• Tidak ada hasil yang ditemukan

Journal of Asian Ceramic Societies

N/A
N/A
Protected

Academic year: 2019

Membagikan "Journal of Asian Ceramic Societies"

Copied!
11
0
0

Teks penuh

(1)
(2)

ContentslistsavailableatScienceDirect

Journal

of

Asian

Ceramic

Societies

jo u r n al h om ep ag e :w w w . e l s e v i e r . c o m / l o c a t e / j a s c e r

Effect

of

alumina

addition

on

the

phase

transformation

and

crystallisation

properties

of

refractory

cordierite

prepared

from

amorphous

rice

husk

silica

Simon

Sembiring

a,∗

,

Wasinton

Simanjuntak

b

,

Rudy

Situmeang

b

,

Agus

Riyanto

a

,

Pulung

Karo-Karo

a

aDepartmentofPhysics,FacultyofMathematicsandNaturalSciences,UniversityofLampung,Jl.Prof.SoemantriBrojonegoroNo.1,BandarLampung 35145,Indonesia

bDepartmentofChemistry,FacultyofMathematicsandNaturalSciences,UniversityofLampung,Prof.SoemantriBrojonegoroNo.1,BandarLampung, 35145,Indonesia

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received18January2017

Receivedinrevisedform25April2017 Accepted26April2017

Availableonline4May2017

Keywords:

Microstructure Composition Ricehusksilica Structure Refractoriness

a

b

s

t

r

a

c

t

Theeffectofaluminaadditionof5–30%byweightonphasetransformationandcrystallisationproperties ofrefractorycordieriteceramicspreparedfromamorphousricehusksilicafollowedbysintering treat-mentattemperatureof1230◦Cwasstudied.Thecrystallinityandmicrostructureofthesampleswere

characterisedusingX-raydiffraction(XRD)coupledwithRietveldanalysis,scanningelectronmicroscopy (SEM),respectively.Somephysicalpropertiesincludedensity,porosity,hardness,bendingstrength,and thermalexpansioncoefficientofthesampleswithdifferentaluminaadditionsweremeasured.Theresults showthatadditionofaluminapromotedcrystallisationofcordieriteintocrystallinespinel,corundum, cristobalite,inwhichwithadditionof10–30%alumina,thecordieritephasewaspracticallyundetected. Additionofaluminawasalsofoundtoincreasetheamountofspinel,whilecorundumandcristobalite decreasedfollowingaluminaadditionof10–30%.Thepresenceofspinel,corundum,andcristobalite resultedinincreasedofdensity,hardness,bendingstrengthandthermalexpansioncoefficient,whilefor porosity,theoppositewasobserved.Thermalexpansioncoefficientofthesampleswithaluminaaddition of15–30%reachtherelativelyconstantvalueof9.5×10−6/C,withthemaincrystallinephasewasspinel,

accompaniedbycorundumandcristobaliteinsmallerquantities.

©2017TheCeramicSocietyofJapanandtheKoreanCeramicSociety.Productionandhostingby ElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/ licenses/by-nc-nd/4.0/).

1. Introduction

Ricehuskhasbecomeanimportantandcompetitivesourceof highpurity,reactive,andamorphoussilica,suitableforpreparation ofvarioussilicabasedadvancedmaterials.Inaddition,this renew-ableagricultureresidueisabundantlyavailableinmanycountries aroundtheworld,ensuringitssustainabilityinthefuture. Utilisa-tionofricehuskasasourceofsilicaissupportedbythesimplicity andlow costof theextractionmethodofthesilica.In the pre-viousinvestigations,severalresearchershaveshownthatsimple acid-leachingmethod[1–3]canbeappliedtoobtainhighpurity silica,which is more advantageous compared toother conven-tionalproduction techniques suchasvapor phase reaction and

Correspondingauthor.

E-mailaddress:simon.sembiring@fmipa.unila.ac.id(S.Sembiring).

sol–gelprocessappliedtoproducesilicafromothersources[4–6]. Supportingbyitsexcellentanduniqueproperties,suchashigh sur-facearea,amorphousphase,fineparticlesize,andreactivity,rice husksilicahasbeenconsideredasanattractiverawmaterialfor productionofvariousadvancedmaterialssuchassiliconnitride, magnesiumsilicide[7–9],solargradesilicon[10],siliconcarbide

[11], magnesium–alumina–silica [12], lithium–aluminum–silica

[13],andmullite[14].Inourpreviousinvestigations,reactive sil-icafromricehuskobtainedusingalkalineextractionmethodhas beenusedtosynthesizeseveralceramicsmaterialsinclude borosil-icate[15],carbosil[16],aluminosilicate[17],mullite[18,19]and cordierite[20,21].

Ofvarioussilicabasedmaterials,cordierite(Mg2Al4Si5O18)isan

importantappliedmaterialinmanydifferentbranchesof indus-tryduetoitsexcellentphysicalproperties,suchaslowcoefficient ofthermalexpansion,lowdielectricconstant[22,23],high chem-icalresistance[24],excellentthermalshockresistance[25],high

http://dx.doi.org/10.1016/j.jascer.2017.04.005

(3)

refractoriness[26],andhighmechanicalstrength[27].Forthese reasons,cordieritehasbeenoneofthemostpotentialceramics usedinmanyindustrialapplications,suchasrefractoryproducts, microelectronics,andintegratedcircuitboard[28,29],catalyst car-riersforexhaustgaspurification,heatexchangerforgasturbine engines[25,30],refractoryforfurnaces,aswellaselectricaland thermalinsulation[31,32].Inaddition,duetoitslowdielectric con-stantandthermalexpansioncoefficient,cordieriteiswidelyusedas anexcellentelectricinsulatorandhigh-thermalresistantmaterial. Inpreviousstudies[33,34],itwasreportedthatthermalexpansion ofcordieriteis2.2×10−6/◦C,whiletheothersreportedthevalue ofaround3.3× 10−6/C[21],1–4× 10−6/C [35],0.8–2× 10−6/C

[36,37]and2.2–4.5× 10−6/◦C[38].

Refractory materials typically consist of oxides suchas sili-con,aluminium,magnesium,andcalciumoxides.Theuseofthese oxidesisbasedontheirhighmeltingtemperaturesandtheability toformchemicallybondedframework thatcanwithstand tem-peraturesover1550◦C.Thecharacteristicsofrefractorystrongly

depend on the microstructure, crystalline phase, and thermal expansioncoefficient.Inoverall,refractorymaterialshouldexhibit highthermalshockresistance, fullydense,highfracture tough-ness,andlowthermalexpansion.Inourpreviousstudy[21],itwas foundthathardnessandbendingstrengthofrefractorycordierite increasedwithincreaseinsinteringtemperature,whileforthermal expansioncoefficient,theoppositewastrue.Otherstudies[25,39]

attemptedtosynthesizecordieritewithexcellentthermalshock resistancedemonstratedthatmicrostructurestronglyinfluenced thefracturetoughnessanddensificationofcordierite.

Modifyingcrystalwillchangetheirphysical,electrical,thermal, chemicalandmechanicalproperties,resultingmaterialswith supe-riorityanduniqueproperties.However,onlylimitednumbersof fundamentalstudythathavebeenemphasisedonthecordierite crystallisationprocessoccurringinmodifiedcomposition.In pre-viousstudy[40]theinvestigationwasconductedtoevaluatethe synthesisofcordieriteasthecomponentofrefractorymaterialfor highthermalapplicationsbyreducingtheAl2O3moleratiofrom2

to1.4.TheyfoundthatreductionofAl2O3moleratioto1.4,resulted

inbulkdensitytoreachthemaximumvalueof2.5kg/m3,whichis

closetothevaluefordensecordieriteceramic.Banuraizahetal.[41]

investigatedthedensificationofcordieriteandtheresultsobtained revealedthat densificationprocess wasmoreefficient withthe presenceofMgOexcessupto2.8moles,andatthesametime sig-nificantlyincreasethequantityofcordieritephase.Anotherstudy revealedthatadditionof10%aluminaresultedinincreasedporosity anddecreasedmodulusofrupture,whilefurtheradditionupto30% ledtodecreaseddielectricconstant[42].Amistaetal.[43] inves-tigatedtheinfluenceofthecompositiononthecordieritephase andreportedthatstabilityofcordieritephasewasstrongly depen-dentontheexcessofMgOandAl2O3.Theyfoundthattheexcessof

MgO/Al2O3ledtodegradationofcordierite,assuggestedbythe

for-mationofforsteriteandsilimanitephases,andalsothepresenceof spinel[41]andcristobalite[26].Inanotherstudy[44]itwasfound thatincreasedMgOandSiO2contentsenhancedtheformationof

␣-cordierite,andpossibly␮-cordierite,whereasincreasedalumina contentsuppressedtheformationof␣-cordieriteand␮-cordierite. Anotherschemeforcompositionmodificationofcordieritethat hasbeenattemptedisadditionofcomponentotherthanMgOand Al2O3.Inpreviousstudy[45]successfulproductionoffullydense

ceramicbyadditionof8wt%ZnOwasreported,inwhichcordierite emergedasthepredominantphase.Otherstudy[46]demonstrated thatcrystallisationofcordieritewithadditionofB2O3,resultedin

anincreaseinthehardnessandadecreaseinthethermal expan-sioncoefficient,withthemainphase ofcordierite.Anwaretal.

[47]reportedenhancedproductionofdenseceramicasaresultof copperadditiontocordierite.Additionofcopperupto40wt%was foundtoledtosignificantimprovementofcompressionstrength

and thermal conductivityof thecordierite, while the hardness decreases.Theresultsofseveralpreviousstudiesdiscussedabove demonstratedthatadditionofappropriateadditivescanpromote theformationofcordieritephase,mostlikelybydecreasingmelting pointandcrystallisationtemperatures.

Followingthesuccessfulutilisationofricehusksilicafor produc-tionofrefractorycordieritebythermaltreatmentinourprevious investigation[21],this current studywasaimed toexpand the investigationwiththeemphasisonmodificationofcomposition with addition of alumina in order to explore the relationship between composition and physical characteristics of refractory cordierite.Utilisationofaluminaisbasedonthefactthatduetoits excellentmechanicalproperties,aluminabasedceramicsarebeing increasinglyusedasasubstitutematerialforseveralapplications suchasabrasiveandcuttingtools.Thepresentstudyisconcerned ontheeffectofAl2O3(alumina)contentrelativetocordieriteonthe

phasetransformation,crystallisation,andphysicalcharacteristics ofrefractorycordieritepreparedfromamorphousricehusksilica. Togaininsightonseveralbasiccharacteristics,thecrystallisationof refractorycordieritewithaluminaadditionwerestudiedbymeans ofX-raydiffraction,andmicrostructuraldevelopmentofrefractory cordieritebySEMstudies.

2. Experimentalmethods

2.1. Materials

Rawhuskusedasasourceofsilicawasfromlocalricemilling industryinBandarLampungProvince,Indonesia.Aluminumoxide (Al2O3)andmagnesiumoxide(MgO)powderswithparticlesize

6.8–8.1␮mandpurity≥ 98.0%andabsolutealcohol(C2H5OH)were

purchasedfromMerck(kGaA,Damstadt,Germany).Other chemi-calsusedwereKOH5%,HCl5%,NaOH5%,anddistilledwater.

2.2. Procedure

Synthesisofcordieriterefractoryusingthesolid-statereaction methodwasperformedintwosteps,(i)preparationofsilicafrom ricehusk,(ii)preparationofalumina-cordieritewithvariousratios ofcordieritetoalumina.

2.2.1. Preparationofsilicapowderfromricehusk

Ricehusksilicawasproducedusingalkaliextractionmethod followingtheprocedurereportedinpreviousstudies[19,21].For extraction,50gdriedandcleanedhuskwasmixedwith500mlof 5%KOHsolutioninabeakerglass,followedbyboilingofthemixture for30min,andthenthemixturewasleftovernight.Themixture wasthenfilteredandthefiltrate(silicasol)wasacidifiedby drop-wiseadditionof5%HClsolutionuntilconversionofthesolintogel wascompleted.Thegelwasovendriedat110◦Cforeighthours

andthengroundintopowder.

2.2.2. Preparationofalumina-cordierite

Preparationofcordieritewasconductedfollowingthe proce-duresthathavepreviouslybeenapplied[20,21],bymixingraw materialswith thecomposition of MgO:Al2O3:SiO2 of 2:2:5 by

mass.The solid wasgroundinto powderby mortarand sieved toobtain thepowder withthesize of 200meshes. A seriesof alumina-cordieritesampleswithmassratiosofcordieriteto alu-mina of100:0, 95:5,90:10,85:15, 80:20,75:25 and70:30 was preparedbymixingaspecifiedamountsofcordieriteandalumina understirring.Eachofthesampleswaspressedinametaldiewith thepressureof2× 104N/m2toproducecylindricalpelletsandthe pelletsweresinteredattemperatureof1230◦Caccordingthe

(4)

Fig.1.TheX-raydiffractionpatternsofthesinteredsamplesattemperatureof 1230◦Cwithdifferentaluminacontent(a)0,(b)5,(c)10,(d)15,(e)20,(f)25,

and(g)30%.p=corundum,q=cristobalite,r=␣-cordierite,s=spinel,m=periclase.

temperatureprogrammedwithaheatingrateof3◦C/minand

hold-ingtimeof4hatpeaktemperatures.

2.2.3. Characterisation

TheXRDpattensofthesampleswereobtainedusingan auto-mated Shimadzu XD-610 X-ray diffractometer at the National AgencyforNuclearEnergy(BATAN),Serpong-Indonesiaoperated withCuK␣ radiation (=0.15418)radiation in the 5◦≤ 2␪≥ 80◦

range,withastepsizeof0.02,countingtime1s/step.TheX-ray tubewas operated at 40kV and 30mA, witha 0.15◦ receiving

slit.ThediffractiondatawereanalysedusingJADEsoftwareafter subtractingthebackgroundandstrippingtheCuK␣2pattern[48].

Polishedandthermallyetchedsampleswereusedfor microstruc-turalanalysisconductedwithSEM Philips-XL.Bulkdensity and apparentporosity weremeasuredbyArchimedesmethodusing distilledwaterasliquidmedia[49].Vickershardnesswas mea-suredusingaZwicktester,withthreereplicatesmeasurementfor eachloadingposition.Bendingstrengthormodulusrupture(MOR) wasdeterminedbythethree-pointmethodfollowingtheASTM C268-70.Themeasuringofthermalexpansioncoefficientwas con-ductedusingdilatometry(HarropDilatometer),inthetemperature rangeof150–600◦Cataheatingrateof5C/min.Thelinear

ther-malexpansioncoefficient(␣)wasautomaticallycalculatedusing thegeneralequation:␣=(L/L)(1/T)where:(L)istheincrease inlength,(T)isthetemperatureintervaloverwhichthesample isheatedand(L)istheoriginallengthofthespecimen.

3. Resultsanddiscussion

3.1. Effectofaluminaadditiononthephasetransformationand crystallisationofrefractorycordierite

TheXRDpatternsofthesampleswithdifferentalumina con-tentsafter sinteredat temperatureof 1230◦C are presented in

Fig. 1a–g. The phases identified with the PDF diffraction lines using search-match method[50],clearly show the presence of

␣-cordierite/Mg2Al4Si5O18(PDF-13-0294)withthemostintense

peakat2=10.50◦,spinel/MgAl

2O4(PDF-21-11520),at2=36.91◦,

corundum/␣-Al2O3(PDF-46-1212)at2=35.12◦,cristobalite/SiO2

(PDF-39-1425),at2=21.51◦,andpericlase/MgO(PDF-45-0946)at

2=42.91◦.

AccordingtoFig.1a,thepredominantcrystallinephaseinthe sample withoutadditionof aluminawas ␣-cordierite and with minorcrystallinephaseswerecorundumandspinel.Theprofiles ofcrystallinephaseofthesampleswithaluminaadditionare gen-erallysimilarFig.1a–g,intermofthecrystallinephasesidentified, exceptforthesamplewith5%aluminaaddition.Forthis partic-ularsample(Fig.1b),compared tothesample withoutalumina addition,theintensitiesofpeaksassociatedwith␣-cordieriteand spineldecreased,whereas corundumincreased,and cristobalite peaksbegantoappearstrongly.Onfurtherincreasingalumina con-tentto10%(Fig.1c),␣-cordieritepeaksdecreasedsignificantly,but spinel,corundum,andcristobaliteincreased,andthenewpeaks ofpericlasewasevidentlyexist.Withincreasingaluminafrom15 to30%,corundumandcristobalitepeaksevidentlydecreasedand spinelpeakclearly increased.Thischangein phasecomposition suggestedthatincreasedamountofaluminaledtomoreintensive diffusivereactionbetweenMgOandAl2O3,toproducemorespinel.

Thetendencyofathis trendalsoindicatedthatbinaryreaction betweenMgOandAl2O3ishighercomparedwithbinaryreaction

betweenMgOandSiO2.Thisbehaviorwasattributedtothe

forma-tionofMg–O–Albondofspinelphase,throughinteractionofAlO6

andMgO6octahedral[51,52,53].Thesefindingsdemonstratedthat

aluminatendstosuppressthegrowthofcordieritecrystals,as sup-portedbypreviousstudy[42].Thisfindingisalsoinagreementwith theresultofpreviousstudy[54],inwhichitwassuggestedthat theformationofspinelismostlikelyasaresultofinter-diffusion betweenaluminaandpericlase.Itwasobservedthatthe crytallisa-tionbecamemoreintensivewithincreasingthealuminacontent. At30%aluminaaddition,thesampleischaracterisedbythe pres-enceofthreedistinctcrystallinephases,namelyspinel,corundum andcristobaliteasseeninFig.1g.AccordingtoRietveldanalysis usingtheRieticaprogramversion1.70[55]andCrystalStructure Database[56],therefinedXRDpatternsofthesamplessinteredat 1230◦Cwiththealuminacontentof5and30%arepresentedin

Fig.2aandb.

Thebestfigureofmeritsandweightpercentage(wt%)forall sampleswerecompiledinTable1.Thegoodnessoffit(GoF)values relativelylowaccordingtobasicprincipleofGoF,inwhichtheGoF valuelessthan4%andtheRwpvalueoflessthan20%are consid-eredacceptable[57].AsshowninTable1,theamountofcordierite decreasedasthealuminacontentincreasedfrom5to30%, suggest-ingthatthephasecrystallisationwasstartedbyadditionof5%to producemorespinelandcontinuedtoproceedupto30%alumina addition,whichimpliesthatmorealuminareactedwithapericlase toformspinel.Thistrendisinagreementwithdecreasedamount ofcordieriteobservedastheamountofaluminaincreased.

Thesurfacemorphologiesofthesampleswithdifferentalumina contentsaftersubjectedtosinteringtemperatureof1230◦Cwere

analysedbySEM.Themicrographs presentedinFig.3a–gshow significanteffectofaluminaadditiononthesizeanddistribution oftheparticlesonthesurface.

(5)

Fig.2.XRDRietveldofthesinteredsamplesattemperatureof1230◦Cwithdifferentaluminacontent(a)5%and(b)30%.

Table1

Figure-ofmerits(FOMS)andweightpercentage(wt%)fromrefinementofXRDdataforthesamplessinteredat1230◦Cwithdifferentaluminaadditionfor6h.Estimated

errorsfortheleastsignificantdigitsaregiveninparentheses.[r=␣-cordierite,s=spinel,p=corundum,q=cristobalite,m=periclase].

Alumina(%) Rexp Rwp Rp GoF r s p q m

0 9.52 10.25 11.56 1.21 90.5[3] 4.7[4] 4.8[2] – –

5 8.90 10.52 11.32 1.39 50.6[2] 4.1[2] 15.2[3] 30.1[4] –

10 10.89 11.32 8.20 1.08 0.9[4] 14.5[3] 40.2[4] 42.3[2] 2.1[3]

15 11.23 11.68 8.50 1.06 0.6[2] 30.8[2] 36.9[5] 29.4[4] 2.3[2]

20 11.31 11.72 8.56 1.07 0.3[1] 36.6[2] 34.4[3] 25.3[4] 3.3[4]

25 10.61 10.92 7.92 1.06 0.4[2] 41.7[3] 31.1[5] 24.1[3] 2.7[3]

30 10.50 10.79 7.67 1.05 0.4[1] 45.4[2] 28.7[5] 22.5[4] 3.0[1]

Fig.3.Thescanningelectronmicroscopy(SEM)imagesofthesamplessinteredat1230◦Cwithdifferentaluminacontent(a)0%,(b)5%,(c)10%,(d)15%,(e)20%,(f)25%,and (g)30%.p=corundum,q=cristobalite,r=␣-cordierite,s=spinel.

finegrainsof␣-cordierite,coveredbylargergrainsofspinel, corun-dum,andcristobaliteclusters,whichaccordingtoXRDresultsare composedof␣-cordierite,spinel,corundum,andcristobalite.The presenceofspinel,corundum,andcristobalitephasesinthelast twosamplessuggestthatadditionofaluminaledto decomposi-tionof␣-cordierite,andinhibitedthegrowthof␣-cordieritephase. Theaboveobservationmaybedue toincreasedviscosityofthe glassymatrixasaresultofadditionalalumina,whichsuppressed themigrationofatomsandinhibitedthegrowthofcordierite.This

changeissupportedbytheresultsofXRDanalysispresentedin Fig.1bandc.

(6)

Fig.4.Density(a)andporosity(b)ofcordieriteasafunctionofaluminaaddition.

to30%,the␣-cordieritehasdecomposedcompletelyintospinel, corundumandcristobalite.Thesesurfacecharacteristicssuggested thatatthesecompositions,thecordieritephasehasbeenconverted intoliquefied corundum which penetratedthe periclase phase, thuspromotingtheformationofspinelasthedominantphase,as verifiedBytheXRDresults(seeTable1).WiththeRietveld calcu-lation,itwasfoundthatthequantityofspinelincreasedfrom30.8 to45.4wt%anddecreasedcorundumandcristobaliteasalumina increasedfrom15to30%.

3.2. Effectofaluminaadditiononthephysicalcharacteristicsof refractorycordierite

Thephysicalpropertiesofthesinteredsamplesatdifferent alu-minaadditionsareshowninFigs.4–6.

Fig.4representsthevariationofdensityandporositywith addi-tionof alumina.It is clearthatthe samplewithoutaddition of aluminahasthelowestdensity(2.34g/cm3)andthehighest

poros-ity(26.75%).Additionof 5%alumina causesa smallincrease of densityto2.52g/cm3,anddecreaseofporosityto25.65%.Addition

of10%aluminaresultsinasharpincreaseofdensity(3.51g/cm3)

butasmalldecreaseofporosity(24.59%).Thisdensitychangeis mostlikelyattributedtotheincreasedamountofspineland corun-dumphases(Table1),whileasmalldecreaseoftheporositymaybe associatedwithrelativelysmalldifferencebetweenthedensitiesof spinelandcorundumphases.

Further addition of alumina up to 30% shows only a small increaseof density buta sharpdecrease ofporosity (5.78%) up to20%aluminaadditionanda smalldecreaseofporosityupto 30%aluminaaddition.AsshowninFig.4a,thedensitywasslightly increasedandreachedthevalueof3.72g/cm3ataluminacontentof

30%.Asharpdecreaseoftheporosityupto20%aluminais proba-blyduetothematchbetweendensitiesofspinelandcorundum, whereasadditionof aluminain higherquantitiesdidnotcause a remarkabledecrease of porosity.Increasing thealumina con-tentover20%seemstosuppresstheporespropagationinsidethe matrix,causingnoabruptporositychangeoccurred.Althoughthe densityincreasedinasmallextentfrom15to30%alumina, signif-icantchangeoccurredintheporosityofthesesamples.Thisisdue tothehighdensityofspinelandcorundumwhichcauseddensity

Fig.5. Hardness(a)andbendingstrength(b)ofcordieriteasafunctionofalumina addition.

increased,andthehighdensitiesofspinelandcorundumwhich madeporositydecreased.Theseresultsareinaccordancewiththe resultsofothers,whoreportedthatthedensityofcorundum[58], spinel[59,60],andpericlase[61]phasesis higherthanthoseof cordieriteandcristobalite[59].Inthosepreviousstudies,the den-sityofcorundum,spinelandpericlaseare3.97,3.58and3.58g/cm3,

respectively,whileforcordieriteandcristobalite,thereported val-uesare2.3g/cm3and2.6g/cm3respectively.Theseliteraturedata

areinagreementwiththefindingsinthispresentstudy,inwhich increasedamountofaluminawasfoundtoenhancetheformation ofspinel(Table1),asdiscussedabove.

Fig.5representsthechangeofbendingstrengthandhardness ofthesamplesasaresultofaluminaaddition.

(7)

Fig.6. Coefficientofthermalexpansionofcordieriteasafunctionofalumina addi-tion.

inphasecompositionandporosityofthesamples.Otherfactors thatcontroltheandhardnessandbendingstrengthareprobably boththehomogeneityandthedistributionoftheparticles,which isinaccordancewiththesurfacemorphologyofthesamples,as showninFig.3d–g.

Fig.6showsthechangeinthermalexpansioncoefficientofthe samplesasafunctionofaluminaadditiontocordierite.

Itisclearlyobservedthatcordieritewithoutadditionofalumina hasthelowestthermalexpansioncoefficient(2.46× 10−6/◦C),and additionof5%aluminacausesasmallincreaseofthermal expan-sioncoefficient(2.52× 10−6/C).Theslowincreaseofthethermal

expansioncoefficientwithaluminaadditionof5%isattributedto thedecreaseofcordieriteandthepresenceofcorundumand cristo-balitephasesasshowninTable1.Furtheradditionofaluminaup to15%resultsinasharpincreaseofthethermalexpansion coeffi-cient,andthenslightlyincreasedtothefinalvalueof9.5×10−6/◦C at30%.It canbededucedfromtheresultsthat,asthealumina content increased,the thermal expansion coefficientincreased, most probably due to the decreased amount of cordierite and increasedamountofspinel(Table1),andalsodecreased poros-ity(Fig.4b).Thetrendobservedinthisstudyconcerningthermal expansioncoefficientisconsistentwiththerelationshipbetween thermalexpansioncoefficientwiththevolumefractionofthe sam-pleand porosityas describedin thepreviousstudies,in which itwasexplainedthatthermalexpansioncoefficienthasadirect relationshipwiththeamountofphase andaninverse relation-shipwiththeamountoftheporosity[61–63],withtheequation:

˛=(˛1v1+˛2v2+...+˛nvn)(1P),where˛12and˛narethe ther-malexpansioncoefficientsofeachrawmaterial,v1,v2andvnare

thevolume fractions, and Pis theporosity. In this respect,for compositematerials,suchasceramic,thecoefficientofthermal expansionofthematerialiscontributionofthecoefficientof ther-malexpansionofeachphasepresentsinthesample,dependingon thevalueofthecoefficientandvolumefractionofthephase.Itcan beseenthatcoefficientofthermalexpansionofspinel,corundum andpericlasearehigherthanthoseofcordieriteandcristobalite, whichareinagreementwiththeresultsdescribedinpreviousstudy

[60].Morespecifically,itwasreportedthatthecoefficientof ther-malexpansionofpericlase[64],corundum[65],spinel[26,66]are

10.8× 10−6/C,8.8× 10−6/Cand9.17× 10−6/C,respectively,and

cristobaliteis2.6× 10−6/◦C,andthermalexpansioncoefficientof cordieriteis2.65×10−6/◦C[26,66].Inaccordancewiththeabove valuesreportedbyothers,itisclearthatincreasedthermal expan-sioncoefficientofthesamplesinvestigatedinthisstudyismost likelyassociatedwithincreasedamountofspinelanddecreased amountofcordierite,asconfirmedbyXRDresults(Table1),also decreasedporosity(Fig.4b).

4. Conclusions

Thisstudydemonstratedthatrefractorycordieritewas success-fullyproducedformricehusksilicaasrenewablerawmaterials. Furthermore, the cordierite was modified by addition of var-iedamountsofalumina,resultinginenhancedtransformationof cordieriteintospinel,corundumandcristobalite.This transforma-tionledtosignificantchangeofthecharacteristicsofthesamples, includeincreaseddensity,hardness,bendingstrengthandthermal expansion coefficient, followed by decreased porosity. Further-more,thesamplewithaluminaadditionof30%consistsof45.4% spinel,28.7%corundumand22.5%cristobalite.Thus,thesamples arecordieriterich-aluminatypes.Basedonthesecharacteristics,it isevidentthatrefractorycordieriteofthemodifiedsampleswith aluminaexistasdenseformwiththecharacteristicssuitablefor mechanicalapplications,suchasabrasivedevices.

Acknowledgments

TheauthorswishtothankandappreciatetheDirectorate Gen-eralofHigherEducation(DIKTI),MinistryofResearch,Technology, andHigherEducation,RepublicofIndonesiaforresearchfunding providedthroughtheCompetencyResearchGrantProgram,Batch II,2016,withcontractnumber:040/SP2H/LT/DRPM/II/2016 and 79/UN26/8/LPPM/2016.

References

[1]A.A.M.Daifullah,N.S.AwwadandS.A.El-Reefy,J.Chem.Eng.Process.,43,

193–201(2004).

[2]V.P.Della,I.KuhnandD.Hotza,Mater.Lett.,57,818–821(2002).

[3]K.Amutha,R.RavibaskarandG.Sivakumar,Int.Nanotechnol.Appl.,4,61–66

(2010).

[4]M.Tomozawa,D.L.KimandV.Lou,J.Non-Cryst.Solids,296,102(2001).

[5]P.A.Tanner,B.YanandH.Zhang,J.Mater.Sci.,35,4325(2000).

[6]G.Wu,J.Wang,J.Shen,T.Yang,Q.Zhang,B.Zhou,Z.Deng,F.Bin,D.Zhouand

F.Zhang,J.Non-Cryst.Solids,275,169(2000).

[7]L.SunandK.Gong,Ind.Eng.Chem.Res.,40,5861(2001).

[8]C.Real,M.D.AlcalaandJ.M.Criado,J.Am.Ceram.Soc.,79,2012(1996).

[9]S.Chandrasekhar,K.G.Satyanarayana,P.PramadaandT.N.Gupta,J.Mater.Sci.,

38,3159(2003).

[10]M.Subarna,P.Banerjee,S.PurakayashaandB.Ghosh,Mater.Chem.Phys.,109,

169–173(2008).

[11]S.K.Singh,B.C.MohantyandS.Basu,Bull.Mater.Sci.,25,561–563(2002).

[12]B.Karmakar, P.Kundu,S.Jana andR.N. Dwiredi,J. Am.Ceram.Soc., 85,

2572–2574(2002).

[13]M.ChatterjeeandM.K.Naskar,Ceram.Int.,32,623–632(2006).

[14]M.F.Serra,M.S.Conconi,M.R.Gauna,G.Suárez,E.F.AgliettiandN.M.Rendtorff,

J.Am.Ceram.Soc.,4,61–67(2016).

[15]S.Sembiring,Indones.J.Chem.,11,85–89(2011).

[16]W.Simanjuntak,S.SembiringandK.Sebayang,J.Indones.Chem.,12,119–125

(2012).

[17]W.Simanjuntak,S.Sembiring,P.Manurung,R.SitumeangandI.M.Low,Ceram.

Int.,39,9369–9375(2013).

[18]S.SembiringandW.Simanjuntak,MakaraJ.Sci.,16,77–82(2012).

[19]S.Sembiring,W.Simanjuntak,P.Manurung,D.AsmiandI.M.Low,Ceram.Int.,

40,7067–7072(2014).

[20]W.SimanjuntakandS.Sembiring,MakaraJ.Sci.,15,97–100(2011).

[21]S.Sembiring,W.Simanjuntak,R.Situmeang,A.RiyantoandK.Sebayang,Ceram.

Int.,42,8431–8437(2016).

[22]E.YalamacandS.Akkurt,Ceram.Int.,32,825–832(2006).

[23]R.Goren,H.GocmezandC.Ozgur,Ceram.Int.,32,407–409(2006).

[24]J.R.González-Velesco,R.Ferret,R.Lopez-FonsecaandM.A.Gutiérrez-Ortiz,

PowderTechnol.,153,34–42(2005).

(8)

[26]Z.Acimovic,L.Pavlovic,L.Trumbulovic,L.AndricandM.Stamatovic,Mater.

Lett.,57,2651–2656(2003).

[27]A.Yamuna,S.Honda,K.Sumita,M.Yanagihara,S.HashimotoandH.Awaji,

MicroporousMesoporousMater.,85,169–175(2005).

[28]A.Chowdhury,S.Mitra,S.Das,A.Sen,G.K.SamantaandP.Datta,Ceram.Int.,

56,18–22(2007).

[29]A.Chowdhury,S.Mitra,S.Das,A.Sen,G.K.SamantaandP.Datta,Ceram.Int.,

56,98–102(2007).

[30]P.LaokulaandS.Maensirib,Adv.Sci.Technol.,45,242–247(2006).

[31]J.R.González-Velasco,M.A.Gutiérrez-Ortiz,R.Ferret,A.AranzabalandJ.A.

Botas,Mater.Sci.,34,1999–2002(1999).

[32]D.L.Evans,G.R.Fischer,J.E.GeigerandF.W.Martin,J.Am.Ceram.Soc.,63,

629–634(1980).

[33]Y.Kobayashi,K.SumiandE.Kato,Ceram.Int.,26,739–743(2000).

[34]M.E.MilbergandH.D.Blair,J.Am.Ceram.Soc.,60,372–373(1997).

[35]A.Yamuna,R.Jhonson,Y.R.MayajanandM.Lalithambika,J.Eur.Ceram.Soc.,

24,65–73(2004).

[36]S.KuramaandH.Kurama,Ceram.Int.,34,269–272(2008).

[37]K.Zhu,Y.D.Yang,J.WuandR.Zhang,Adv.Mater.,105–106,802–804(2010).

[38]E.ThomaidisandG.Kostakis,Ceram.Int.,41,8(2015).

[39]B.C.LimandH.M.Jang,J.Am.Ceram.Soc.,76,1482–1490(1993).

[40]L.Ye,Q.Haoran,C.XudongandZ.Ruifang,Mater.Lett.,116,262–264(2014).

[41]J.Banuraizah,H.MohamadandZ.A.Ahmad,J.Am.Ceram.Soc.,94,687–694

(2011).

[42]A.M.Salwa,A.HameedandI.M.Bakr,J.Eur.Ceram.Soc.,27,1893–1897(2007).

[43]P.Amista,M.Cesari,A.Montenero,G.GnappiandL.Lan,J.Non-Cryst.Solids,

192,529–533(1995).

[44]S.P.HwangandJ.M.Wu,J.Am.Ceram.Soc.,84,1108–1112(2011).

[45]G.H.ChenandX.Y.Liu,J.AlloysCompd.,431,282–286(2007).

[46]Y.DemireiandE.Gusnay,J.Ceram.Process.Res.,12,352–356(2011).

[47]H.Anwar,A.Al-Fouadi,R.OlaandA.Al-Rubaye,Int.J.Appl.Innov.Eng.Manage.,

3,107–112(2014).

[48]JADEProgramXRDPatternProcessingPC,MaterialDataInc(MDI),Livermore,

CA(1997).

[49]AustralianStandard,RefractoriesandRefractoryMaterialPhysicalTest

Meth-ods:TheDeterminationofDensity,PorosityandWaterAdsorption,Australian

Standard(1989),pp.1–4,1774.

[50]PowderDiffractionFile(TypePDF-2),DiffractionDataforXRDIdentification,

InternationalCentreforDiffractionData,PA,USA(1997).

[51]R.Petrovic,D.J.Janackoviˇc,S.Zec,S.DrmaniˇcandL.K.Gvozdenoviˇc,J.Sol–Gel

Sci.Technol.,28,111–118(2003).

[52]D.J.Janackoviˇc,V.Jokanoviˇc,L.K.Gvozdenovic,S.ZecandD.J.Uskokoviˇc,J.

Mater.Sci.,32,163–168(1997).

[53]M.Okiyama,T.FukuiandC.Sakurai,J.Am.Ceram.Soc.,75,153–160(1992).

[54]M.K.NaskarandM.Chatterjee,J.Eur.Ceram.Soc.,24,3499–3508(2004).

[55]B.A.Hunter,SoftwareRieticafor95/98WindowNT,Version1,70(1997).

[56]R.T. DownsandM.Hall-Wallase, AmericanMineralogistCrystalStructure

Database,AmericanMineralogist(1997).

[57]E.H.Kisi,Mater.Forum,18,135–153(1994).

[58]AluminiumOxide(Alumina)CeramicsandProperties,MarketchInternational

Inc(2002).

[59]I.Ganesh,Ceram.Int.,37,2237–2245(2011).

[60]A.H.Charles,HandbookofCeramicGlassesandDiamonds,McGrawHills,

Com-panyInc,USA(2001).

[61]Y.Imanaka,MultilayeredLowTemperatureCofiredCeramics(LTCC)

Technol-ogy,SpringerScience+BussinessMedia,Inc,NewYork,USA(2005),pp.42–44.

[62]T.Ono,K.Matsumaru,I.Juárez-Ramírez,L.M.Torres-MartínezandK.Ishizaki,

Mater.Sci.Forum,620–622,715–718(2009).

[63]P.Beatrice,K.MiroslavandK.Miriam,Ceram.Silik.,46,159–165(2002).

[64]C.G.Kinniburgh,J.Phys.C:SolidStatePhys.,9,2692–2715(1976).

[65]H.Schneider,K.OsakaandJ.A.Pask,MulliteandMulliteCeramics,Wiley,

Chich-ester(1994),pp.1–251.

(9)

Journal of Asian Ceramic Societies

Volume 5 , Issue 2

June 2017

Available online at www.sciencedirect.com

Effect of compaction pressure on the performance of a non-symmetrical NiO–SDC/SDC composite anode fabricated by conventional furnace

M. SEYEDNEZHAD, A. RAJABI, A. MUCHTAR, M.R. SOMALU, P. OOSHAKSARAEI . . . 77

Preparation of forsterite refractory using highly abundant amorphous rice husk silica for thermal insulation

S.K.S. HOSSAIN, L. MATHUR, P. SINGH, M.R. MAJHI . . . 82

Effects of pore distribution of hydroxyapatite particles on their protein adsorption behavior

T. NAGASAKI, F. NAGATA, M. SAKURAI, K. KATO . . . 88

X-ray peak profi le analysis of solid-state sintered alumina doped zinc oxide ceramics by Williamson–Hall and size-strain plot methods

B. RAJESH KUMAR, B. HYMAVATHI . . . 94

Fabrication of hydrophobic polymethylsilsesquioxane aerogels by a surfactant-free method using alkoxysilane with ionic group

G. HAYASE, S. NAGAYAMA, K. NONOMURA, K. KANAMORI, A. MAENO, H. KAJI, K. NAKANISHI . . . 104

Structural and Magnetic properties of lithium ferrite substituted BaTi0.9Zr0.1O3 composite ceramics

G.R. GAJULA, L.R. BUDDIGA, M.P. DASARI, A.K. CHINTHABATTINI, J. KOLTE, S. KURIMELLA . . . 109

Elastic properties of lithium cobalt oxide (LiCoO2)

E.J. CHENG, N.J. TAYLOR, J. WOLFENSTINE, J. SAKAMOTO . . . 113

Effect of hydrophobic nano-silica on the thermal insulation of fi brous silica compacts

T.-W. LIAN, A. KONDO, T. KOZAWA, M. AKOSHIMA, H. ABE, T. OHMURA, W.-H. TUAN, M. NAITO . . . 118

Synthesis of novel green phosphate pigments in imitation of natural ores

H. ONODA, K. SUGIMOTO. . . 123

Dry sliding wear behavior of AA6061 aluminum alloy composites reinforced rice husk ash particulates produced using compocasting

J.A.K. GLADSTON, I. DINAHARAN, N.M. SHERIFF, J.D.R. SELVAM . . . 127

Synthesis, characterization and visible light photocatalytic activity of Mg2+ and Zr4+ co-doped TiO

2 nanomaterial for degradation of methylene blue

D.S. MESHESHA, R.C. MATANGI, S.R. TIRUKKOVALLURI, S. BOJJA . . . 136

Synthesis of galaxite by plasma fusion & its application in refractory for cement rotary kiln

L.N. PADHI, P. SAHU, N. SAHOO, S.K. SINGH, J.K. TRIPATHY . . . 144

Electrical and optical properties of nano-crystalline RE-Ti-Nb-O6 (RE = Dy, Er, Gd, Yb) synthesized through a modifi ed combustion method

F. JOHN, J. JACOB, J.K. THOMAS, S. SOLOMON . . . 151

Fabrication of polylactic acid/hydroxyapatite/graphene oxide composite and their thermal stability, hydrophobic and mechanical properties

M. GONG, Q. ZHAO, L. DAI, Y. LI, T. JIANG . . . 160

Structural and electronic transformations in quadruple iron perovskite Ca1xSrxCu3Fe4O12

I. YAMADA, K. SHIRO, N. HAYASHI, S. KAWAGUCHI, T. KAWAKAMI, R. TAKAHASHI, T. IRIFUNE . . . 169

Roles of ethylene glycol solvent and polymers in preparing uniformly distributed MgO nanoparticles

C. HAI, S. LI, Y. ZHOU, J. ZENG, X. REN, X. LI . . . 176

Synthesis of LaO0.5F0.5BiS2 nanosheets by ultrasonifi cation

A. MIURA, S. ISHII, M. NAGAO, R. MATSUMOTO, Y. TAKANO, S. WATAUCHI, I. TANAKA, N.C. ROSERO-NAVARRO, K. TADANAGA . . . 183

Effect of alumina addition on the phase transformation and crystallisation properties of refractory cordierite prepared from amorphous rice husk silica

S. SEMBIRING, W. SIMANJUNTAK, R. SITUMEANG, A. RIYANTO, P. KARO-KARO . . . 186

Synthesis and thermal study of SnS nanofl akes

M.D. CHAUDHARY, S.H. CHAKI, M.P. DESHPANDE . . . 193

Cordierite containing ceramic membranes from smectetic clay using natural organic wastes as pore-forming agents

W. MISRAR, M. LOUTOU, L. SAADI, M. MANSORI, M. WAQIF, C. FAVOTTO . . . 199

Unique crystallization behavior of sodium manganese pyrophosphate Na2MnP2O7 glass and its electrochemical properties

M. TANABE, T. HONMA, T. KOMATSU . . . 209

Effect of PVP on the synthesis of high-dispersion core–shell barium-titanate–polyvinylpyrrolidone nanoparticles

J. LI, K. INUKAI, Y. TAKAHASHI, A. TSURUTA, W. SHIN . . . 216

(10)

Journal of Asian Ceramic Societies

Volume 5, Issue 2, June 2017

Th

e Ceramic Society of Japan and the Korean Ceramic Society.

Journal of Asian Ceramic Societies

(11)

Journal of Asian Ceramic Societies

Shanghai Institute of Ceramics, Shanghai, China

LianMeng Zhang

Wuhan University of Technology, Wuhan, China

General Editor

Tokyo Medical and Dental University, Tokyo, Japan

Taras Kolodiazhnyi

National Institute for Materials Science, Tsukuba, Japan

Deug Joong Kim

Shanghai Institute of Ceramics, Shanghai, China

Jing-Feng Li

Tsinghua University, Beijing, China

Zhengyi Fu

Wuhan University of Technology, Wuhan, China

Cewen Nan

Tsinghua University, Beijing, China

Jianrong Qiu

South China University of Technology, Guangzhou, China

Yanchun Zhou

Aerospace Research Institute of Materials and Processing, Beijing, China

Shaoming Dong

Shanghai Institute of Ceramics, Shanghai, China

Guo-Jun Zhang

Shanghai Institute of Ceramics, Shanghai, China

Shu-Hong Yu

University of Science and Technology of China, Hefei, China

Wei-Hsing Tuan

National Taiwan University, Taipei, Taiwan

Chun-Hway Hsueh

National Taiwan University, Taipei, Taiwan

Gordon Thorogood

Referensi

Dokumen terkait

Penelitian bertujuan untuk menganalisis implementasi strategi promosi kesehatan (advokasi, bina suasana, dan pemberdayaan masyarakat) dan pengaruhnya terhadap partisipasi

Pemasangan gipsum pada knalpot dapat mengurangi kadar emisi gas buang CO pada motor Yamaha MIO AT Tahun 2010 menjadi lebih rendah dibandingkan dengan tanpa

Puji syukur peneliti panjatkan kepada Allah SWT atas limpahan rahmat dan karunia-Nya sehingga dapat menyelesaikan skripsi yang berjudul “ Peningkatan Keterampilan

2) Diskusikan bersama klien tentang manfaat berhubungan dengan orang lain 3) Beri reinforcement positif terhadap kemampuan mengungkapkan perasaan.. tentang keuntungan berhubungan

Out of 17 partnership NPOs in my study, 11 (64.5%) were established less than ten years prior to the time of the interviews, while only 25.0% of the non-partnership NPOs were less

Perencanaan Kinerja merupakan proses penyusunan rencana kinerja sebagai penjabaran dari sasaran dan program yang telah ditetapkan dalam rencana strategik, dan

Pokok masalah penelitian ini adalah hubungan Islam dan negara (studi pemikiran politik Munawir Sjadzali). Kemudian diuraikan dalam sub masalah, yaitu 1) Bagaimana corak

Hudoyo (1998) menyatakan, belajar Matematika merupakan proses membangun/ mengkonstruksi konsep dan prinsip, tidak sekedar penggrojokan yang terkesan pasif dan statis,