INTEGRAL OPERATORS ON THE TUCD(
α
)-CLASS
by Daniel Breaz
Abstract. In this paper we present a few univalency conditions for various integral operators on class TUCD
( )
α . At first, we make a brief presentation of class TUCD( )
α and of some of its properties, as well as a number of matters connected to some integral operators studied on this class.Introduction.
Let U =
{
z: z<1}
be the unit disk, respectively the class of olomorphicfunctions on the unit disk, denoted by
( )
UH ,A=
{
f ∈H( ) ( )
U : f z = z+a2z2 +...}
the class of the analytical functions in the unit disk and the set( )
( )
{
: isanalyticin , ≠0,∀ ∈ , 0 =1}
= φ φ U φ z z U φ
D .
We consider the class of starlike functions of the order α on the unit disk, the univalent functions with the property
( )
( )
>α′
z f
z f z
Re , respectively, the class of the convex functions on the order α in unit disk, the univalent functions with the property
( )
( )
+ >α′′′ 1 Re
z f
z f z
. We denote these with S∗
( )
αand K
( )
α , and for α =0 we obtain the class of the starlike funcions S∗, respectively the class of convex functions K.We say that the function f with the form f
( )
z =z+a2z2 +... belongs to the class UCD( )
α , α ≥0, if( )
z zf( )
z z Uf′ ≥ ′′ , ∈
Re α . (1)
If f ∈UCD
( )
α , then the following relation is true( )
z zf( )
z z Uf′ ≥α ′′ , ∈ (2)
( )
( )
α1 ≤ ′′′z f
z f z
. (3)
In [3] we studied the class of univalent functions of the form
( )
∑
∞= ≥
− =
2
0 ,
k
k k kz a a z z
f . (4)
We denote TUCD
( )
α , the functions from UCD( )
α of the form (4). Next we consider all the functions from this paper of the form (4).Theorem 1.1. [3] A function of the form (1) belongs to the class TUCD
( )
α if and only if( )
[
]
∑
∞= + − ⋅ ≤2
1 1
1
k
k a k
k α .
Remark 1.2. [3]
a) A function of the form (4) is starlike if and only if f ∈TUCD
( )
0 . b) A function of the form (4) is convex if and only if f ∈TUCD( )
1 . c) A function of the form (4) is convex by the order 1/2 if and only if( )
2TUCD
f ∈ .
d) A function of the form (4) is uniform convex if and only if
( )
2TUCD
f ∈ .
e) A function f ∈TUCD
( )
α if and only if f can be written as( )
∑
∞( )
=
=
1
k k k f z z
f λ , (5)
where
∑
∞
= =
≥
1
1 ,
0
k k
k λ
λ , f1
( )
z =z and( )
(
)
[
]
, 2,3,... 11+ − =
−
= k
k k
z z
z f
k
k
α
Theorem 1.3. [2] Let α,β,γ,δ be real constants that satisfy the conditions
0 , 0 >
≥ β
α
(
α +δ) (
= β +γ)
>0. Let ρ0 be so that 1 ReRe
0 < <
≡
− γβ ρ ρ
and we suppose that ρ∈
[ ]
ρ0,1 exists, so that 0≤w( )
ρ , where( )
= 1 inf{
H( )
z : z <1}
w
β
ρ and
( )
( )
( )−
−
= 1 1 z 2 1Re
z H
β ρ
Let ϕand φ∈Dsatisfy the conditions:
( )
( )
βρ γϕϕ
δ + ′ ≥ +
z z z
Re (6)
and
( )
( )
β( )
ρφφ z w z z
≤ ′
Re (7)
If
( )( )
γ α ϕ δ βφ γ
β 1 1
0
) ( ) ( )
( 
 
  +
= −
∫
f t t t dt zz z f I
z
, then I
( )
S∗ ⊂S∗.Theorem 1.4. [1] If 0≤α ≤1,α ≤β and if f ∈S∗, then the function
( )
( ) ...1
0
1 = +
    
  
     
= −
∫
dt zt z f z
z F
z α β
β (8)
is also an element of S*.
Theorem 1.5. [1] If α >0,η≥0,γ +η≥0and iff ∈S∗, then the function
( )
( ) ...1
0
1 = +
   
 + +
= + − +
∫
f t t dt zz z
F
z α η
η γ α
γ η
γ
α (9)
is starlike in U.
Theorem 1.6. [2] Let α,β,γ,δ and σ real number which satisfy σ
β
α < ≤
≤ ,0 ,0
0 and β +γ =α +δ >0 . Let ρ0 defined in the theorem 1.3. and we suppose that exists ρ∈
[ ]
ρ0,1 so that δ −σ ≥β +γ2 and w
( )
ρ >0( )
ρ β φφ z wz z
≤ ′
) (
) (
Re . If f ∈S∗,g∈Kthen I
( )
f,g ∈S∗, where I( )
f,g is defined( )( )
α σ δ σ βγφ γ
β 1
0
1
) ( ) ( ) (
, 
  
  +
=
∫
z f t g t t − −dtz z z g f
I . (10)
Corollary 1.7. [1] Let 0≤α,0< β,0≤σ, γ >−β,β+γ =α +δ , and γ
σ α
δ + − ≥
2
2 . Letφ∈D which satisfies ( )
( )
0 )(
Re w
z z z
β
φφ′ ≤ . If f,g∈Kthen
( )
f g ∈S∗I , , where I
( )
f,g is defined in (10). Main resultsTheorem 2.1. Let ξ and δ complex number, ξ +δ >0 ,φ∈D. If f ∈Ais of the form (4) and
( )
( )
φφ( )
( )
δ ξ δξ
+
+
+ Q
z z z z f
z zf
p '
'
, (11) while
( ) (
ξ δ) ( )
ξ δ− φ( )
ξ+δ   
 
⋅ ⋅ +
=
∫
1
0
1 1
z
dt t t
t f f
F . (12)
Then F1
( )
f ∈TUCD( )
0 . Theorem 2.2. Let( )( )
( )
ξ( ) ( )
δ βγ φγ φ
β 1
0
1
2 
  
 ⋅ ⋅
⋅+
=
∫
z f t t t −dtz z z f
F . (13)
If ξ ,β ,γ ,δ ∈R, ξ ≥0, β >0, β +γ =ξ +δ şi ρ0 verifies the relation
1 Re
Re
0 ≤ <
≡
− βγ ρ ρ (14)
and we suppose that exists ρ∈
[ ]
ρ0,1 so that 0≤w( )
ρ , where w verifies the relation( )
( )
'( )
Re{
Re( )
1}
( )
( )( ) (
)
γ β( )
γ β γβ β γ
1
0
1
, 
  
 + ⋅
=
=I g z z−
∫
zg t t − dtz
G , g∈A (16)
and
( )
( )
( )(
)
( )ρ β γγ β
β ρ
− +
− =
∫
+ − −−
1 0
Re 1 2 1
Re 1 2
1 1
dt tz
t
z z
H , (17)
ϕ and φ∈D satisfy the relations
( )
( )
βρ γδ + ≥ +
z φ
z zφ'
Re (18)
and
( )
( )
β( )
ρφφ z w
z z
⋅ ≤ '
Re (19)
then F2
( )
f ∈TUCD( )
0 .Theorem 2.3. Let
( )
∑
∞
=
− =
2
k k kz a z z
f , ak ≥0
a)If f ∈S* ⇒F3
( )
f ∈TUCD( )
1 , where( )( )
=∫
z( )
dt tt f z f F
0
3 (20)
is the Alexander operator. Proof.
We know that if f ∈S* ⇒F3
( )
f ∈K. Considering the remark 1.2. b), we obtain F3( )
f ∈K ⇔F3( )
f ∈TUCD( )
1 .b) f ∈S* ⇒F4
( )
f ∈TUCD( )
0 , where( )( )
=∫
z( )
dt t f z z f F
0 4
2
(21)
is the Libera operator. Proof.
c) f ∈S* ⇒F5
( )
f ∈TUCD( )
0 , where( )( )
= +∫
z f( )
t ⋅t −dtz z f F
0
1 5
1 γ
γγ (22)
1 − ≥
γ is the Bernardi operator. Proof.
We know that if f ∈S* ⇒F5
( )
f ∈S∗. Considering the remark 1.2. a), we obtain F5( )
f ∈S∗ ⇔F5( )
f ∈TUCD( )
0 .Theorem 2.4. Let
( )( )
=∫
z( )
 dt tt f z
f F
0 6
β
(23) and 0≤β≤1.
If f ∈S* then F6
( )
f ∈TUCD( )
0 . Proof.Considering the theorem 1.4, for β =1,α ≡β we obtain
( )
* 6* F f S
S
f ∈ ⇒ ∈ .
According to the remark 1.2. a) we obtain F6
( )
f ∈TUCD( )
0 . Theorem 2.5. Let( )( )
β β( )
β1
0
1
7 
  
 ⋅
=
∫
z f t t− dtz f
F , β>0. (24)
If f ∈S* then F7
( )
f ∈TUCD( )
0 . Proof.Applying the theorem 1.5 for this integral operator for γ =0,η =0,β =α we obtain f ∈S* ⇒F7
( )
f ∈S*. But the remark 1.2, a) we obtain( )
( )
07 f TUCD
F ∈ .
Theorem 2.6. Let
( )( )
β( )
βγγ
β 1
0
1
8 
  
 
⋅ +
=
∫
z f t t−dtz z
f
F , γ,β =1,2,3K. (25)
Proof.
We have f ∈S* ⇒F8
( )
f ∈S*, according to the theorem 1.5. Applying the remark 1.2, a), we obtain F8( )
f ∈TUCD( )
0 .Theorem 2.7. Let
( )( )
( )
ξ( )
δ ξ δ βγγ
β 1
0
1
9 ,
    
  
⋅         +
=
∫
z t + −dtt t g t
t f z
z g f
F . (26)
If f ∈S*, g∈K, then
( )
,( )
09 f g TUCD
F ∈ .
Proof.
In [2] we proved that if f ∈S*,g∈K ⇒F9
( )
f,g ∈S∗. Applying the remark 1.2 a) we obtain F9( )
f,g ∈TUCD( )
0 .Theorem 2.8. Let
( )( )
( )
ξ( ) ( )
δ βγ φγ ϕ
β 1
0
1
10 
  
 ⋅ ⋅
⋅+
=
∫
z f t t t −dtz z z f
F , f ∈A (27)
and the following conditions are satisfied:
δ γ β ξ ∈
φ , , , , , D
φ the complex numbers with the properties,
γ + β = δ + ξ >
β 0, , Re
(
ξ+δ)
>0,( )
( )
' 0Re ≤
  
 +γ
φφz z z
. (28) Then F10
( )
f ∈TUCD( )
0 .Proof.
If f ∈A satisfies the conditions of this theorem then F10
( )
f ∈S*, the result proved in [2].Applying the remark 1.2, a) we obtain F10
( )
f ∈TUCD( )
0 . Theorem 2.9. Let ξ şi δ complex number, ξ +δ >0 ,φ∈D. If f ∈Ais the form (4) and( )
( )
φφ( )
( )
δ ξ δξ
+
+
+ Q
z z z z f
z zf
p '
'
, (29) and
( ) (
ξ δ) ( )
ξ δ− φ( )
ξ+δ   
 + ⋅ ⋅
=
∫
1
0
1 11
z
dt t t
t f f
Then F11
( )
f ∈TUCD( )
0 . Proof.If f ∈A are the form (4) and verifies the conditions of the theorem 2.1, we obtain F11
( )
f ∈S* ⇔ F11( )
f ∈TUCD( )
0 , also considering the remark 1.2, a). Theorem 2.10. Let( )( )
( )
ξ( ) ( )
δ βγ φγ φ
β 1
0
1
12 
  
 
⋅ ⋅ ⋅+
=
∫
z f t t t −dtz z z f
F . (31)
If ξ ,β ,γ ,δ∈R, ξ ≥0, β >0, β +γ =ξ+δ and ρ0 verifies the relation (14) and suppose that exists ρ∈
[ ]
ρ0,1 so that 0≤w( )
ρ , where w verifies the relation( )
( )
'( )
Re{
Re( )
1}
Re ≥w ⋅ =Inf H z z <
z G
z zG
β ρ
β , (32)
where
( )
( )( ) (
)
γ β( )
γ βγ
β β γ
1
0
1
, 
  
 
⋅ +
=
=I g z z−
∫
zg t t − dtz
G , g∈A (33)
and
( )
( )
( )(
)
( )ρ β γγ β
β ρ
− +
− =
∫
+ − −−
1 0
Re 1 2 1
Re 1 2
1 1
dt tz
t
z z
H , (34)
ϕ şi φ∈D and satisfy the relations
( )
( )
βρ γδ + ≥ +
z φ
z zφ'
Re (35)
and
( )
( )
β( )
ρφφ z w
z z
⋅ ≤ '
Re (36)
then F12
( )
f ∈TUCD( )
0 . Proof.Let f ∈A and satisfies the above conditions according to theorem 1.3 and the remark 1.2, a) we obtain
( )
* 12( )
( )
012 f S F f TUCD
Theorem 2.11. Let the integral operator F12
( )
f defined in the theorem 2.10, which verifies the conditions of the theorem 2.10, and the condition (35) from theorem 2.10 becomes the folloving:( )
( )
βρ γδ
ξ + + ≥ +
z φ
z zφ' Re
2 , (37)
then if f ∈K ⇒F12
( )
f ∈TUCD( )
0 . Proof.If f ∈K, has the form (4) and verifies the conditions of this theorem we obtain F12
( )
f ∈S*. Applying the remark 1.2, a) we obtain F12( )
f ∈TUCD( )
0 . Theorem 2.12. Let( )
( )
ξ( ) ( )
σ δ σ βγφ γ
β 1
0
1
13 , 
  
 + ⋅ ⋅
=
∫
z f t g t t − −dtz z g f
F , (38)
δ γ β
ξ, , , and σ∈R, ξ ≥0, β >0, σ ≥0, β +γ =ξ +δ >0. Let ρ0 from the theorem 2.10 and suppose that ρ∈
[ ]
ρ0,1 so thatγ β σ
δ − ≥ +
2 , w
( )
ρ >0, (39) w given in the treorem 2.10.Let φ∈D, so that
( )
( )
β w( )
ρ zφ
z zφ
⋅ ≤ '
Re . (40)
If f ∈S* ,g∈K, then F13
( )
f,g ∈TUCD( )
0 . Proof.We consider f ∈S* ,g∈K of the form (4). According to the theorem 1.7, proved in [2] we obtain F13
( )
f,g ∈S*. Applying the remark 1.2, a) we obtain( )
,( )
013 f g TUCD
F ∈ .
Theorem 2.13. Let
( )( )
( )
ξ( ) ( )
σ δ σ βγφ γ
β 1
0
1
14 , 
  
 + ⋅ ⋅
=
∫
z f t g t t − −dtz z z g f
F , (41)
δ γ β
( )
0 ,2
2− ≥ + ≥
+ξ σ βρ γ ρ
ρ w . (42)
Let φ∈D so that
( )
( )
β( )
ρφφ z w z z
≤ '
Re . (43)
If f,g∈K of the form (4) then F14
( )
f,g ∈TUCD( )
0 . Proof.If f,g∈K according to the corrolary 1.6, the result proved in [1] we obatin
( )
f g ∈S∗F14 , . Applying the remark 1.2, a) we obatin F14
( )
f,g ∈TUCD( )
0 .References
1.Miller S.S., Mocanu P.T.- Differential Subordinations. Theory and Applications, Marcel Dekker, Inc., New York.Basel, 2000.
2.Miller S.S., Mocanu P.T.- Classes of univalent integral operators, Journal of Math. Analysis and Applications, vol. 157, No. 1, May 1, 1991, Printed in Belgium, 147-165.
3.Rosy T., Stephen A.B., Subramanian K.G., Silverman H.- Classes of convex functions, Internat. J. Math.& Math. Sci., vol 23, No. 12(2000), 819-825.
4.Silverman H.- Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51(1975), 109-116.