• Tidak ada hasil yang ditemukan

Penentuan Kadar Kesadahan Air dengan Met

N/A
N/A
Protected

Academic year: 2018

Membagikan "Penentuan Kadar Kesadahan Air dengan Met"

Copied!
9
0
0

Teks penuh

(1)

Penentuan Kadar Kesadahan Air dengan Metode Titrasi EDTA BAB I

PENDAHULUAN

1.1 Latar Belakang

Semua makhluk hidup di bumi ini butuh air. Air merupakan pelarut yang sangat baik, sehingga di alam umumnya berada dalam keadaan tidak murni. Air alam mengandung berbagai jenis zat, baik yang larut maupun yang tidak larut serta mengandung mikroorganisme. Jika kandungan bahan-bahan dalam air tersebut tidak mengganggu kesehatan, air dianggap bersih dan layak untuk diminum, air dikatakan tercemar jika terdapat gangguan terhadap kualitas air sehingga air tersebut tidak dapat digunakan untuk tujuan penggunaannya. Pencemaran air dapat terjadi karena masuknya makhluk hidup, zat, dan energi terdalam air oleh kegiatan manusia. Keadaan itu dapat

menurunkan kualitas air sampai ke tingkat tertentu dan membuat air tidak berfungsi lagi sesuai dengan tujuan penggunaannya.

Air adalah pelarut yang baik, sehingga dapat melarutkan zat-zat dari batu-batuan yang berkontak dengannya. Bahan-bahan mineral yang dapat terkandung dalam air karena kontaknya dengan batu-batuan tersebut antara lain: CaCO3, MgCO3, CaSO4, MgSO4, NaCl, Na2SO4, SiO2 dan sebagainya. Dimana air yang banyak mengandung ion-ion kalsium dan magnesium dikenal sebagai air sadah. Air sadah adalah air yang di dalamnya terlarut garam-garam kalsium dan magnesium air sadah tidak baik untuk mencuci karena ion-ion Ca2+ dan Mg2+ akan berikatan dengan sisa asam karbohidrat pada sabun dan membentuk endapan sehingga sabun tidak berbuih. Senyawa-senyawa kalsium dan magnesium ini relatif sukar larut dalam air, sehingga senyawa-senyawa ini cenderung untuk memisah dari larutan dalam bentuk endapan atau precipitation yang kemudian melekat pada logam (wadah) dan menjadi keras sehingga mengakibatkan timbulnya kerak (Bintoro, 2008).

Air sadah dibagi menjadi dua yaitu air sadah sementara dan air sadah tetap. Air sadah sementara yaitu air yang kesadahannya disebabkan oleh kalsium dan magnesium dari karbohidrat dan bikarbonat, sedangkan air sadah permanen atau tetap disebutkan oleh garam kalsium sulfat dan klorida. Manfaat penentuan kesadahan sementara dan kesadahan permanen yaitu untuk mengetahui tingkat kesadahan air karena air sadah dapat menimbulkan kerak sehingga dapat menyumbat pipa saluran air panas seperti radiator yang digunakan dalam mesin-mesin pertanian. EDTA (ethylene diamine tetraacetic) merupakan suatu kompleks kelat yang larut ketika ditambahkan ke dalam suatu larutan yang mengandung kation logam tertentu seperti Ca2+ dan Mg2+, di mana akan membentuk kompleks dengan logam-logam tersebut. Ketika ditambahkan suatu indikator EBT ke dalam larutan yang mengandung kompleks tersebut maka akan menghasilkan perbahan warna pada pH tertentu, sehingga dengan prinsip ini nilai kesadahan air dapat dianalisis.

1.2 Perumusan Masalah

1. Bagaimana pengertian kesadahan yang sebenarnya?

2. Bagaimana metode yang dapat digunakan untuk mengukur nilai kesadahan? 1.3 Tujuan

1. Mengetahui pengertian dari kesadahan

2. Mengetahui metode yang dapat digunakan untuk mengukur nilai kesadahan 1.4 Manfaat

Pembuatan makalah ini diharapkan dapat memberikan informasi tentang kesadahan serta cara yang dapat digunakan untuk mengukur nilai kesadahan tersebut.

BAB II

ISI

2.1 Tinjauan Pustaka

2.1.1 Pengertian Kesadahan

Pada awalnya, kesadahan air didefinisikan sebagai kemampuan air untuk mengendapkan sabun, sehingga

(2)

Kesadahan terutama disebabkan oleh keberadaan ion-ion kalsium (Ca2+) dan magnesium (Mg2+) di dalam air. Keberadaannya di dalam air mengakibatkan sabun akan mengendap sebagai garam kalsium dan magnesium, sehingga tidak dapat membentuk emulsi secara efektif. Kation-kation polivalen lainnya juga dapat mengendapkan sabun, tetapi karena kation polivalen umumnya berada dalam bentuk kompleks yang lebih stabil dengan zat organik yang ada, maka peran kesadahannya dapat diabaikan. Oleh karena itu penetapan kesadahan hanya

diarahkan pada penentuan kadar Ca2+ dan Mg2+. Kesadahan total didefinisikan sebagai jumlah miliekivalen (mek) ion Ca2+ dan Mg2+ tiap liter sampel air (Anonim, 2008).

Kesadahan atau hardness adalah salah satu sifat kimia yang dimiliki oleh air. Penyebab air menjadi sadah adalah karena adanya ion-ion Ca2+, Mg2+. Atau dapat juga disebabkan karena adanya ion-ion lain dari polyvalent metal (logam bervalensi banyak) seperti Al, Fe, Mn, Sr dan Zn dalam bentuk garam sulfat, klorida dan bikarbonat dalam jumlah kecil.

Air yang banyak mengandung mineral kalsium dan magnesium dikenal sebagai “air sadah”, atau air yang sukar untuk dipakai mencuci. Senyawa kalsium dan magnesium bereaksi dengan sabun membentuk endapan dan mencegah terjadinya busa dalam air. Oleh karena senyawa-senyawa kalsium dan magnesium relatif sukar larut dalam air, maka senyawa-senyawa itu cenderung untuk memisah dari larutan dalam bentuk endapan atau presipitat yang akhirnya menjadi kerak.

Pengertian kesadahan air adalah kemampuan air mengendapkan sabun, di mana sabun ini diendapkan oleh ion-ion yang saya sebutkan diatas. Karena penyebab dominan/utama kesadahan adalah Ca2+ dan Mg2+, khususnya Ca2+, maka arti dari kesadahan dibatasi sebagai sifat / karakteristik air yang menggambarkan konsentrasi jumlah dari ion Ca2+ dan Mg2+, yang dinyatakan sebagai CaCO3. Kesadahan ada dua jenis, yaitu (Giwangkara, 2008) :

1. 1. Kesadahan sementara

Adalah kesadahan yang disebabkan oleh adanya garam-garam bikarbonat, seperti Ca(HCO3)2, Mg(HCO3)2. Kesadahan sementara ini dapat / mudah dieliminir dengan pemanasan (pendidihan), sehingga terbentuk encapan CaCO3 atau MgCO3.

Reaksinya:

Ca(HCO3)2 → dipanaskan → CO2 (gas) + H2O (cair) + CaCO3 (endapan)

Mg(HCO3)2 → dipanaskan → CO2 (gas) + H2O (cair) + MgCO3 (endapan) 1. 2. Kesadahan tetap

Adalah kesadahan yang disebabkan oleh adanya garam-garam klorida, sulfat dan karbonat, misal CaSO4, MgSO4, CaCl2, MgCl2. Kesadahan tetap dapat dikurangi dengan penambahan larutan soda – kapur (terdiri dari larutan natrium karbonat dan magnesium hidroksida) sehingga terbentuk endapan kaslium karbonat (padatan/endapan) dan magnesium hidroksida (padatan/endapan) dalam air.

Reaksinya:

CaCl2 + Na2CO3 → CaCO3 (padatan/endapan) + 2NaCl (larut) CaSO4 + Na2CO3 → CaCO3 (padatan/endapan) + Na2SO4 (larut) MgCl2 + Ca(OH)2 → Mg(OH)2 (padatan/endapan) + CaCl2 (larut) MgSO4 + Ca(OH)2 → Mg(OH)2 (padatan/endapan) + CaSO4 (larut)

Ketika kesadahan kadarnya adalah lebih besar dibandingkan penjumlahan dari kadar alkali karbonat dan bikarbonat, yang kadar kesadahannya eqivalen dengan total kadar alkali disebut “ kesadahan karbonat; apabila kadar kesadahan lebih dari ini disebut “kesadahan non-karbonat”. Ketika kesadahan kadarnya sama atau kurang dari penjumlahan dari kadar alkali karbonat dan bikarbonat, semua kesadahan adalah kesadahan karbonat dan kesadahan noncarbonate tidak ada. Kesadahan mungkin terbentang dari nol ke ratusan miligram per liter, bergantung kepada sumber dan perlakuan dimana air telah subjeknya.

2.1.2 EDTA

(3)

Etilendiamintetrasetat atau yang dikenal dengan EDTA, merupakan senyawa yang mudah larut dalam air, serta dapat diperoleh dalam keadaan murni. Tetapi dalam penggunaannya, karena adanya sejumlah tidak tertentu dalam air, sebaiknya distandardisasi terlebih dahulu.

Gambar 2.1 Struktur EDTA

Terlihat dari strukturnya bahwa molekul tersebut mengandung baik donor elektron dari atom oksigen maupun donor dari atom nitrogen sehingga dapat menghasilkan khelat bercincin sampai dengan enam secara serempak (Khopkar, 1990).

2.1.3 Metode Titrasi EDTA

Kesadahan total yaitu ion Ca2+ dan Mg2+ dapat ditentukan melalui titrasi dengan EDTA sebagai titran dan

menggunakan indikator yang peka terhadap semua kation tersebut. Kejadian total tersebut dapat dianalisis secara terpisah misalnya dengan metode AAS (Automic Absorption Spectrophotometry) (Abert dan Santika, 1984). Asam Ethylenediaminetetraacetic dan garam sodium ini (singkatan EDTA) bentuk satu kompleks kelat yang dapat larut ketika ditambahkan ke suatu larutan yang mengandung kation logam tertentu. Jika sejumlah kecil Eriochrome Hitam T atau Calmagite ditambahkan ke suatu larutan mengandung kalsium dan ion-ion magnesium pada satu pH dari 10,0 ± 0,1, larutan menjadi berwarna merah muda. Jika EDTA ditambahkan sebagai satu titran, kalsium dan magnesium akan menjadi suatu kompleks, dan ketika semua magnesium dan kalsium telah manjadi kompleks, larutan akan berubah dari berwarna merah muda menjadi berwarna biru yang menandakan titik akhir dari titrasi. Ion magnesium harus muncul untuk menghasilkan suatu titik akhir dari titrasi. Untuk mememastikankan ini, kompleks garam magnesium netral dari EDTA ditambahkan ke larutan buffer.

Penentuan Ca dan Mg dalam air sudah dilakukan dengan titrasi EDTA. pH untuk titrasi adalah 10 dengan indikator Eriochrom Black T (EBT). Pada pH lebih tinggi, 12, Mg(OH)2 akan mengendap, sehingga EDTA dapat

dikonsumsi hanya oleh Ca2+ dengan indikator murexide. Adanya gangguan Cu bebas dari pipa-pipa saluran air dapat di masking dengan H2S. EBT yang dihaluskan bersama NaCl padat kadangkala juga digunakan sebagai indikator untuk penentuan Ca ataupun hidroksinaftol. Seharusnya Ca tidak ikut terkopresitasi dengan Mg, oleh karena itu EDTA direkomendasikan.

Kejelasan dari titik- akhir banyak dengan pH peningkatan. Bagaimanapun, pH tidak dapat ditingkat dengan tak terbatas karena akibat bahaya dengan kalsium karbonat mengendap, CaCO3, atau hidroksida magnesium, Mg(OH)2 , dan karena perubahan celup warnai di ketinggian pH hargai. Ditetapkan pH dari 10,0 ± 0,1 adalah satu

berkompromi kepuasan. Satu pembatas dari 5 min disetel untuk jangka waktu titrasi untuk memperkecil kecenderungan ke arah CaCO3 pengendapan.

BAB III

METODOLOGI

3.1 Alat dan Bahan

3.1.1 Alat

Peralatan yang digunakan adalah seperangkat alat titrasi dan peralatan gelas yang biasa digunakan dalam laboratorium kimia analitik.

3.1.2 Bahan

(4)

1) Dilarutkan 16,9 g ammonium klorida (NH4Cl) dalam 143 mL ammonium hidroksida (NH4OH). Kemudian ditambahkan 1,25 g garam magnesium dari EDTA (yang telah distandardisasi) dan diencerkan ke dalam 250 mL aquades.

2) Jika garam magnesium dari EDTA tidak ada, dilarutkan 1,179 g garam disodium dari

ethylenediaminetetraacetic aciddihydrate (reagen analitis) dan 780 mg magnesium sulfat (MgSO4 .7H2O) atau 644 mg magnesium chloride (MgCl2 . 6H2O ) ke dalam 50 mL aquades. Kemudian ditambahkan ke dalam campuran ini 16,9 g NH4Cl dan 143 mL NH4OH dengan pengadukan dan diencerkan sampai 250 mL dengan aquades.

Simpan larutan 1) atau 2) dalam suatu plastik atau gelas borosilicate. Bagikan larutan buffer menggunakan pipet. Hentikan penambahan larutan buffer ketika 1 atau 2 mL ditambahkan ke sampel tidak berhasil menghasilkan satu pH dari 10,0 ± 0,1 pada titik akhir titrasi.

3) Preparasi salah satu buffer ini dengan mencampurkan 55 mL HCl dengan aquades 400 mL dan kemudian, aduk dengan perlahan dan tambahkan 300 mL 2-aminoethanol (bebas dari alumunium dan logam lebih berat). Tambahkan 5 g garam magnesium dari EDTA dan encerkan hingga 1 L dengan aquades.

1. Agen Complexing:

Adakalanya air mengandung ion yang bertentangan memerlukan penambahan suatu agen complexing yang sesuai untuk memberikan satu titik akhir, yaitu perubahan warna yang tajam pada titik-akhir. Berikut adalah agen

complexing tersebut:

1) Inhibitor I : Sesuaikan sampel asam ke pH 6 atau lebih tinggi dengan larutan buffer atau 0,1 N NaOH. Tambahkan 250 mg NaCN (bentuk serbuk). Tambahkan buffer secukupnya untuk menyesuaikan ke pH 10,0 ±0,1 (AWAS: NaCN adalah sangat beracun).

2) Inhibitor II. : Larutkan 5 g sulfida sodium nonahydrate (Na2S + 9 H2O) atau 3,7 g Na2S + 5H2O dalam 100 mL aquades.

3) MgCDTA : garam magnesium dari 1, 2-cycclohexanediamine tetraacetic asam. Tambahkan 250 mg per 100 mL sampel dan larutkan sebelum menambahkan larutan buffer.

1. Indikator:

Banyak jenis dari larutan indikator telah diakui dan mungkin dipergunakan kalau ahli analisa mempertunjukkan bahwa mereka menghasilkan nilai akurat. Kesulitan utama dengan larutan indikator adalah kerusakan oleh waktu, dimana berakibat memberikan titik akhir yang tidak jelas. Sebagai contoh, larutan alkalin dari Eriochrome Black T sensitif terhadap oksidasi dan mengandung air atau larutan alkohol adalah tidak stabil.

1) Eriochrome Black T (EBT): Garam sodium dari asam 1-(1-hydroxy-2-naphthylazo)-5-Nitro-2-naphthol-4-sulfonic. Larutkan 0,5 g pada 100 g 2,2’,2”-nitrilotriethanol (juga disebut triethanolamine) atau 2-

methoxymethanol (juga disebut Ether ethylene glycol monomethyl). Tambahkan 2 tetes per 50 mL larutan untuk di titrasi.

2) Calmagite: Asam 1-(1-hydroxy-4-metil-2-phenylazo)-2-naphthol-4-sulfonic. Senyawa ini bersifat stabil di larutan air dan menghasilkan perubahan warna yang sama seperti Eriochrome Black T. Larutkan 0.10 g Calmagite pada 100 mL aquades. Gunakan 1 mL per 50 mL larutan untuk di titrasi. Sesuaikan volume kalau perlu.

3) Indikator 1 dan 2 dapat digunakan dalam bentuk serbuk kering untuk menghindari kelebihan indikator. Dipersiapkan campuran kering dari indikator ini dan satu garam inert tersedia secara komersial.

Jika warna titik akhir dari indikator ini tidak jelas dan tajam, ini biasanya memaksudkan bahwa satu agen

complexing yang sesuai diperlukan. Kalau inhibitor NaCN tidak menunjukan ketajaman pada titik akhir, mungkin indikator dalam keadaan tidak baik.

1. EDTA Titrant standar, 0,01 M :

Timbang 3.723 g disodium ethylenediaminetetraacetate dihydrate, juga disebut dengan etilendiamintetraasetat (EDTA), larutkan di dalam aquades, dan diencerkan pada 1000 mL. Standarkan dengan larutan kalsium standar (2e) sebagaimana diuraikan dalam pada 3b di bawah.

Karena titran mengekstrak kation dan menghasilkan kesadahan dari wadah gelas plastik, maka lebih baik simpan di polyethylene atau gelas botol borosilicate.

(5)

Ditimbang 1,000 g serbuk CaCO3 anhidrat ke dalam satu 500 mL Erlenmeyer. tambahkan secara perlahan 1+1 HCL hingga semua CaCO3 telah larut. Tambahkan 200 mL aquades dan aduk untuk beberapa menit untuk mengusir CO2 . Tambahkan beberapa tetes dari indikator metil merah, dan tambahkan 3N NH4OH atau 1+1 HCL hingga larutan berwarna orange, seperti yang diperlukan. Encerkan ke dalam 1000 mL dengan aquades; 1 mL = 1.00 mg CaCO3 .

f. Natrium hidroksida, NaOH, 0. 1 N. 3.2 Prosedur Kerja

1. a. Pembuatan air limbah dan air limbah sampel :

Digunakan asam nitrat-asam sulfat atau asam nitrat- asam perchloric encer. 1. b. Titrasi dari sample :

Pilih satu volume sampel yaitu yang kurang dari 15 mL EDTA titrant dan dititrasi selama 5 menit, diukur dari waktu dari penambahan buffer.

Encerkan 25.0 mL sampel ke dalam 50 mL aquades didalam kaserol porselin atau wadah lain yang sesuai. Tambahkan 1-2 mL larutan buffer. Biasanya 1 mL akan cukup untuk memberikan pH dari 10.0 ke 10.1. Munculnya satu warna titik-akhir yang tajam didalam titrasi biasanya diartikan bahwa satu inhibitor harus ditambahkan dalam titik ini.

Tambahkan 1-2 tetes larutan indikator atau formulasi indikator secukupnya. Tambahkan standar EDTA Titrant perlahan-lahan, dengan pengadukan, hingga warna kemerah-merahan hilang. Tambahkan beberapa tetes indikator pada rentang 3 sampai 5. Pada titik akhir secara normal akan muncul warna biru. Cahaya matahari dan cahaya dari lampu fluoresen sangat dianjurkan karena cahaya-cahaya tersebut dapat menunjukkan titik-titik berwarna merah pada larutan yang berwarna biru pada saat titik akhir titrasi.

Jika sampel cukup ada tersedia dan pengganggu tidak ada, tingkatkan keakuratan dengan meningkatkan ukuran sampel, sebagaimana diuraikan pada poin c di bawah.

1. c. Sampel dengan kesadahan rendah :

Untuk air dengan kesadahan rendah (kurang dari 5 mg / L), ambil suatu sampel dalam jumlah yang besar, 100-1000 mL, untuk dititrasi dan ditambahkan dengan sejumlah besar inhibitor, buffer, dan indikator. Tambahkan larutan standar EDTA titrant perlahan-lahan dari satu microburet dan dimulai dari blanko, gunakan air yang telah di destilasi, didestilasi ulang atau air yang telah diionisasi dari volume yang sama dengan sampel, dimana sejumlah serupa dari larutan buffer, inhibitor, dan indikator telah ditambahkan sebelumnya. Ambil beberapa volume dari EDTA untuk blanko dari volume dari EDTA yang digunakan untuk sampel.

3.3 Perhitungan

Kesadahan (EDTA) seperti mg CaCO 3 /L = (A x B X 1000)/ mL sampel Dimana:

A = mL untuk sampel dan

B = mg CaCO 3 ekivalen dengan 1.00 mL EDTA titrant. BAB IV

PEMBAHASAN

Prosedur umum untuk awal percobaan ini dengan satu contoh air mengandung mineral yang berisi kalsium dan magnesium. Untuk mengasuransikan bahwa semua kation tinggal di dalam solusi dan itu pekerjaan indikator dengan baik, satu penyangga biasanya menyesuaikan pH ke 9.9 10.1. Setelah pH disesuaikan dan indikator ditambahkan, EDTA Titrant ditambahkan melalui satu buret.

EDTA adalah satu agen chelating itu dapat mendonorkan elektron (Aturan Lewis) yang kemudian akan membentuk satu kompleks dengan ion logam (Asam Lewis). EDTA pertama kali akan membentuk kompleks dengan Ca2+ dan kemudian dengan Mg2+. Seperti pada titrasi apapun kita akan perlu satu indikator untuk

(6)

HInd2- (Ind mewakili indikator), dan menghasilkan kompleks berwarna biru. Selanjutnya pada saat indicator bereaksi dengan Mg2+ akan memberikan satu kompleks merah.

Pertama EDTA (H2Y2-) akan kompleks dengan ion kalsium, membentuk satu kompleks merah: 1) H2In- + Ca2+ CaIn- + 2H+

Pada titik akhir, EDTA akan kompleks dengan kalsium dan indikator menjadi lepas, yaitu ditandai oleh warna merah berganti warna biru:

2) EDTA + CaIn- + 2H+ H

2In- + CaEDTA

(merah) (biru)

BAB V

PENUTUP

5.1 Kesimpulan

1. Kesadahan merupakan sifat kimia yang dimiliki air dimana, terdapat ion-ion yang menyebabkan sabun sulit menghasilkan busa terutama ion Ca2+ dan Mg2+. Dimana Kesadahan total didefinisikan sebagai jumlah miliekivalen (mek) ion Ca2+ dan Mg2+ tiap liter sampel air.

2. Salah satu metode yang dapat digunakan untuk mengukur nilai kesadahan pada air adalah dengan metode titrasi EDTA.

DAFTAR PUSTAKA

Anonim, 2008, Water Hardness: EDTA Titrimetric Method, New York USA Albert dan Santika, Sri Sumestri, 1984, Metode Penelitian Air, ITS Press, Surabaya

Bintoro, 2008, Penentuan Kesadahan Sementara dan Kesadahan Permanen, http://aabin.blogsome.com

Giwangkara, E., 2008, http://persembahanku.wordpress.com/2006/09/29/mengapa mandi dipantai boros sabun Khopkar, S. M., 1990, Konsep Dasar Kimia Analitik, Penerjemah : A. Saptorahardjo, UI-Prees, Jakarta

http://getjournal.blogspot.com/2010/05/penentuan-kadar-kesadahan-air-dengan.html

http://ginoest.wordpress.com/2010/03/23/17/

Kesadahan merupakan petunjuk kemampuan air untuk membentuk busa apabila dicampur dengan sabun. Pada air berkesadahan rendah, air akan dapat membentuk busa apabila dicampur dengan sabun, sedangkan pada air berkesadahan tinggi tidak akan terbentuk busa. Disamping itu, kesadahan juga merupakan petunjuk yang penting dalam hubungannya dengan usaha untuk memanipulasi nilai pH.

Secara lebih rinci kesadahan dibagi dalam dua tipe, yaitu: (1) kesadahan umum (“general hardness” atau GH) dan (2) kesadahan karbonat (“carbonate hardness” atau KH). Disamping dua tipe kesadahan tersebut, dikenal pula tipe kesadahan yang lain yaitu yang disebut sebagai kesadahan total atau total hardness. Kesadahan total merupakan penjumlahan dari GH dan KH. Kesadahan umum atau “General Hardness” merupakan ukuran yang menunjukkan jumlah ion kalsium (Ca++) dan ion magnesium (Mg++) dalam air. Ion-ion lain sebenarnya ikut pula mempengaruhi nilai GH, akan tetapi pengaruhnya diketahui sangat kecil dan relatif sulit diukur sehingga diabaikan.

(7)

ppm CaCO3. Sedangkan satuan konsentrasi molar dari 1 mili ekuivalen = 2.8 dH = 50 ppm. Berikut adalah kriteria selang kesadahan yang biasa dipakai:

- 0 - 4 dH, 0 - 70 ppm : sangat rendah (sangat lunak)

- 4 - 8 dH, 70 – 140 ppm : rendah (lunak)

- 8 – 12 dH, 140 – 210 ppm : sedang

- 12 – 18 dH, 210 – 320 ppm : agak tinggi (agak keras)

- 18 – 30 dH, 320 – 530 ppm : tinggi (keras)

Dalam kaitannya dengan proses biologi, GH lebih penting peranananya dibandingkan dengan KH ataupun kesadahan total. Apabila ikan atau tanaman dikatakan memerlukan air dengan kesadahan tinggi (keras) atau rendah (lunak), hal ini pada dasarnya mengacu kepada GH. Ketidaksesuaian GH akan mempengaruhi transfer hara/gizi dan hasil sekresi melalui membran dan dapat mempengaruhi kesuburan, fungsi organ dalam (seperti ginjal), dan pertumbuhan. Setiap jenis ikan memerlukan kisaran kesadahan (GH) tertentu untuk hidupnya. Pada umumnya, hampir semua jenis ikan dan tanaman dapat beradaptasi dengan kondisi GH lokal, meskipun demikian, tidak demikian halnya dengan proses pemijahan. Pemijahan bisa gagal apabila dilakukan pada nilai GH yang tidak tepat.

Kesadahan karbonat atau KH merupakan besaran yang menunjukkan kandungan ion bikarbonat (HCO3-) dan karbonat (CO3–) di dalam air. KH sering disebut sebagai alkalinitas yaitu suatu ekspresi dari kemampuan air untuk mengikat kemasaman (ion-ion yang mampu mengikat H+). Oleh karena itu, dalam sistem air tawar, istilah kesadahan karbonat, pengikat kemasaman, kapasitas pem-bufferan asam, dan alkalinitas sering digunakan untuk menunjukkan hal yang sama. Dalam hubungannya dengan kemampuan air mengikat kemasaman, KH berperan sebagai agen pem-buffer-an yang berfungsi untuk menjaga kestabilan pH.

KH pada umumnya sering dinyatakan sebagai derajat kekerasan dan diekspresikan dalam CaCO3 seperti halnya GH. Kesadahan karbonat dapat diturunkan dengan merebus air yang bersangkutan, atau dengan melalukan air melewati gambut. Untuk menaikkan kesadahan karbonat dapat dilakukan dengan menambahkan natrium bikarbonat (soda kue), atau kalsium karbonat. Penambahan kalsium karbonat akan menaikan sekaligus baik KH maupun GH dengan proporsi yang sama.

Mineral yang merupakan sumber primer ion kalsium dalam air diantara mineral-mineral yang berperan adalah gips, CaSO4.2H2O; anhidratnya, CaSO4; dolomite, CaMg (CO3)2; kalsit dan argonite yang merupakan modifikasi yang berbeda dari CaCO3. Air yang mengandung karbon dioksida mudah melarutkan kalsium dari mineral-mineral karbonat.

CaCO3 + CO2 + H2O Ca2+ + 2HCO3

-Reaksi sebaliknya berlangsung bila CO2 hilang dari perairan. karbondioksida yang masuk keperairan melalui keseimbangan dengan atmosfer tidak cukup besar konsentrasinya untuk melarutkan kalsium dalam perairan alami, terutama air tanah. Pernafasan mikroorganisma, penghancur bahan organik dalam air, dan sediment berperan sangat besar terhadap kadar CO2 dan HCO3- dalam air. Hal ini merupakan faktor penting dalam proses kimia perairan dan geokimia.

Ion kalsium, bersama-sama dengan magnesium dan kadang-kadang kesadahan air, baik yang bersifat kesadahan tetap. Kesadahan sementara disebabkan oleh bikarbonat dalam air dan dapat dihilangkan dengan jalan mendidihkan air tersebut karena terjadi reaksi:

Ca2+ +2 HCO3- CaCO3 + CO2 + H2O

(8)

sebelum sabun dapat berfungsi menurunkan tegangan permukaan. Hal ini bukan saja akan banyak memboroskan pengunaan sabun, tetapi gumpalan-gumpalan yang terjadi akan mengendap sebagai lapisan tipis pada alat-alat yang dicuci sehingga mengganggu pembersihan dan pembilasan oleh air.

Air sadah mengakibatkan konsumsi sabun lebih tinggi, karena adanya hubungan kimiawi antara ion kesadahan dengan molekul sabun menyebabkan sifat detergen sabun hilang. Kelebihan ion Ca2+ serta ion CO

32-+ (salah satu ion alkaliniti) mengakibatkan terbentuknya kerak pada dinding pipa yang disebabkan oleh endapan kalsiumkarbonat CaCO3. Kerak ini akan mengurangi penampang basah pipa dan menyulitkan pemanasan air dalam ketel, serta mengurangi daya koagulasi yang melalui dalam pipa dengan menurunnya turbulensi.

Ion kalsium, Ca2+ mempunyai kecenderungan relatif kecil untuk membentuk ion kompleks. Dalam kebanyakan sistem perairan air tawar, jenis kalsium yang pertama-tama larut yang ada adalah Ca2+, oleh karena itu konsentrasi HCO3- yang sangat tinggi, pasangan ion, Ca2+ – HCO3- dapat terbentuk dalam jumlah yang cukup banyak. Hal yang sama dalam air yang kandungan sulfatnya tinggi pasangan ion Ca2+ – SO

42- dapat terjadi.

Tidak seperti halnya dengan kalsium yang densitas muatan dari ion Ca2+ relatif lebih kecil dibandingkan dengan lainnya, maka densitas muatan ion Mg2+ jauh lebih besar dan ikatan yang lebih kuat dengan air untuk melakukan hidrasi. Magnesiun dalam air terutama terdapat sebagai ion Mg2+ HCO

3- dan Mg2+ SO42- terjadi bila

konsentrasi bikarbonat dan sulfat yang tinggi.

Mineral-mineral seperti dolomit adalah paling umum dalam air.

CaMg (CO3)2 + 2 CO2 +2 H2O Ca2+ + Mg2+ + 4 HCO3

-Pelunakan adalah penghapusan ion-ion tertentu yang ada dalam air dan dapat, bereaksi dengan zat-zat lain hingga distribusi air dan penggunaannya terganggu.

Kesadahan dalam air terutama disebabkan oleh ion-ion Ca2+ dan Mg2+, juga oleh Mn2+, Fe2+ dan semua kation yang bermuatan dua. Air yang kesadahannya tinggi biasanya terdapat pada air tanah di daerah yang bersifat kapur.

Sebagai kation kesadahan, Ca2+ selalu berhubungan dengan anion yang terlarut khususnya anion alkaliniti : CO32- , HCO3- dan OH-. Ca2+ dapat bereaksi dengan HCO3- membentuk garam yang terlarut tanpa terjadi kejenuhan. Sebaliknya reaksi dengan CO32- akan membentuk garam karbonat yang larut sampai batas kejenuhan di mana titik jenuh berubah dengan nilai pH. Bila titik jenuh dilampaui, terjadi endapan garam kalsium karbonat CaCO3 dan membuat kerak yang terlihat pada dinding pipa atau dasar ketel. Namun, pada proses pelunakan ini keadaan harus dibuat sehingga sedikit jenuh, karena dalam keadaan tidak jenuh terjadi reaksi yang mengakibatkan karat terhadap pipa. Kerak yang tipis akibat keadaan sedikit jenuh itu justru melindungi dinding dari kontak dengan air yang tidak jenuh (agresip). Ion Mg2+ akan bereaksi dengan OH- membentuk garam yang terlarut sampai batas kejenuhan dan mengendap sebagai Mg(OH)2 bila titik kejenuhan dilampaui.

Ion Ca2+ dan Mg2+ diendapkan sebagai CaCO

3 dan Mg(OH)3 menurut reaksi keseimbangan kimiawi

sebagai berikut :

Mg2+ + 2 OH- Mg(OH)2 Ca2+ + C0

32- CaCO3

CO32- berasal dari karbondioksida CO2 dan bikarbonat HCO3- yang sudah terlarut dalam air sesuai dengan reaksi berikut :

CO2 + OH- HCO3- HCO3+ + OH- CO32- + H2O

(9)

akan tetap melayang dan sukar bereaksi dengan koagulan mengakibatkan massa atom relatif ringan sehingga sukar mengendap.

Kesadahan ini umumnya dihilangkan menggunakan resin penukar ion. Resin pelunak air komersial dapat digunakan dalam skala kecil, meskipun demikian tidak efektif digunakan untuk sekala besar. Resin adalah zat yang punya pori yang besar dan bersifat sebagai penukar ion yang berasal dari polysterol, atau polyakrilat yang berbentuk granular atau bola kecil dimana mempunyai struktur dasar yang bergabung dengan grup fungsional kationik, non ionik/anionik atau asam. Sering kali resin dipakai untuk menghilangkan molekul yang besar dari air misalnya asam humus, liqnin, asam sulfonat. Untuk regenerasi dipakai garam alkali atau larutan natrium hidroksida, bisa juga dengan asam klorida jika dipakai resin dengan sifat asam. Dalam regenerasi itu dihasilkan eluen yang mengandung organik dengan konsentrasi tinggi. Untuk proses air minum sampai sekarang hunya dipakai resin dengan sifat anionik.

Resin penukar ion sintetis merupakan suatu polimer yang terdiri dari dua bagian yaitu struktur fungsional dan matrik resin yang sukar larut. Resin penukar ion ini dibuat melalui kondensasi phenol dengan formaldehid yang kemudian diikuti dengan reaksi sulfonasi untuk memperoleh resin penukar ion asam kuat.

Sedangkan untuk resin penukar ion basa kuat diperoleh dengan mengkondensasikan phenilendiamine dengan formaldehid dan telah ditunjukkan bahwa baik resin penukar kation dan resin penukar anion hasil sintesis ini dapat digunakan untuk memisahkan atau mengambil garam – garam.

Pada umumnya senyawa yang digunakan untuk kerangka dasar resin penukar ion asam kuat dan basa kuat adalah senyawa polimer stiren divinilbenzena. Ikatan kimia pada polimer ini amat kuat sehingga tidak mudah larut dalam keasaman dan sifat basa yang tinggi dan tetap stabil pada suhu diatas 150oC.

Polimer ini dibuat dengan mereaksikan stiren dengan divinilbenzena, setelah terbentuk kerangka resin penukar ion maka akan digunakan untuk menempelnya gugus ion yang akan dipertukarkan.

Resin penukar kation dibuat dengan cara mereaksikan senyawa dasar tersebut dengan gugus ion yang dapat menghasilkan (melepaskan) ion positif. Gugus ion yang biasa dipakai pada resin penukar kation asam kuat adalah gugus sulfonat dan cara pembuatannya dengan sulfonasi polimer polistyren divinilbenzena (matrik resin).

Resin penukar on yang direaksikan dengan gugus ion yang dapat melepaskan ion negatif diperoleh resin penukar anion. Resin penukar anion dibuat dengan matrik yang sama dengan resin penukar kation tetapi gugus ion yang dimasukkan harus bisa melepas ion negatif, misalnya –N (CH3)3+ atau gugus lain atau dengan kata lain setelah terbentuk kopolimer styren divinilbenzena (DVB), maka diaminasi kemudian diklorometilasikan untuk memperoleh resin penukar anion.

Gugus ion dalam penukar ion merupakan gugus yang hidrofilik (larut dalam air). Ion yang terlarut dalam air adalah ion – ion yang dipertukarkan karena gugus ini melekat pada polimer, maka ia dapat menarik seluruh molekul polimer dalam air, maka polimer resin ini diikat dengan ikatan silang (cross linked) dengan molekul polimer lainnya, akibatnya akan mengembang dalam air.

Mekanisme pertukaran ion dalam resin meskipun non kristalisasi adalah sangat mirip dengan pertukaran ion- ion kisi kristal. Pertukaran ion dengan resin ini terjadi pada keseluruhan struktur gel dari resin dan tidak hanya terbatas pada efek permukaan. Pada resin penukar anion, pertukaran terjadi akibat absorbsi kovalen yang asam. Jika penukar anion tersebut adalah poliamin, kandungan amina resin tersebut adalah ukuran kapasitas total pertukaran.

Dalam proses pertukaran ion apabila elektrolit terjadi kontak langsung dengan resin penukar ion akan terjadi pertukaran secara stokiometri yaitu sejumlah ion – ion yang dipertukarkan dengan ion – ion yang

muatannya sama akan dipertukarkan dengan ion – ion yang muatannya sama pula dengan jumlah yang sebanding. Material penukar ion yang utama berbentuk butiran atau granular dengan struktur dari molekul yang panjang (hasil co-polimerisasi), dengan memasukkan grup fungsional dari asam sulfonat, ion karboksil. Senyawa ini akan bergabung dengan ion pasangan seperti Na+, OHatau H+. Senyawa ini merupakan struktur yang porous. Senyawa ini merupakan penukar ion positif (kationik) untuk menukar ion dengan muatan elektrolit yang sama (positif) demikian sebaliknya penukar ion negatif (anionik) untuk menukar anion yang terdapat di dalam air yang diproses di dalam unit “Ion Exchanger”.

Proses pergantian ion bisa “reversible” (dapat balik), artinya material penukar ion dapat diregenerasi. Sebagai contoh untuk proses regenerasi material penukar kationik bentuk Na+ dapat diregenerasi dengan larutan NaCl pekat, bentuk H+ diregenerasi dengan larutan HCl sedangkan material penukar anionik bentuk OHdapat diregenerasi dengan larutan NaOH (lihat buku panduan dari pabrik yang menjual material ini).

Regenerasi adalah suatu peremajaan, penginfeksian dengan kekuatan baru terhadap resin penukar ion yang telah habis saat kerjanya atau telah terbebani, telah jenuh. Regenerasi penukaran ion dapat dilakukan dengan mudah karena pertukaran ion merupakan suatu proses yang reversibel yang perlu diusahakan hanyalah agar pada regenerasi berlangsung reaksi dalam arah yang berkebalikan dari pertukaran ion.

Gambar

Gambar 2.1 Struktur EDTA

Referensi

Dokumen terkait

Putra Minang [Direktur/CEO/Manajer Umum] E-mail: rmdutaminang@gmail.com..

Chip yang bekerja berdasarkan instruksi program dan dapat menjalankan lebih dari satu program adalah

Dari hasil penelaahan ini, dapat dibuat suatu ringkasan yang dapat ditindak lanjuti, sehingga UPT Hujan Buatan dapat melaksanakan kegiatan Hujan Buatan dengan efektif dan efisien.

GBKP saat ini memiliki 22 klasis tersebar di beberapa daerah di Indonesia khususnya di Tanah Karo. GBKP bukanlah satu-satunya Gereja diantara orang suku Karo serta masyarakat

Variabel dummy crisis yang negatif signifikan menunjukkan bahwa ketika terjadi krisis, perusahaan akan memiliki tingkat profitabilitas lebih kecil dibandingkan saat tidak

Berdasarkan tabel diatas dapat dilihat bahwa informan kunci dan informan ahli memiliki pendapat yang berbeda, sosial media marketing dipilih oleh Minna Padi Aset Manajemen

Adapun hasil yang diharapkan adalah telah mampu memahami arsitektur mikroprosesor MIPS32® dengan datapath eksekusinya, instruction set MIPS32®, membuat program sederhana dengan

Subyektif merupakan Data yang di peroleh dari hasil wawancara (anamnesa) dengan pasien atau dengan seseorang yang mengetahui keadaann pasien selama ini. Data subyektif