• Tidak ada hasil yang ditemukan

suppmat954. 3352KB Jun 05 2011 09:30:56 PM

N/A
N/A
Protected

Academic year: 2017

Membagikan "suppmat954. 3352KB Jun 05 2011 09:30:56 PM"

Copied!
12
0
0

Teks penuh

(1)

Kathryn N. Rankin, Traian Sulea and Enrico O. Purisima∗

Biotechnology Research Institute, National Research Council of Canada,

6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada

Supporting Information

(Table S1, S2 and S3, Figure S1; 12 pages)

Corresponding author. Email: [email protected]

(2)

Table S1. Experimental hydration free energies11,12 (kcal/mol) and calculated molecular surface area, MSA (Ų), for the 210 neutral organic small molecules in the dataset.

Molecule exp

hydr

G MSAa

Alkanes

cyclopropane 0.75 134.81

cyclopentane 1.20 165.36

cyclohexane 1.23 277.92

cis-12-dimethylcyclohexane 1.58 215.74

methylcyclopentane 1.60 122.21

methylcyclohexane 1.71 104.80

ethane 1.83 229.44

propane 1.96 169.94

n-butane 2.08 146.79

i-butane 2.32 97.44

n-pentane 2.33 105.01

i-pentane 2.38 159.00

n-hexane 2.49 169.05

neopentane 2.50 145.22

3-methylpentane 2.51 168.02

i-hexane 2.52 138.35

22-dimethylbutane 2.59 190.57

n-heptane 2.62 165.78

224-trimethylpentane 2.85 181.03

24-dimethylpentane 2.88 168.77

n-octane 2.89 122.15

Arenes

t-amylbenzene -0.18 165.86

2-propylbenzene -0.30 176.77

butylbenzene -0.40 194.46

t-butylbenzene -0.44 162.39

2-butylbenzene -0.45 201.38

propylbenzene -0.53 144.37

ethylbenzene -0.80 231.11

p-xylene -0.81 125.47

m-xylene -0.84 146.85

124-trimethylbenzene -0.86 89.58

benzene -0.87 133.31

toluene -0.89 126.06

o-xylene -0.90 174.31

a-methylnaphthalene -2.37 161.30

naphthalene -2.39 167.59

(3)

26-dimethylnaphthalene -2.63 173.93

biphenyl -2.64 156.78

23-dimethylnaphthalene -2.78 133.06

14-dimethylnaphthalene -2.82 172.50

acenaphthene -3.15 152.21

fluorene -3.44 250.64

phenanthrene -3.95 197.41

anthracene -4.23 163.29

pyrene -4.46 146.50

Alcohols

4-methyl-2-pentanol -3.74 159.23

2-methyl-3-pentanol -3.89 233.73

23-dimethyl-2-butanol -3.91 97.41

2-methyl-2-pentanol -3.93 217.29

2-methyl-1-pentanol -3.93 218.50

4-heptanol -4.01 168.38

3-hexanol -4.08 149.26

1-octanol -4.10 146.40

1-heptanol -4.25 138.99

3-pentanol -4.35 130.42

1-hexanol -4.36 126.29

2-pentanol -4.39 134.95

3-methyl-1-butanol -4.42 149.61

2-methyl-1-butanol -4.42 214.40

2-methyl-2-butanol -4.43 217.00

1-pentanol -4.47 164.88

t-butanol -4.51 141.41

2-methyl-1-propanol -4.52 220.27

2-butanol -4.58 189.43

1-butanol -4.72 212.52

2-propanol -4.76 157.59

1-propanol -4.83 158.20

ethanol -5.01 168.21

methanol -5.12 185.82

cyclohexanol -5.48 149.09

3-methylphenol -5.49 168.94

cycloheptanol -5.49 237.38

cyclopentanol -5.49 156.99

2-methylphenol -5.87 200.10

4-t-butylphenol -5.92 141.39

4-methylphenol -6.14 93.38

(4)

Table S1 continued.

Ethers

di-n-butylether -0.83 188.16

di-n-propylether -1.15 208.77

di-i-propylether -0.53 156.09

diethylether -1.64 116.07

methyl-n-propylether -1.66 141.53

ethyl-n-propylether -1.81 209.93

dimethylether -1.90 146.92

methyl-i-propylether -2.01 158.51

methyl-t-butylether -2.21 137.75

methyl-phenylether -2.45 118.91

25-dimethyltetrahydrofuran -2.92 153.61

tetrahydropyran -3.12 192.55

2-methyltetrahydrofuran -3.30 113.84

tetrahydrofuran -3.47 195.60

ethyl-phenylether -4.28 209.35

Ketones

2-undecanone -2.15 176.21

2-nonanone -2.48 115.61

5-nonanone -2.67 137.71

24-dimethyl-3-pentanone -2.74 150.81

2-octanone -2.88 136.12

33-dimethylbutanone -2.89 196.23

4-heptanone -2.93 137.33

2-heptanone -3.04 191.43

4-methyl-2-pentanone -3.06 160.14

3-methyl-2-butanone -3.24 160.75

2-hexanone -3.29 210.34

3-pentanone -3.41 137.99

2-pentanone -3.53 156.13

2-butanone -3.64 217.12

acetone -3.85 227.79

acetophenone -4.58 165.94

cyclopentanone -4.68 186.35

Carboxylic Acids

pentanoic acid -6.16 147.01

hexanoic acid -6.21 245.24

butyric acid -6.36 195.66

propionic acid -6.48 123.91

(5)

ethylheptanoate -2.30 187.07

i-butylacetate -2.36 116.08

amylacetate -2.45 185.70

n-propylpropionate -2.46 126.51

methylhexanoate -2.48 140.09

ethylbutanoate -2.50 161.29

ethylpentanoate -2.52 183.56

butylacetate -2.55 174.45

methylpentanoate -2.57 98.50

i-propylacetate -2.65 180.56

ethylpropionate -2.80 203.58

methylbutanoate -2.83 80.02

n-propylacetate -2.86 129.68

methylpropionate -2.93 122.11

ethylacetate -3.10 191.07

methylacetate -3.32 229.94

methylbenzoate -4.28 167.42

Amines

NN-dimethylaniline -2.90 78.54

triethylamine -3.02 152.49

trimethylamine -3.24 39.24

di-n-butylamine -3.33 168.73

di-n-propylamine -3.66 185.30

N-methylpiperidine -3.89 169.73

N-methylpyrrolidine -3.98 163.06

n-hexylamine -4.03 164.67

diethylamine -4.07 170.30

n-pentylamine -4.10 153.25

dimethylamine -4.29 178.36

n-butylamine -4.30 165.90

n-propylamine -4.39 194.48

ethylamine -4.50 184.61

methylamine -4.56 115.12

piperidine -5.11 147.15

aziridine -5.41 111.54

pyrrolidine -5.48 144.57

aniline -5.49 141.55

(6)

Table S1 continued.

Amides

NN-dimethylacetamide -8.50 180.38

propionamide -9.41 190.58

acetamide -9.71 184.59

cis-N-methylacetamide -10.10 236.12

N-methylacetamide -10.10 167.56

N-Heteroarenes

2-ethylpyridine -4.33 175.73

26-dimethylpyridine -4.60 195.56

3-ethylpyridine -4.60 130.86

2-methylpyridine -4.63 94.91

pyridine -4.70 126.69

25-dimethylpyridine -4.70 131.89

4-ethylpyridine -4.72 156.57

3-methylpyridine -4.77 169.63

23-dimethylpyridine -4.83 150.86

35-dimethylpyridine -4.84 216.33

24-dimethylpyridine -4.85 178.86

4-methylpyridine -4.92 143.09

34-dimethylpyridine -5.21 196.51

3-methylindole -5.91 169.11

Sulfur-containing Compounds

1-propanethiol -1.05 163.17

methanethiol -1.24 144.58

dipropylsulfide -1.27 204.57

ethanethiol -1.30 142.43

diethylsulfide -1.43 137.23

methyl-ethylsulfide -1.49 142.51

dimethylsulfide -1.54 162.58

diethyldisulfide -1.63 95.77

dimethyldisulfide -1.83 120.09

benzenethiol -2.55 152.17

methyl-phenylsulfide -2.73 122.11

Poly-functional Compounds

12-diethoxyethane -3.53 110.73

2-i-butyl-3-methoxypyrazine -3.68 175.57

2-ethyl-3-methoxypyrazine -4.39 170.07

12-dimethoxyethane -4.84 130.73

(7)

14-dioxane -5.06 193.66

2-ethylpyrazine -5.46 176.55

2-methylpyrazine -5.52 70.49

2-butoxyethanol -6.27 206.98

tip3p -6.30 225.34

4-methylmorpholine -6.34 205.24

2-propoxyethanol -6.42 153.56

2-methoxyethanamine -6.55 214.24

2-ethoxyethanol -6.61 216.08

2-methoxyethanol -6.77 212.44

3-methoxy-1-propanamine -6.93 146.47

morpholine -7.18 123.65

piperazine -7.38 122.51

NN-dimethylpiperazine -7.58 103.22

N-methylpiperazine -7.78 168.26

4-methylimidazole -10.25 159.38

n-propylguanidine -10.92 149.09

a

The molecular surface area was calculated using the SIMS molecular surface program21 and

(8)

Table S2. Effect of ( ,ρ Din) parameter sets on the calculated electrostatic hydration free energy (kcal/mol) for the series of benzamidine analogs.

(0.975,2.0) -57.94 0.00 -10.10 -61.37 -47.40 -2.09

(0.950,2.2) -58.03 0.00 -9.94 -61.07 -48.31 -2.08

(0.925,2.4) -58.54 0.00 -10.05 -61.32 -48.66 -2.16

(0.900,2.8) -58.53 0.00 -9.72 -61.12 -48.59 -2.14

(9)

upon binding benzamidine to trypsin and the calculated relativea (∆∆A (Å2))change in molecular

surface area upon binding for a series of benzamidine analogs to trypsin.b

Benzamidine (I) is taken as the reference.

b

The largest variation in the relative non-polar term upon binding to trypsin (Eq (2)) is observed

for analog VI and is 0.127 kcal/mol at α = 0.020 kcal/(mol.Å2). Note that the non-polar term

(10)

Figure Captions

Figure S1. Dependence of the components of the calculated absolute electrostatic free energy of

binding between trypsin and benzamidine on AMBER atomic radii linear scaling factor ρ, and

solute interior dielectric constant, Din. 3D-surface representation of (a) Coulomb interaction

energy; (b) change in reaction field energy; (c) reaction field energy of tryspsin-benzamidine

(11)
(12)

-80

Gambar

Table S1.  Experimental hydration free energies11,12 (kcal/mol) and calculated molecular surface
Table S1 continued.
Table S1 continued.
Table S1 continued.
+6

Referensi

Dokumen terkait

Ground and excited state CASPT 2 geometry optimisations of small organic molecules.

Heats of formation for 622 molecules determined by the PDDG/PM3 and PDDG/MNDO methods with results from PM5, PM3, AM1, and MNDO for comparison.. Molecules whose heats of formation

Selected frontier molecular orbitals (FMOs) of

Supplementary Material.

The C–C X-ray bond lengths have a correction of +0.002 Å for thermal motions. Space group

Detailed comparisons of calculated force-field intermolecular interaction energies and geometries to scaled quantum mechanical results: • MMFF94 (Table SM-II). • MMFF94s (Table

The electronic energies calculated by 

TAE/RECON PETN Molecular Surface Properties