• Tidak ada hasil yang ditemukan

Miodrag Iovanov. 165KB Jun 04 2011 12:09:14 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Miodrag Iovanov. 165KB Jun 04 2011 12:09:14 AM"

Copied!
14
0
0

Teks penuh

(1)

DETERMINING OF AN EXTREMAL DOMAIN FOR THE

FUNCTIONS FROM THE S-CLASS

by

Miodrag Iovanov

Abstract. Let S be the class of analytic functions of the form f(z) = z + a2 z2 +…, f(0)= 0, f′(0)=1 defined on the unit disk z <1. Petru T. Mocanu [2] raised the question of the determination max Re f(z) when Rez f′(z)=0, z = r, r>0 given. For solving the problem we shall use the variational method of Schiffer-Goluzin [1].

Key words: olomorf functions, variational method, extremal functions.

1. Let S the class of functions f(z) = z + a2 z2 +…, f(0)= 0, f′(0)=1 holomorf and univalent in the unit disk z <1.

For the first time Petru T. Mocanu [2] brought into discussion the problem of determination the max Re f(z) when Rez f′(z)=0, z = r, r>0 existed.

Geometrically this is expressed like in the figure below:

(2)

2.Let z = r and let f

S with Rez f′(z)=0, extremal function for exists the maximum max Re f(z), f

S. We consider a variation f∗(z) for the function f(z) given by Schiffer-Goluzin formula [1],

(1) f*(z)= f(z)+

λ

V(z;

ζ

;

ψ

)+O(

λ

2),

ζ

<1,

λ

>0

ψ

real, where

(2)





+









=

.

)

(

)

(

1

)

(

)

(

)

(

)

(

)

(

)

(

f(z)

)

(

)

(

)

(

e

)

;

V(z;

2 2

i 2 i

2 2

i

ζ

ζ

ζ

ζ

ζ

ζ

ζ

ζ

ζ

ζ

ζ

ζ

ζ

ζ

ψ

ζ

ψ ψ

ψ ψ

f

f

z

z

f

z

e

f

f

z

z

f

z

e

f

f

e

f

z

f

z

f

i

Is known that for

λ

sufficiently small, the function f∗(z) is in the class S. We consider a variation z∗ for z:

z∗ =z +

λ

h + O(

λ

2), h=

0 = ∗

∂ ∂

λ

λ

z

where satisfy the conditions:

(3)

z

=

r

şi Re z∗f∗’(z∗)=0 Observing that :

λ

2

2 2

+

=

z

z

Re(

z

h) +O(

λ

2) = r2.

Because z =r from relation (3) we obtain :

(4) Re (

z

h) = 0.

Replacing z with z∗ in f∗(z) we have : z∗f∗’(z∗) = A +B

λ

+ O(

λ

2) where :

+

+

=

=

)

;

;

(

'

)

(

''

)

(

'

)

(

'

ψ

ζ

z

zV

z

zhf

z

hf

B

(3)

(5) Re

{

h(f'(z)+zf"(z))+zV'(z;

ζ

;

ψ

)

}

=0. Because f(z) is extremes we have:

Re f∗(z*)

Re f(z) where is equivalent with :

Re

{

f(z)+

λ

hf′(z)+L+

λ

V(z;

ζ

:

ψ

)+L

}

≤Re f(z) or

(6) Re

{

hf′(z)+V(z;

ζ

;

ψ

)

}

≤0.

From (5) (

h

h

z

z

=

) and (6) we obtain:

+

′′

+

(

)

(

))

(

;

;

)

(

f

z

z

f

z

z

V

z

ζ

ψ

h

h

(

f

(

z

)

z

z

+

z

f

′′

(

z

)

)

+

z

V

(

z

;

ξ

;

ψ

)

=

0

from where:

(7) h=

) ( )

( )

( )

(

) ; ; ( )

; ; (

2 2

2 /

z f z z f z z f z z f z

z V z z

V z z

′′ ⋅ + ′ ⋅ + ′′ − ′ −

′ +

ζ

ψ

ζ

ψ

.

We will use the next denotations:

f= f(z), w=f(

ζ

) ,

l

=

f

(

z

),

m =

f

′′

(

z

)

,V = (z;

ζ

;

ψ

), V′=VZ′(z;

ζ

;

ψ

). With previous denotations, the relations (6) and (7) can be writhed as follows:

(8) Re

{

pzV ′+V

}

≤0

where p =

m z l z m z zl

l z zl

⋅ + ⋅ + −

⋅ −

2

2 (p real).

(4)

2 / 2 2 2 2 1     ⋅ ⋅ ⋅ ⋅ − ⋅ +     ′ ⋅ ⋅ ⋅ − ⋅ −     ′ ⋅ ⋅ − − ⋅ = − w w z l z e w w z zl e w w f e w f f e

V i i i i

ζ ξ ζ ζ ζ ζ ζ ψ ψ ψ ψ and +     ⋅ ⋅ ⋅ −⋅ − ⋅ − −     ′ ⋅ ⋅ ⋅ − −− ⋅ = ′ 2 / 2 2

2 ( )

) ( ) ( ) 2 ( w w z l m z z e w w l e w f w f fl e

V i i i

ζ ζ ζ ζ ζ ζ ψ ψ ψ + 2 / 2 2 . ) 1 ( ) 2 ( ) 1 (     ⋅ ⋅ ⋅ − − + ⋅ − − w w z z zl m z z e i ζ ζ ζ ζ ζ ψ .

Replacing in relation (8) the expression of V and V/ we obtain: (9) Re

[

e

iψ

(

E

GF

)

]

0

,

where:

[

]

[

]

[

]

                  ′ = ⋅ − ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ − − − − ⋅ ⋅ − + + + − ⋅ − − + = − + + − − = . ) 1 ( ) 2 ( ) 1 ( ) ( ) ( ) 1 ( ) ( ) 2 ( 2 2 2 2 2 2 2 2 w w F z z l z m z z pz z l m z z pz pzl z l z z zl f G w f pzlf f w pzl f f E

ζ

ζ

ζ

ζ

ζ

ζ

ζ

ζ

ζ

ζ

ζ

ζ

(5)

(10)

[

]

= − + + − − ⋅       ⋅ ′ 2 2 2 ) ( ) 2 ( w f pzlf f w pzl f f w w

ζ

2 2 0

)

1

(

)

(

ζ

ζ

ζ

=

z

z

t

k k k where

[

]

[

]

           ⋅ − + − + = − − − − + + − + + − + + − − = + ⋅ + ⋅ + ⋅ + + + ⋅ − − + + + + ⋅ − + − + + = + − + − − − + + − = + + = .. ) ( ) ( ) 2 2 2 2 2 ( ) 2 1 ( ) 2 ( ) 2 1 ( 2 ) ( ) 2 ( 2 ) 2 ( ) 1 4 ( ) 2 ( ) 1 2 ( ) 1 4 ( ), 2 ( ) 1 ( 2 ) 1 ( 2 ) ( 2 4 4 2 4 2 2 2 2 2 2 2 2 3 4 2 2 2 4 4 2 2 2 4 2 2 3 2 2 2 2 2 1 2 0 z l lz z z z m p z f t l r m z r l z m mz z mr r pr r l z z zl r r z f t l z m r l z m r pz l mz zm r pz r r pzl r r l z r zl r r f t l z m pr m pz r plz l z l z r zf t f pzl f z t

The extremal function transforms the unit disk in the domain without external points. To justify this thing is sufficient to suppose that the transformed domain by an external function

w

=

f

(

ζ

)

has an external point w0 and to consider the function the variation: 0 2 *

)

(

)

(

)

(

)

(

w

z

f

z

f

e

z

f

z

f

i

+

=

λ

ψ ,

λ

>0,

ψ

real,

f

*

S

3.Is known that the extrema function

w

=

f

(

ζ

)

transform the unit disk

ζ

< 1, in whole plane, cutted lengthwise of a finite number of analytically arc. Let q =

e

iθ, the point of the circle

ζ

=1 where corresponding the extremity of this kind of section in which

w

/

( )

q

=

0

and

ζ

=

q

is double root for the polynom

= 4 0 k k k

t

ζ

.

Because

ζ

=

q

is double root for this polynom , we can write :

=4

0

k k k

(6)

From the relation about the coefficients tk ,

k

=

0

,

4

results that we can take

.

,

2

,

1 2 2 4

0

0

t

a

kq

a

q

t

a

=

=

=

The differential equation (10) can be write:

(11)

[

(

)

]

(

)

( )

(

(

)

( )

1

)

.

2

1

2

2 2

2 4 2 0

2

2 2 2

ζ

ζ

ζ

ζ

ζ

ζ

z

z

t

q

kq

t

q

w

f

pzlf

f

w

pzl

f

f

w

w

+

=

+

+

 ′

4.After radical extraction in (11) we obtain:

(

)

[

]

)

1

)(

(

2

)

1

(

)

(

2

2 0 2 4 2

ζ

ζ

ζ

ζ

ζ

ζ

z

z

t

q

kq

t

q

dw

w

f

w

pzlf

f

w

pzl

f

f

+

=

+

+

.

From double integration:

(12)

[

(

)

]

=

+

+

w

dw

w

f

w

pzlf

f

w

pzl

f

f

0

2

)

(

2

+

ζ

ζ

ζ

ζ

ζ

ζ

ζ

0

2 4 2 0

)

1

)(

(

2

)

1

(

z

z

t

q

kq

t

q

.

For calculation the integral from left side of (12) we denote:

=

1

I

[

(

)

]

+ + −

dw w

f w

pzlf f

w pzl f

f

) (

2 2

. We observe that :

+

=

dw

w

f

w

a

w

pzl

f

f

I

)

(

)

2

(

2

1 where we denoted .

2

2 2

a pzl f

pzlf f

= −

− +

For the calculation of I1 we make the substitution :

w

=

u

2

a

2

,

dw

=

2

udu

.

We

obtain

=

+

=

b

a

f

b

u

a

u

du

u

pzl

f

f

I

2 2 2 2 2

2

1

,

)

)(

(

2

)

2

(

.
(7)

2 2 2 2 2 2 2 2 2 2 2 2

1

2

1

2

)

)(

(

2

b

u

a

b

b

a

u

a

b

a

b

u

a

u

u

=

.

So:





+

+

=

b

u

b

u

a

b

b

a

u

a

u

a

b

a

pzl

f

f

I

(

2

)

ln

ln

2 2 2

2

1

or

(13)

+

+

=

b a

b

u

b

u

a

u

a

u

a

b

pzl

f

f

I

1

(

2 2

2

)

ln

where :

2

a w

u= + . For calculation the integral from right side of (12) we denote:

+

=

ζ

ζ

ζ

ζ

ζ

ζ

ζ

d

z

z

t

q

kq

t

q

I

)

1

)(

(

2

)

1

(

0 2 4 2

2 .

We have:

q

2

t

4

ζ

2

2

kq

ζ

+

t

0

=

q

2

t

4

(

ζ

ζ

1

)(

ζ

ζ

2

)

where

.

4 4 0 2

2 ,

1

q

t

t

t

k

k

±

=

ζ

If we denotation kk2 −t0t4 =

δ

observe that

q

t

4

1

δ

ζ

=

and 0 .

2 q

t

δ

ζ

=

with this denotations, 2 ( )( 0 ).

4 4

2 0

4 2

q t q t t

q t kq t

q

δ

ζ

δ

ζ

ζ

+ = − −

− For the

calculate the integral I2 make the substitution :

(14) ( )( ) ( )

4 0

4

q t v q t q t

δ

ζ

δ

ζ

δ

ζ

− − = − .
(8)

(15)

1

2 2 2

=

v

v

α

σ

ζ

with

q

t

4

δ

σ

=

and 2 024

δ

α

=t t .

By an elementary calculation from (15) obtained successively:

(16)



=

=

=

=

=

=

=

=

.

1

)

1

(

)

)(

(

1

1

cu

1

)

1

(

1

,

1

1

1

)

1

(

1

,

cu

1

)

(

,

)

1

(

)

1

(

2

2 2 0 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

v

v

q

t

q

t

ş

i

q

q

v

v

q

q

z

z

cu

v

v

z

z

z

z

v

v

z

z

dv

v

v

d

α

σ

δ

ζ

δ

ζ

σ

σα

δ

δ

σ

ζ

σ

σα

γ

γ

σ

ζ

σ

σα

β

β

σ

ζ

α

σ

ζ

By using previous relations we obtain:

(17)

− − − − − − − − − = dv v v v v v v z z t q q I ) )( )( )( 1 ( ) ( ) 1 )( ( ) 1 )( 1 ( 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2

γ

β

α

δ

σ

σ

σ

α

σ

. Let:

)

)(

)(

)(

1

(

)

(

)

(

2 2 2 2 2 2 2 2 2 2

γ

β

α

δ

=

v

v

v

v

v

v

v

F

;

we are looking for a decomposition

(18)

γ

γ

β

β

α

α

+

+

+

+

+

+

+

+

+

+

+

=

v

A

v

A

v

A

v

A

v

A

v

A

v

A

v

A

v

F

1 2 3 4 5 6 7 8

1

1

)

(

.
(9)

(19)

    

     

 

⋅ = − −

− −

= − =

= − −

− −

= − =

= − −

− −

= − =

= − −

− −

= =

4 2 2 2 2 2

2 2

8 7

3 2 2 2 2 2

2 2

6 5

2 2 2 2 2 2

2 2

4 3

1 2 2

2 2

1

) )(

)( 1 ( 2

) (

) )(

)( 1 ( 2

) (

) )(

)( 1 ( 2

) (

) 1 )( 1 )( 1 ( 2

1

τ

β

γ

α

γ

γ

γ

γ

δ

τ

γ

β

α

β

β

β

β

δ

τ

γ

α

β

α

α

α

α

δ

τ

γ

β

α

δ

A A

A A

A A

A A

We denote,

) 1 )( (

) 1 )( 1 (

2 2 2 4

σ

σ

σ

α

σ

µ

z z

t q

q

− −

⋅ − −

= ; from (18) and (19) we obtain

for I2 the expression:

(20)





+

+

+

+

+

+

+

=

γ

γ

τ

β

β

τ

α

α

τ

τ

µ

v

v

v

v

v

v

v

v

I

ln

ln

ln

1

1

ln

2 3 4

1

2 .

From the relation (14) observe that:

(21) ( ) ,

4 0

q t

q t

v

δ

ζ

δ

ζ

ζ

− −

=

v

(

0

)

=

±

α

and from

w

=

u

2

a

2 we obtain:

(22) ,

2 2 )

( ) (

2

pzl f

pzlf f

w u

+ + −

=

ζ

ζ

u

(

0

)

=

±

a

.
(10)

(12/) ζ 0 2 0

1 I

I w=

For

ζ

=

0

from (13), (20) and (12/) obtained the constant (which is obtained from that two members of relations (13) and (20) corresponding to

a

u

a

u

+

from

α

α

+

v

v

(from left)): 2 2 2

) 2 ( ) 1

ln( − +µτ

− −

b a

pzl f f a

, obtained in left member of equality (12/). Thus, (12/) can be writhed:

( )

− = +       − + − − − +             − + ⋅     + − − − − + − − − 2 2 2 ) 2 ( 2 2 2 2 2 2 1 ln ln ) 2 ( ) ( ) ( ) ( ) ( ln ) 2 ( µτ ζ ζ ζ ζ a b pzl f f a b b a b a a b pzl f f b u b u a u a u a b pzl f f . 1 1 ln ) ( ) ( ln ) ( ) ( ln ) ( ) ( ln 1 ) ( 1 ) ( ln 4 3 1 4 3 2 1             +−     + − ⋅       + − − −             + − +     + − +     + − +     + − = τ τ τ τ τ τ τ γ α γ α β αα β α α µ γ ζ γ ζ β ζ β ζ α ζ α ζ ζ ζ µ v v v v v v v v

With calculus the previsious equality can be writhed:

(23)                      + − ⋅ +−     − + ⋅ + − ⋅     + − ⋅     +− = =             − + ⋅ − + ⋅     + − − − − . ) ( ) ( ) ( ) ( ) ( ) ( 1 ) ( 1 ) ( ) ( ) ( ) ( ) ( 4 3 2 1 2 2 ) 2 ( µ τ τ τ τ

γ

α

γ

α

γ

ζ

ζ

γ

β

α

β

α

β

ζ

β

ζ

ζ

α

ζ

α

ζ

ζ

ζ

ζ

ζ

ζ

v v v v v v v v b a b a b u b u u a u

a b a

pzl f f b a

(11)

extremal function

w

=

w

(

ζ

)

, where realized maxRe f(z).

S

f

II. We suppose that

Im(

zl

+

z

2

m

)

=

0

.

In this case the expression of p, have to zlzl =0. How zl+zl =0 implies zl=0. If l=0(z =r >0) then l =0. From (6) results that

w

(

ζ

)

have to verify the condition:

(24)

Re

0

/ 2









w

w

f

w

f

f

e

i

ζ

ψ .

How

ψ

is arbitrary, real, results that

w

(

ζ

)

verify next differential equation:

(25)

w

f

f

w

w

=





2

/

ζ

.

or

ζ

ζ

d

w

f

w

dw

f

=

. From double integration:

(26)

=

w

d

w

f

w

dw

f

0 0

ζ

ζ

ζ

.

With denotation fw =t, obtained

w

=

f

t

2

,

dw

=

2

tdt

.

The relation (26) becomes (without limits of integration):

=

⋅ −

ζ

ζ

d t t f

dt t f

) (

) 2 (

2 or

ln

,

)

(

2

2

2

ζ

=

f

dt

t

f

from where

ζ

ln

ln

=

+

f

t

f

t

(12)

(27)

ζ

ζ 0

0

ln

ln

=

+

w

f

w

f

f

w

f

.

After the calculus we obtained successively:

ζ

=





+

ζ

+

+

ζ

ζ

=

+

+

= ζ

= ζ

ln

w

)

f

w

f

(

ln

f

w

f

f

w

f

ln

and

,

ln

ln

f

w

f

f

w

f

ln

f

w

f

f

w

f

ln

0 2

0 0

from where:

ζ

ln

4

ln

=

+

f

w

f

f

w

f

f

and

(28)

f

w

f

f

w

f

f

4

ζ

=

+

.

From (28) we obtained:

(29) 2

2

)

)

(

4

(

)

(

16

)

(

z

z

f

z

zf

z

w

+

=

.

How f(z) is considerate the extremal from (29) obtained after some calculus that

4

)

(

z

z

(13)

Fig 2

and the condition

Re

zw

/

(

z

)

=

0

implies

x

=

0

(

z

=

x

+

iy

)

.

Then

z

=

max

Re

w

(

z

)

=

0

, so for

z

e

=

0

and ∀z > ze,any parallel to Ox intersected f(z =r) in one point.

We exclude this ordinary case, it showing that the problem is true.

From I and II, result that the extremal function which is corresponding to the extremal region

e from fig 1, has the implicitly form in equation (23).

5.Still remain to show how to determine the

θ

. For this we make in (11)

;

z

ζ

and after simplifications and by multiplication of equality from

z

3

l

we obtained:

(

t

kqz

q

t

z

)

z

l

z

q

p

l

l

r

r

3

(

2

1

)

=

(

1

)

2 0

2

+

2

4

2

3

or :

(30) ( 1) ( ) ( 2 2)

4 2 2 0

2 2 2

3 r ll p z qr t zl kqlr q t lz r

r − ⋅ = − − + ⋅ .

Because p is real,

r

3

(

r

2

1

)

l

l

p

,

is real from the relation (30) we obtain a system with two equation and determinate

θ

and k :

(31)

(

)

[

]

(

)

[

]



=

+

+

=

0

)

2

(

Im

)

2

(

Re

)

1

(

2 4 2 2 0

2

2 4 2 2 0

2 2 2

3

zr

l

t

q

r

l

kq

l

z

t

r

q

z

zr

l

t

q

r

l

kq

l

z

t

r

q

z

p

[image:13.595.224.424.87.182.2]
(14)

With

θ

and k determinated in this way the extremal function from equation (27) is well determine and with its assisting we find z maxRe f(z)

w f

e = with the

geometrical property enounced: in domain

e

=

{

z

z

>

z

e

}

,

any parallel to the Ox axis intersect f(z =r)in one point (eventually in maximum one point).

References

[1].G.M. Goluzin, Geometriceskaia teoria complecsnogo peremenogo, Moscva-Leningrad, 1952.

[2].Petru T. Mocanu, O problemă extremală în clasa funcţiilor univalente, Universitatea Babeş Bolyai-Cluj Napoca, Facultatea de Matematică, 1998.

Author:

Gambar

Fig 2

Referensi

Dokumen terkait

Pembuatan draft dilakukan dengan menggunakan pensil pada buku sketsa berukuran A4, kemudian membuat sketsa ilustrasi yang akan digunakan untuk visual dari beberapa

Dua hal yang dilakukan pekerja migran di lokasi penelitian terkait pemenuhan kebutuhan seksual pertama , melakukan pernikahan dengan sesama pekerja di perkebunan

2, Keputusan Rektor Universitas NegeriYogyakarta Nofiror : 29712006 3, Keputusan Rektor Univercitas NegerlYogyakarta Nornor i095/2003 SuratUsulan Ketua Jurusan/Program

[r]

Komponen atau parameter penilaian terdiri dari dua kelompok yaitu (1) profil portofolio mahasiswa yang mencakup (a) Aktivitas kegiatan ilmiah di luar kelas-

Bung Kar

Berdasarkan pengolahan data memakai software Lisrel 8.8 maka didapatkan korelasi antar variabel laten sebagai berikut :.. Hal tersebut selain dikarenakan case study di

Bagian ini menguraikan suatu perluasan metoda yang sebelumnya melaporkan ke kendali dan penilaian keamanan dinamis dari sistem kuasa otonomi dengan diesel yang lebih