHL molecules undergo lactonolysis

in which its biological activity is lost.

At higher temperature AHL undergoes lactonolysis.

Some plants infected by pathogenic bacteria

E. carotovora

, increase the

pH at the site of infection, resulting in lactonolysis of AHL molecules.

Some bacteria produces lactonolysing enzymes, such as AiiA.

Eg:

Bacillus cereus, B. thuriengiensis

.

(55)

AiiA as antipathogenic agent

Potato      Tobacco 

Tobacco lines 

expressing AiiA

Corresponding Wild- 

type Tobacco sps.

Potato lines 

expressing AiiA

Corresponding Wild- 

type Tobacco sps.

(56)

Targeting the signal receptor

 Targeting QS signal receptor by the QS antagonists is highly 

   investigated and promising strategy.

 

  Several AHL analogues have been synthesized which binds with  

    receptor/DNA transactivator, LuxR, but this complex is not activated,   

    which can not activate virulence genes expression.

 Some analogues have been synthesized by substitutions in HSL ring or 

   in acyl side chain and in some analogues HSL ring has been replaced by

   alternative rings.

(57)

 Rasmussen et al. (2005), screened several QSIs among natural and 

synthetic compound libraries.

 The two most active were garlic extract and 4-nitro-pyridine-

N

-oxide 

(4-NPO). 

 Microarrays analysis revealed that garlic extract and 4-NPO reduced 

QS-controlled virulence genes in 

Pseudomonas aeruginosa

 These two QSIs also significantly reduced 

P. aeruginosa

biofilm  

tolerance to tobramycin treatment as well as virulence in a 

Caenorhabditis elegans

pathogenesis model.

(58)

Future perspectives

  Q S inhibitors have provided evidence of alternative method for fighting 

    bacterial infections.

 QS inhibitors can be isolated from the huge natural pool of chemicals.

 Most compounds are unsuitable for human use.

 We are lacking in selection of human compatible QS inhibitors.

(59)

Referensi

Dokumen terkait

Hambatan-Hambatan Yang Dihadapi Puskesmas Batangtoru Dalam Melakukan Akuntabilitas Pelayanan Program BPJS Persalinan. Puskesmas Batangtoru adalah sebagai salah satu

Sembilan Puluh Tujuh Juta Dua Ratus Empat Puluh Tiga Ribu Sembilan Ratus

PPL bagi mahasiswa PPL agar tidak terjadi simpang siur. Hal ini dikarenakan informasi yang disampaikan di buku panduan PPL mengenai sistematika laporan PPL belum secara

Bab ini memaparkan analisis sistem yang terdiri dari prosedur yang terlibat dalam pengambilan keputusan di PERUM DAMRI Kota Bandung, analisis aspek dan kriteria pengujian

Pertama sekali marilah kita mengucapkan puji syukur kehadirat Allah SWT atas rahmat dan nikmat yang tidak putus- putusnya dilimpahkan kepada kita bersama,

Sebagai aplikasi dari Undang-Undang Republik Indonesia Nomor 1 Tahun 1974 Tentang Perkawinan dan Undang-Undang Republik Indonesia Nomor 24 tahun

• Pola Umum BK Sekolah berdasar Pola 17 Plus • Penggunaan Instrumen dalam Bimbingan dan Konseling.. – Studi Literatur –

CALCULATION OF DOMESTIC NET INCOME FROM BUSINESS ACTIVITIES AND/OR INDEPENDENT SERVICE FOR TAXPAYER APPLYING BOOKS.