• Tidak ada hasil yang ditemukan

modul 2 pesawat atwood1

N/A
N/A
Protected

Academic year: 2017

Membagikan "modul 2 pesawat atwood1"

Copied!
24
0
0

Teks penuh

(1)

LAPORAN PRAKTIKUM FISIKA DASAR

MODUL 2 PESAWAT ATWOOD

Nama : Nova Nurfauziawati

NPM : 240210100003

Tanggal / jam : 2 Desember 2010 / 13.00-15.00 WIB Asisten : Dicky Maulana

JURUSAN TEKNOLOGI INDUSTRI PANGAN FAKULTAS TEKNOLOGI INDUSTRI PERTANIAN

UNIVERSITAS PADJADJARAN JATINANGOR

(2)

BAB I PENDAHULUAN

1.1 Latar Belakang

Pada modul berikut ini, kita akan mencoba menjawab pertanyaan “Apa yang menyebabkan benda bergerak?”. Bangsa Yunani, sejak zaman dahulu telah yakin bahwa tarikan atau dorongan, yang disebut gaya, adalah yang menyebabkan sebuah benda bergerak dan tanpa adanya gaya, sebuah benda yang sedang bergerak akan segera berhenti. Sebuah benda yang sedang diam, yang berarti bahwa bila tidak ada gaya yang bekerja, sebuah benda akan terus diam. Tampaknya, pandangan bangsa Yunani ini beralasan, tetapi akan kita ketahui nanti bahwa ternyata pandangan tersebut tidak tepat.

Orang yang pertama menyangkal pandangan kuno bangsa Yunani tersebut adalah Galileo. Menurut “prinsip inersia” yang diusulkan Galileo, sebuah benda yang sedang bergerak pada permukaan horizontal yang licin sempurna (tanpa gesekan) akan tetap terus bergerak dengan kelajuan sempurna.

Berdasarkan pada pendapat Galileo tersebut, pada tahun 1678 Isaac Newton menyatakan hukum pertamanya tentang gerak, yang sekarang kita kenal sebagai Hukum I Newton, kemudian ia pun mengemukakan Hukum II dan Hukum III Newton. Sebuah benda yang mula-mula diam, akan dapat bergerak jika mendapat pengaruh atau penyebab yang bekerja pada benda

tersebut. Penyebabnya dapat berupa pukulan, tendangan, sundulan, atau lemparan. Dalam Fisika, penyebab gerak tersebut dinamakan gaya. Ilmu yang mempelajari tentang gerak dengan memperhitungkan gaya penyebab dari gerak tersebut dinamakan dinamika gerak. Seperti yang telah disebutkan tadi bahwa orang yang sangat berjasa dalam kajian Fisika tentang dinamika adalah Sir Isaac Newton.

(3)

yang bekerja pada benda tersebut. Oleh karena itu kita perlu mengetahui

bagaimana gaya dapat menghasilkan gerak.

Dalam percobaan kali ini pun kita akan menyelidiki apakah hukum Newton tersebut dapat diaplikasikan terhadap alat peraga berupa pesawat atwood dengan menghubungkan gejala-gejala yang terjadi dengan hukum-hukum Newton.

1.2 Tujuan

1.2.1 Menyelesaikan soal-soal tentang gerak translasi dan rotasi dengan menggunakan Hukum Newton.

(4)

BAB II

TINJAUAN PUSTAKA

2.1 Hukum I Newton

Galileo melakukan pengamatan mengenai benda-benda jatuh bebas. Ia menyimpulkan dari pengamatan-pengamatan yang dia lakukan bahwa benda-benda berat jatuh dengan cara yang sama dengan benda-benda-benda-benda ringan. Tiga puluh tahun kemudian, Robert Boyle, dalam sederetan eksperimen yang dimungkinkan oleh pompa vakum barunya, menunjukan bahwa pengamatan ini tepat benar untuk benda-benda jatuh tanpa adanya hambatan dari gesekan udara. Galileo mengetahui bahwa ada pengaruh hambatan udara pada gerak jatuh. Tetapi pernyataannya walaupun mengabaikan hambatan udara, masih cukup sesuai dengan hasil pengukuran dan pengamatannya dibandingkan dengan yang dipercayai orangpada saat itu (tetapi tidak diuji dengan eksperimen) yaitu kesimpulan Aristoteles yang menyatakan bahwa,” Benda yang beratnya sepuluh kali benda lain akan sampai ke tanah sepersepuluh waktu dari waktu benda yang lebih ringan”. Pada tahun 1678 Sir Isaac

Newton menyatakan hukum pertamanya tentang gerak, yang sekarang kita kenal sebagai Hukum I Newton

Hukum I Newton menyatakan “Sebuah benda akan berada dalam keadaan diam atau bergerak lurus beraturan apabila resultan gaya yang

bekerja pada benda sama dengan nol”.

Secara matematis, Hukum I Newton dinyatakan dengan persamaan:

=

Hukum di atas menyatakan bahwa jika suatu benda mula-mula diam maka benda selamanya akan diam. Benda hanya akan bergerak jika pada suatu benda itu diberi gaya luar. Sebaliknya, jika benda sedang bergerak

maka benda selamanya akan bergerak, kecuali bila ada gaya yang menghentikannya.

(5)

untuk mengubah keadaannya. Sifat ini kita ini kita sebut kelembaman atau

inersia. Oleh karena itu, Hukum I Newton disebut juga Hukum Kelembaman.

2.2 Hukum II Newton

“Setiap benda yang dikenai gaya maka akan mengalami percepatanyang

besarnya berbanding lurus dengan besarnya gaya dan berbanding tebalik

dengan besarnya massa benda.”

= ∑ ; ∑ =

Keterangan : a = percepatan benda (ms-2) m = massa benda (kg)

F = Gaya (N)

Kesimpulan dari persamaan diatas yaitu arah percepatan benda sama dengan

arah gaya yang bekerja pada benda tersebut. Besarnya percepatan sebanding dengan gayanya. Jadi bila gayanya konstan, maka percepatan yang timbul juga akan konstan Bila pada benda bekerja gaya, maka benda akan mengalami percepatan, sebaliknya bila kenyataan dari pengamatan benda

mengalami percepatan maka tentu akan ada gaya yang menyebabkannya. Persamaan gerak untuk percepatan yang tetap

(2)

Jika sebuah benda dapat bergerak melingkar melalui porosnya, maka pada gerak melingkar ini akan berlaku persamaan gerak yang ekivalen dengan persamaan gerak linear. Dalam hal ini ada besaran fisis momen inersia (momen kelembaman) I yang ekivalen dengan besaran fisis massa (m)

pada gerak linear. Momen inersia (I) suatu benda pada poros tertentu harganya sebanding dengan massa benda terhadap porosnya.

I ~ m I ~ r2

(6)

2.3 Hukum III Newton

Hukum III Newton menyatakan bahwa “Apabila benda pertama mengerjakan gaya pada benda kedua (disebut aksi) maka benda kedua akan

mengerjakan gaya pada benda pertama sama besar dan berlawanan arah

dengan gaya pada benda pertama (reaksi).” Secara matematis dinyatakan

dengan persamaan : Faksi = -Freaksi

Suatu pasangan gaya disebut aksi-reaksi apabila memenuhi syarat sebagai berikut : 1. sama besar

2. berlawanan arah

3. bekerja pada satu garis kerja gaya yang sama 4. tidak saling meniadakan

5. bekerja pada benda yang berbeda

2.4 Gerak translasi

Gerak lurus adalah gerak suatu obyek yang lintasannya berupa garis lurus. Dapat pula jenis gerak ini disebut sebagai suatu translasi beraturan. Pada rentang waktu yang sama terjadi perpindahan yang besarnya sama.

Gerak lurus dapat dikelompokkan menjadi gerak lurus beraturan dan gerak lurus berubah beraturan yang dibedakan dengan ada dan tidaknya percepatan. 1. Gerak Lurus Beraturan (GLB)

Gerak lurus beraturan (GLB) adalah gerak lurus suatu obyek, dimana dalam gerak ini kecepatannya tetap atau tanpa percepatan, sehingga jarak

yang ditempuh dalam gerak lurus beraturan adalah kelajuan kali waktu.

=

Keterangan: = jarak tempuh ( )

= kecepatan ( / )

= waktu ( )

2. Gerak Lurus Berubah Beraturan (GLBB)

Gerak lurus berubah beraturan (GLBB) adalah gerak lurus suatu obyek, di mana kecepatannya berubah terhadap waktu akibat adanya percepatan yang tetap. Akibat adanya percepatan rumus jarak yang

(7)

yang melakukan gerak dari keadaan diam atau mulai dengan kecepatan

awal akan berubah kecepatannya karena ada percepatan ( = + ) atau

perlambatan ( = −). Pada umumnya GLBB didasari oleh Hukum Newton II ( ∑ = ).

= +

= +

= +

Keterangan: = kecepatan awal ( ⁄ )

= kecepatan akhir ( ⁄ )

= percepatan ( ⁄ )

= waktu ( )

= jarak yang ditempuh ( )

GLBB dibagi menjadi 2 macam : a. GLBB dipercepat

GLBB dipercepat adalah GLBB yang kecepatannya makin lama makin cepat, contoh GLBB dipercepat adalah gerak buah dari pohonnya.

Grafik hubungan antara v terhadap t pada GLBB dipercepat adalah:

(8)

b. GLBB diperlambat

GLBB diperlambat adalah GLBB yang kecepatannya makin lama makin kecil (lambat). Contoh GLBB diperlambat adalah gerak benda dilempar keatas.

Grafik hubungan antara v terhadap t pada GLBB diperlambat

Grafik hubungan antara s terhadap t pada GLBB diperlambat

Persamaan yang digunakan dalam GLBB sebagai berikut : Untuk menentukan kecepatan akhir

Untuk menentukan jarak yang ditempuh setelah t detik adalah sebagai berikut:

Yang perlu diperhatikan dalam menggunakan persamaan diatas adalah saat GLBB dipercepat tanda yang digunakan adalah (+) .

(9)

2.5 Gerak Rotasi

Gerak melingkar atau gerak rotasi merupakan gerak melingkar suatu benda pada porosnya pada suatu lintasan melingkar. Bila sebuah benda mengalami gerak rotasi melalui porosnya, ternyata pada gerak ini akan berlaku persamaan gerak yang ekivalen dengan persamaan gerak linier.

Momen inersia merupakan representasi dari tingkat kelembaman benda yang bergerak rotasi. Semakin besar momen inersia suatu benda, semakin malas dia berputar dari keadaan diam, dan semakin malas pula ia untuk mengubah kecepatan sudutnya ketika sedang berputar. Sebagai contoh, dalam ukuran yang sama sebuah silinder yang terbuat dari sebuah besi memiliki momen inersia yang lebih besar daripada silinder kayu. Hal ini bisa diperkirakan karena terasa lebih berat lagi bagi kita untuk memutar silinder besi dibandingkan dengan memutar silinder kayu.

Momen inersia pada gerak rotasi bisa dianalogikan dengan massa pada gerak translasi. Sedangkan gaya pada gerak translasi dapat dianalogikan dengan momen gaya pada gerak translasi. Jika gaya menyebabkan timbulnya percepatan pada gerak translasi maka momen gaya itulah yang menyebabkan

timbulnya percepatan sudut pada gerak rotasi. Saat kita memutar sebuah roda atau membuka daun pintu, saat itu kita sedang memberikan momen gaya pada benda-benda tersebut.

Dengan memanfaatkan pengertian momen gaya, kita dapat mengadaptasi Hukum II Newton untuk diterapkan pada gerak rotasi. Bentuk

persamaan Hukum II Newton adalah:

=

Dengan menganalogikan gaya dengan momen gaya, massa dengan momen inersia, dan percepatan dengan percepatan sudut, akan kita temukan hasil adaptasi dari Hukum II Newton dalam gerak rotasi sebagai berikut:

=

Keterangan: = momen gaya (Nm) = momen inersia ( )

(10)

Untuk memudahkan pemahaman mengenai besaran-besaran pada gerak

rotasi, kita bisa menganalogikannya dengan besaran-besaran pada gerak lurus. Berikut merupakan analogi antara besaran-besaran pada gerak translasi dan besaran-besaran pada gerak rotasi.

Tabel 1. Analogi Besaran-Besaran pada Gerak Lurus dan Gerak Rotasi

Gerak Lurus Gerak Rotasi

= =

= =

= + = +

= + = +

= =

= =

= 1

2 =

1 2

Hk. Kekekalan momentum linier

=

Hk. Kekekalan momentum sudut

=

(11)

Gerak melingkar ini ada yang disebut gerak melingkar beraturan

dengan pengertian gerak suatu benda yang menempuh lintasan berbentuk lingkaran dengan laju liner (besaran kecepatan linier) tetap. Sebagai contoh, bila roda sepeda diangkat sehingga rodanya tidak bersentuhan dengan bidang datar (tanah atau lantai), kemudian pedalnya dikayuh, maka roda akan tetap berputar. Bila pedal dikayuh dengan kelajuan tetap maka laju putaran roda juga tetap.

Bila sebuah benda mengalami gerak rotasi melalui porosnya, ternyata pada gerak ini akan berlaku persamaan gerak yang ekivalen dengan persamaan gerak linier, dimana :

Kedudukan x = besar sudut tempuh 

Kecepatan v = kecepatan sudut 

Percepatan a = percepatan sudut 

Massa m = momen inersia I

Gaya F = momen gaya 

Momentum p = momentum sudut L

Hukum II Newton untuk gerak rotasi bisa dinyatakan dengan :  = I . 

2.6 Sebuah Katrol dengan Beban

Untuk sebuah katrol dengan beban-beban seperti pada gambar dibawah, maka berlaku persamaan seperti berikut,

Bila dianggap M1 = M2 = M

(12)

Pada saat M1 berada diklem S maka gerak dipercepat dengan persamaan (5). Pada saat melalui lubang A, benda m akan tertinggal dan M2 lolos melalui lubang A dan menuju titik B dengan kecepatan konstan. Karena M1 = M2, maka M2 + m berada dititik C, jika M1 dilepas dari klem maka M2 + m akan turun dari titik C ke B melewati titik A dengan gerak dipercepat.

2.7 Pesawat Atwood

Pesawat atwood adalah alat yang digunakan untuk yang menjelaskan hubungan antara tegangan, energi pontensial dan energi kinetik dengan menggunakan 2 pemberat (massa berbeda) dihubungkan dengan tali pada

sebuah katrol. Benda yang yang lebih berat diletakan lebih tinggi posisinya dibanding yang lebih ringan. Jadi benda yang berat akan turun karena gravitasi dan menarik benda yang lebih ringan karena ada tali dan katrol.

(13)

BAB III

METODE PERCOBAAN

3.1 Alat dan Bahan

3.1.1 Pesawat Atwood yang terdiri dari (gambar 2).

3.1.1.1 Tiang yang berskala R yang ujung atasnya terdapat katrol p

3.1.1.2 Tali penggantung yang massanya dapat diabaikan.

3.1.1.3 Dua beban M1 dan M2 berbentuk silinder dengan massa sama masing-masing M yang diikatkan menggantung.

3.1.1.4 Dua beban tambahan dengan massa masing-masing m1 dan m2.

3.1.1.5 Genggaman G dengan pegas S, penahan beban B, penahan beban tambahan A yang berlubang.

3.1.2 Stopwatch 3.1.3 Neraca Teknis

3.1.4 Kertas Grafik (milimeter)

3.2 Prosedur

3.2.1 Mengambil alt-alat yang diperlukan.

3.2.2 Menimbang dan mencatat M1 dan M2 serta m1 dan m2.

3.2.3 Memasang genggaman G, penahan beban B dan penahan beban tambahan A.

3.2.4 Menggantungkan M1 dan M2 pada ujung-ujung tali dan memasangkannya pada katrol (lihat gambar 2). Memasang M1 pada genggaman dan menyelidiki apakah tiang sejajar dengan tali.

(14)

3.2.6 Setelah pesawat bekerja dengan baik, memasang M1 pada genggaman

G, dan menambahkan m1 dan M2. Mencatat kedudukan C,kedudukan penahan A dan kedudukan penahan B pada tiang berskala.

3.2.7 Melepaskan M1 dari G dengan menekan S. Mencatat tAB, yaitu waktu yang diperlukan oleh M2 (setelah m1 tersangkut pada A) untuk menempuh jarak XAB (=AB).

3.2.8 Mengganti m1 dengan m2, kemudian melakukan percobaan poin 3.2.7. 3.2.9 Mengubah jarak XAB dengan cara mengubah kedudukan B, sedangkan

kedudukan Cdan A tetap dan mengulangi poin (3.2.7) dan (3.2.8). 3.2.10 Mengubah lagi jarak XAB dan ulangi percobaan lagi.

3.2.11 Memuat grafik antara XAB terhadap tAB untuk masing-masing beban tambahan m1 dan m2. Bandingkan dengan hukum II Newton.

3.2.12 Dari grafik tersebut, menghitung kecepatan M2 setelah melalui A untuk masing-masing beban tambahan.

3.2.13 Mengatur kedudukan A, B, C. Sebaiknya CA cukup jauh, sedangkan AB dekat. Catat kedudukan C dan A, pasang M1 pada G dan tambahkan m1 pada M2.

3.2.14 Melepaskan M1 dari G. Catat tCA.

3.2.15 Mengganti m1 dengan m2, lakukan lagi seperti tahap sebelumnya. 3.2.16 Mengubah jarak XCA dengan mengubah kedudukan G. Catat

kedudukan C dan lakukan lagi seperti tahap sebelumnya.

3.2.17 Mengubah jarak XCA sekali lagi, catat kedudukan C dan ulangi

tahapan sebelumnya.

3.2.18 Membuat grafik antara XCA terhadap tCA2 untuk masing-masing beban tambahan m1 dan m2. Bandingkan dengan hukum Newton.

3.2.19 Dari grafik tersebut, menghitung percepatan M2 dengan masing-masing beban tambahan.

(15)
(16)

Grafik XAB terhadap tAB untuk m1

Grafik XAB terhadap tAB untuk m2

Berikut adalah hasil dari perhitungan menggunakan kalkulator untuk m1 : a = 6,899 x 10-5

Grafik XABterhadap tABuntuk m1

XAB Grafik XABterhadap tABuntuk m2

(17)

Dengan cara yang sama untuk m2 :

Perbandingan hukum II Newton :

= .

Dengan cara grafik dari milimeter block.

(18)

Gerak Lurus Berubah Beraturan

Grafik XCAterhadap tCA2untuk m 1

XCA

(19)

Grafik XCA terhadap tCA2 untuk m2

Berikut adalah hasil dari perhitungan menggunakan kalkulator untuk m1 : a = -0,313

Dengan cara yang sama untuk m2 : a = -0,597 Grafik XCAterhadap tCA2untuk m

2

XCA

(20)

= 2.

a = 2 x 0,446

= 0,892 m/s2

Perbandingan hukum II Newton :

(21)

I = {( + )− } − {( + + ) }

I = { ( 5x10 + 79,32x10 )−79,32x10 } 9,78− ( 79,32x10 + 79,32x10 + 5x10 ) 4,225x10

4,731

I = 0,0489− 6,91379x10 4,731

I = 0,010334619 kg m2

massa 2

= ( )

g

I = {( + )− } − {( + + ) }

I = { ( 5x10 + 79,32x10 )−79,32x10 } 9,78− ( 79,32x10 + 79,32x10 + 5x10 ) 4,225x10

4,877

I = 0,0489− 6,91379x10 4,877

I = 0,010025238 kg m2

4.2 Pembahasan

Pada praktikum kali ini, kita melaksanakan percobaan mengenai dinamika gerak dengan menggunakan perangkat pesawat atwood. Berdasarkan hasil praktikum, pada gerak lurus beratuan untuk massa 1 diperoleh kecepatan senilai 0,281 m/s sedangkan untuk massa ke 2 diperoleh kecepatan senilai 0,226 m/s. Jika dibandingkan dengan perhitungan dari grafik pada milimeterblock diperoleh nilai kecepatan 0,297 m/s untuk m1 dan nilai kecepatan 0,235 m/s untuk m2. Hukum II Newton, dari keduanya diperoleh niali percepatan yang sama yaitu sebesar 0,299 m/s2.

(22)

sebesar 4,731 m/s2 dan percepatan massa 2 adalah 4,877 m/s2. Dari semua

data yang ada maka diperoleh nilai momen inersia yang sama untuk massa 1 dan massa 2 yaitu sebesar 0,010 kg m2.

Keakuratan hasil perhitungan dapat dipengaruhi oleh dua faktor, yaitu faktor eksternal dan faktor internal. Misalnya untuk faktor eksternal, pada waktu percobaan tersebut adanya kurang ketelitian dalam menempatkan letak dari masing-masing benda, ada pula kesalahan yang disebabkan oleh kurang telitinya dalam menghitung waktu tempuh dari masing-masing benda dalam melakukan pergerakan.

(23)

BAB V PENUTUP

5.1 Kesimpulan

Melalui pesawat atwood kita dapat mengetahui nilai kecepatan, percepatan dan momen inersia dari suatu benda. Nilai kecepatan diperoleh dari percobaan mengenai gerak lurus beraturan sedangkan niali percepatan diperoleh dari nilai gerak lurus berubah beraturan. Nilai momen Inersia

diperoleh dari persamaan = ( )

g sehingga

I = {( + )− } − {( + + ) }

5.2 Saran

(24)

DAFTAR PUSTAKA

Dr. Ir. Bob Foster, M.M. 2004 Terpadu FISIKA SMA. Jakarta : Erlangga Kanginan, Martehen. 1995. Fisika Jilid IA. Jakarta: Erlengga

Zaida. Petunjuk Praktikum Fisika Dasar. UNPAD : Jatinangor.

Gambar

Grafik hubungan antara v terhadap t pada GLBB dipercepat adalah:
Grafik hubungan antara v terhadap t pada GLBB diperlambat
Tabel 1. Analogi Besaran-Besaran pada Gerak Lurus dan Gerak Rotasi
Gambar 1. Pesawat Atwood
+4

Referensi

Dokumen terkait

Permasalahan yang dikaji dalam penelitian ini adalah (1) Apakah terdapat pengaruh antara motivasi belajar dan metode pembelajaran terhadap prestasi belajar akuntansi siswa kelas

Bahasa nonverbal dapat dibedakan menjadi dua, yaitu dinamis dan statis (Hu, 2014) Bahasa nonverbal dinamis adalah bahasa tubuh beserta anggota tubuh disertai

Stock Split yang dilakukan perusahaan memiliki tujuan untuk meningkatkan transaksi yang terjadi bila dihubungkan dengan volume perdagangan karena dengan adanya

Selain i#u laangan ini 9uga Ga*!ar.. Pelanggaran #erhada larangan i#u as#i digan9ar hu$u*an.. <da 9uga ruang  u!li$ di Kelurahan Sawunggaling adalah Gedung

derajat dismenore primer. Hasil data uji Chi-Square menyatakan terdapat hubungan antara tebal lipatan lemak bawah kulit dan dismenore primer pada siswi SMA Swasta

Peraturan Menteri Keuangan Republik Indonesia Nomor 54/PMK.02/2005 tentang Petunjuk Teknis Penyusunan dan Penelaahan Rencana Kerja dan Anggaran Kementerian Negara

Miturut Kristeva, saben teks iku minangka mozaik pethikan-pethikan lan minangka reresepan sarta tranformasi teks-teks liya (Culler sajrone Teeuw, 1988:146). Tegese saben