• Tidak ada hasil yang ditemukan

SEMINAR NASIONAL REKAYASA DAN APLIKASI TEKNIK MESIN DI INDUSTRI. Kampus ITENAS Bandung, Januari 2012

N/A
N/A
Protected

Academic year: 2021

Membagikan "SEMINAR NASIONAL REKAYASA DAN APLIKASI TEKNIK MESIN DI INDUSTRI. Kampus ITENAS Bandung, Januari 2012"

Copied!
13
0
0

Teks penuh

(1)

PROSIDING

PROSIDING

SEMINAR NASIONAL

X

REKAYASA DAN APLIKASI

TEKNIK MESIN DI INDUSTRI

REKAYASA DAN APLIKASI

TEKNIK MESIN DI INDUSTRI

Kampus ITENAS

Bandung, 17-18 Januari 2012

Penyelenggara :

JURUSAN TEKNIK MESIN

FAKULTAS TEKNOLOGI INDUSTRI

Penyelenggara :

JURUSAN TEKNIK MESIN

FAKULTAS TEKNOLOGI INDUSTRI

Seminar

Teknik

MESIN

Editor : Dr. Tarsisius Kristyadi, Ir., MT.

Dr.Ing. M. Alexin Putra

Yusril Irwan, ST., MT.

Marsono, ST., MT.

M. Ridwan, ST., MT.

Tito Shantika, ST., M.Eng.

Liman Hartawan, ST., MT.

(2)

ii

PENGANTAR

Assalamu’alaikum. warahmatullahi wabarrakatuh,

Pertama-tama marilah kita panjatkan Puji Syukur ke hadirat Allah SWT, karena atas

izin dan karunia-Nya kita dapat bertemu dan bersilaturahmi dalam seminar di kampus

Itenas-Bandung. Semoga seminar ini dapat berjalan dengan lancar sesuai dengan

tujuannya.

Seminar ini merupakan agenda tahunan civitas akademika Jurusan Teknik Mesin, FTI –

Itenas, yang sudah dimulai sejak tahun 2002. Seminar ini diharapkan menjadi forum

diskusi dan tukar informasi kegiatan studi dan penelitian yang telah dilakukan oleh para

peneliti dari perguruan tinggi (dosen dan mahasiswa), instansi penelitian maupun

praktisi industri, khususnya yang terkait dengan bidang teknik mesin, sehingga dapat

meningkatkan sinergi diantara keduanya.

Pada seminar kali ini, panitia telah berhasil menghimpun 31 makalah dan sejumlah 20

makalah akan dipresentasikan. Makalah dikelompokkan ke dalam tiga sub topik yaitu

Teknologi Konversi Energi, Teknologi Bahan dan Material Komposit, dan Teknologi

Perancangan dan Pengembangan Produk.

Dalam kesempatan ini, perkenankan kami menyampaikan terima kasih dan penghargaan

setinggi-tingginya kepada seluruh penyaji makalah, peserta, civitas akademika Jurusan

Teknik Mesin, FTI – Itenas, dan semua pihak yang telah berpartisipasi aktif sehingga

seminar ini dapat terselenggara. Semoga kerjasama yang telah kita bangun selama ini

dapat terus ditingkatkan dimasa-masa mendatang. Mohon maaf atas segala kekurangan

dan kekhilafan.

Akhir kata kami mengucapkan selamat mengikuti seminar, semoga semua gagasan dan

pikiran yang berkembang selama seminar ini, dapat tercatat sebagai sumbangsih yang

bermanfaat untuk kejayaan bangsa dan Negara kita.

Wabillahi taufiq walhidayah, Wassalamu’alaikum warahmatullahi wabarakatuh.

Bandung, 16 Januari 2012

Jurusan Teknik Mesin, FTI – Itenas

Encu Saefudin, Ir., MT

Ketua

(3)

Rekayasa dan Aplikasi Teknik Mesin di Industri

Kampus ITENAS - Bandung, 17-18 Januari 2012

iii  Teknik MESIN DAFTAR ISI Hal SAMBUTAN ii

DAFTAR ISI iii

TOPIK TEKNOLOGI PERANCANGAN DAN PENGEMBANGAN PRODUK TPPP

01 Analisa Kerusakan Timing Belt Pada Mesin Tenun (Heru Pahrudin , Sumadi) 1

02 Perancangan Mesin Bending Pipa Untuk Ukuran Diameter Pipa ¾ Inchi

Dengan Sistem Dongkrak Hidrolik (Encu Saefudin, Marsono dan Cecep Kiki

Handrian)

6

03 Pengujian Prestasi Kompor Induksi (Syahbardia) 14

04 Pembuatan dan Pengujian Mesin Tekuk Pipa untuk Diameter ¾ Inchi

(Marsono, Encu Saefudin, dan Farid Firmansyah)

21

05 Perancangan Dan Pembuatan Oven Pengering Eceng Gondok Untuk Skala

Industri Kecil (Noviyanti Nugraha, M. Alexin P, Danang Pinandhitio)

29

06 Perancangan mesin briket batu bara dengan tipe screw press (Ali)

35

TOPIK TEKNOLOGI BAHAN DAN MATERIAL KOMPOSIT TBMK

01 Karakteristik Fisik Dan Mekanik Produk Indirect Pressureless Sintering

Serbuk Cu Dan Ni Dengan Penyangga Serbuk Besi Cor (Eko Sutarto, D

Kristianto Hermawan, D.Subekti & Susilo Adi Widyanto)

1

02 Analisis Kerusakan Internal Rocker-Arm Mesin Diesel Kapal Motor Surya

Sentosa (Halim Rusjdi, Rusjdi Hadjerat, Sahlan)

10

03 Pengaruh Temperatur Pemanasan Terhadap Koefisien Perpindahan Massa

Difusi (Diffusivity) Karbon Pada Proses Pack Carburizing Baja AISI 3115

(Putu Hadi Setyarini, Ika Istiana, Slamet Wahyudi)

17

04 Remelting Dan Beda Temperatur Terhadap Sifat Mekanis Pada Limbah

Piston Bekas Dengan Metode High Presure Die Casting (Purnomo dan

Suparjo)

24

05 Pengujian Akustik Papan Serat Sabut Kelapa Dengan Matriks Gypsum

(Yusril Irwan)

30

06 Analisis Visual untuk Perhitungan Initial Damage pada Sambungan Adhesive

(Irfan Hilmy, Yusril Irwan)

38

07 Kaji Eksperimental Kekakuan Lentur Poros Retak Melintang Buatan Dua Sisi

(Encu Saefudin)

(4)

ISSN 1693-3168

Seminar Nasional - IX

Rekayasa dan Aplikasi Teknik Mesin di Industri

Kampus ITENAS - Bandung, 17-18 Januari 2012

iv   

Teknik

MESIN

TOPIK TEKNOLOGI KONVERSI ENERGI TKE

01 Analisis Penurunan Temperatur Berdasarkan Variasi Sprayer Pada Fasilitas

Eksperimen Kontemen (Ade Satria

1

, Wahyu

1

, Luqmanul Hakim

1

, Edi

Marzuki

1,

Mulya Juarsa

1,2

, Hendro Tjahjono

2

, Ismu Handoyo

2

, Kiswanta

2

,

Ainur Rosidi

2

)

1

02 Analisis Rugi Kalor Berdasarkan Variasi Sudut Kemiringan Untai Simulasi

Sirkulasi Alamiah (Ussa-Ft02) (Budi Gusnawan Juarsa

1,2

, Rizqi Faizal

Muttaqin

1,2

, Mochammad Farid

1,2

, Sigit Herlambang

1,2

, Januar Akbar

1,2

, Yogi

Sirodz Gaos

2

, Edi Marzuki

2

, Mulya Juarsa

2

)

6

03 Analisi Perpindahan Kalor Konveksi Berdasarkan Variasi Daya Heater Pada

Bundel Uji Simulasi Eksperimen Temperatur Tinggi (Busetti) (Budi Utomo

1

,

Oskar Riko

1

, Kiswanta

2

, Ainur Rosidi

2

, Ismu Handoyo

2

, Edi Marzuki

1

,Mulya

Juarsa

2

)

14

04 Pengaruh Parameter Stack Serta Variasi Frekuensi Terhadap Performa

Termal Pendingin Termoakustik Nandy Putra, Dinni Agustina, Gilang AIV,

Sabdo W)

24

05 Perpindahan Kalor Dibagian Dingin Berdasarkan Variasi Warna Lapisan Film

Pada Panel Sistem Solar Thermal (Indra Resmana

1,2

, Akhrom Aryadi

1,2

,

Hasanudin Wijaya

1,2

, Januar Akbar

1,2

,Yogi Sirodz Gaos

2

, Edi Marzuki

2

,

Mulya Juarsa

2

)

31

06 Analisis Distribusi Temperatur 2-D Dan Fluks Kalor Berdasarkan Variasi

Temperatur Selama Proses Pemanasan Pada Pelat SUS316 Di Bagian Uji

Heating-02 (Iwan Kurniawan

1

, Mulya Juarsa

1,2

, Edi Marzuki

1

Susyadi

2

, Ainur

Rosidi

2

, Ismu Handoyo

2

)

38

07 Analisis Perubahan Tekanan Uap Selama Proses Pendinginan Pada Simulator

Sungkup Reaktor (FESPECo) (Luqmanul Hakim

1

, Ade Satria

1

, Wahyu

1

, Yogi

Sirodz Gaos

1

, Edi Marzuki

1

, Mulya Juarsa

1,2

, Hendro Tjahjono

2

, Ismu

Handoyo

2

, Kiswanta

2

, Ainur Rosidi

2

)

45

08 Analisi Perpindahan Kalor Konduksi Berdasarkan Variasi Daya Heater Pada

Bundel Uji Simulasi Eksperimen Temperatur Tinggi (BUSETTI) (Oskar

Riko

1

, Budi Utomo

1

, Kiswanta

2

, Ainur Rosidi

2

, Ismu Handoyo

2

, Edi

Marzuki

1

,Mulya Juarsa

2

)

52

09 Fenomena Pendidihan pada Heat Pipe dengan Variasi Wick Screen Mesh dan

Posisi Peletakan (Ratna Sary, Wayan Nata, Nandy Putra)

59

10 Pengaruh Viskositas Oli Terhadap Karakteristik Perpindahan Kalor Di

Permukaan Aluminium Pada Dinamika Tumbukan Droplet (Slamet Wahyudi,

Putu Hadi Setyarini dan Shancha Ricardo Agusta)

66

11 Analisis Rugi Kalor Selama Proses Pemanasan Dan Pendinginan Pada

Simulator Sungkup Reaktor (Wahyudin

1

, Mulya Juarsa

1

, Surip Widodo

1

,

Ismu Handoyo

2

, Edi Marzuki

2

, Joko Susilo

2

)

74

12 Analisis Perhitungan Koefisien Gesek Dengan Reynoldnumber Pada Material

Plastik PP(

Polypropylene)

, POM (

Polyoxymethylene)

, PE (

Polyethylene)

Terhadap Temperatur Dan Waktu Pada Alat Uji Melt Flow Index (Vikram

Pasha

1

, Mulya Juarsa

1

, Edi Marzuki

1

, Dedek Kurniawan

1

, Yuda Nurul

Alfian

1

, Afrinaldi

1

, R. Burhan N

1

, Deni Kusmansyah

1

)

(5)

Rekayasa dan Aplikasi Teknik Mesin di Industri

Kampus ITENAS - Bandung, 17-18 Januari 2012

Teknik

MESIN

13 Pengaruh Putaran Silinder Bagian Dalam Terhadap Pola Aliran

Taylor-Couette (Sarip

1,2

, Indarto

1

, Prajitno

1

)

87

14 Variasi Ukuran Dan Jarak Nozel Terhadap Perubahan Putaran Turbin Pelton

(Rr. Sri Poernomo Sari dan Rizki Hario Wicaksono)

95

15 Uji Experimental Rotor Savonius Helix Dua Sudu dan Empat Sudu

(Mohammad Alexin Putra, Roni Ramadani, Ganda Roni Simanullang, Asdar

Askar)

106

16 Perancangan dan Realisasi Pembangkit Listrik Tenaga Biogas Skala Rumah

Tangga (Kristyadi T.,Wedha A, Andi T.)

112

17 EXERGETIC based of photovoltaic modules CHARACTERISTICS (Dani

Rusirawan

1

and István Farkas

2

)

119

(6)

TOPIK MAKALAH:

TEKNOLOGI PERANCANGAN DAN

PENGEMBANGAN PRODUK

(TPPP)

Teknik

MESIN

SEMINAR NASIONAL X

REKAYASA DAN APLIKASI TEKNIK MESIN

DI INDUSTRI

(7)

Rekayasa dan Aplikasi Teknik Mesin di Industri

Kampus ITENAS - Bandung, 17-18 Januari 2012

TKE‐24  Teknik

MESIN

Pengaruh Parameter Stack Serta Variasi Frekuensi Terhadap

Performa Termal Pendingin Termoakustik

Nandy Putra, Dinni Agustina, Gilang AIV, Sabdo W,

Departemen Teknik Mesin, Fakultas Teknik, Universitas Indonesia Kampus Baru UI Depok

Abstrak

Sistem pendingin termoakustik merupakan suatu teknologi alternative yang ramah lingkungan karena menggunakan media kerja udara atau gas mulia sebagai pengganti refrijeran pada sistem pendinginan konvensional yang berpotensi merusak lingkungan. Tujuan dari penelitian ini adalah merancang dan membuat perangkat termoakustik sehingga dapat mengetahui prinsip kerjanya. Membuktikan fenomena bahwa adanya suatu getaran yang merambat pada suatu medium berupa udara menyebabkan perbedaan tekanan udara sehingga menghasilkan perbedaan suhu. Metode pengujian dilakukan dengan merancang prototype resonator termoakustik dari material PVC ((Polyvinyl chloride) berukuran 1 ¼ inci atau 35.8 mm dengan ketebalan sebesar 2.8 mm sepanjang 80cm. Suara dari loudspeaker dengan frekuensi gelombang yang ditetapkan akan melintasi tabung resonator yang kemudian melewati stack. Posisi dan panjang stack berpengaruh terhadap performa dari sistem ini karena dalam proses siklus termoakustik terdapat kompresi dan ekspansi sehingga bila kontak permukaan gas dan kanal-kanal dari stack terlalu panjang dapat mengakibatkan penurunan perbedaan suhu dimana pada stack dengan δk= 1mm pada 106 Hz dan

Ls=10cm, mempunyai Xs maksimum 14 cm dengan hasil ∆T1 (Tpanas-Tdingin )maksimum sebesar 9.090C

dan ∆T2 = T ambient – Tdingin minimum sebesar 6.16 0C. Penggunaan stack roll lebih efektif

dibandingkan dengan stack plate karena kanal-kanalnya lebih luas.

Keywords : pendingin termoakustik, resonator, stack, frekuensi

1.Pendahuluan

Dengan kondisi geografis di negara kita alat pendingin sangatlah bermanfaat baik untuk pemenuhan tingkat kenyamanan, maupun sebagai penyimpanan makanan. Namun, keprihatinan akan dampak buruk teknologi pendingin konvensional terhadap lingkungan telah memunculkan tantangan untuk pengembangan teknologi pendinginan alternatif yang efisien, ramah lingkungan dengan biaya operasional dan perawatan yang relatif rendah. Salah satu jawaban dari tantangan ini adalah perangkat pendingin termoakustik[1,2,4,5]. Termoakustik adalah sistem pendinginan yang ramah lingkungan karena menggunakan media kerja udara atau gas mulia sebagai alternatif sistem pendinginan konvensional yang membahayakan lingkungan[3,4]. Sistem ini bekerja dengan memanfaatkan gelombang suara yang dihasilkan oleh loudspeaker sebagai salah satu komponen system tersebut.

Dalam sistem ini, gelombang suara dihasilkan oleh sumber bunyi lalu bergerak rmelintasi suatu tabung resonator yang didalamnya terpasang stack yang berfungsi seperti kompresor pada sistem pendingin siklus kompresi vapor. Udara sebagai fluida kerja memasuki kanal-kanal kecil yang berada pada stack dan mengalami kompresi sehingga suhunya meningkat dan melepaskan kalor ke material stack. Selanjutnya mengalami ekspansi dan megalami penurunan suhu sehingga kalor berpindah Siklus ini mengakibatkan terjadi perbedaan suhu pada dua ujung stack. Perpindahan kalor dari udara ke stack dan sebaliknya merupakan akibat dari gelombang akustik yang beresonansi dalam tabung yang bekerja sebagai kerja eksternal.

Gelombang longitudinal dari gelombang akustik mengakibatkan partikel udara berosilasi sepanjang dinding–dinding stack. Apabila suhu udara menjadi lebih tinggi daripada dinding stack terdekat, maka kalor berpindah dari udara menuju dinding stack, dan sebaliknya. Sehingga menciptakan perbedaan suhu pada kedua ujung stack.

Pengembangan termoakustik telah dipublikasikan dalam jurnal-jurnal ilmiah seperti yang ditulis oleh Swift [7-10] dan oleh Garret dan Backhaus[8] telah menjadikan konsep-konsep yang mendasari fenomena termoakustik dapat dipahami oleh khalayak luas. Sebelumnya, Wheatley et al[9] menyajikan

(8)

ISSN 1693-3168

Seminar Nasional - IX

Rekayasa dan Aplikasi Teknik Mesin di Industri

Kampus ITENAS - Bandung, 17-18 Januari 2012

TKE‐25   

Teknik

MESIN

pemahaman fenomena termoakustik dan aplikasinya pada mesin kalor. Sebuah pustaka acuan yang banyak dirujuk tentang termoakustik adalah konsep-konsep yang terlibat dalam termoakustik yang ditulis oleh Swift[7-9]. Beberapa penelitian juga telah dilakukan oleh para peneliti sebelumnya dan mendapatkan hasil yang cukup memuaskan seperti research yang dilakukan oleh M.E.H Tijani dkk [11,12], telah mampu mencapai suhu pada sisi dingin hingga -65 0C.

Gambar 1. Perangkat uji pendingin termoakustik

Tujuan dari penelitian adalah merancang dan menguji perangkat pendingin termoakustik untuk memahami prinsip kerja dan mengkarakterisasi performa berdasarkan variasi parameter stack serta frekuensi. Membuktikan fenomena bahwa adanya suatu getaran yang merambat pada suatu medium berupa udara menyebabkan perbedaan tekanan udara sehingga menghasilkan perbedaan suhu.

2. Metodelogi

2.1 Desain Prototipe Pendingin Termoakustik

Frekuensi gelombang dan dimensi stack merupakan hal awal yang dipertimbangkan. Frekuensi diketahui dengan menghubungkan sebuah microphone ke multimeter atau osiloskop untuk membaca voltase yang dikeluarkan oleh microphone. Multimeter akan menunjukan besar voltase yang akan diolah dengan Adobe Audition untuk mengetahui frekuensi gelombang suara yang dihasilkan, seperti yang ditunjukkan pada gambar 2 dan 3.

Frekuensi pada tabung resonator ditentukan dengan persamaan: (1)

(2)

Setelah parameter frekuensi ditentukan maka penentuan dimensi stack dapat dilakukan dengan persamaan: (3)

(9)

Rekayasa dan Aplikasi Teknik Mesin di Industri

Kampus ITENAS - Bandung, 17-18 Januari 2012

TKE‐26  Teknik

MESIN

Tabung resonator dibuat setelah penentuan dimensi stack dimana tabung resonator dirancang dengan satu ujung tertutup berukuran 1 ¼ inci atau 35.8 mm dengan ketebalan sebesar 2.8 mm. bahan dasar tabung resonator ini adalah PVC ( Polyvinyl chloride) seperti yang terlihat pada gambar 4.

 

Gambar 4 Rancangan prototype resonator

2.2 Eksperimental set-up

Pengujian dilakukan mengatur frekuensi suara dari loudspeker melalui amplifier yang masuk ke tabung resonator melewati rangkaian stack. Dimana dua buah termokopel tipe k diletakkan pada daerah sebelum stack (cold side) dan daerah setelah stack (hot side) dan satu buah termokopel diletakkan pada di luar resonator. Data suhu dari termokopel dihubungkan dengan cassis NI c-DAQ 9172 dan module NI 9213 yang diolah dengan menggunakan software Labview 8.5. Pengambilan data suhu dilakukan pada variasi posisi dan panjang stack serta variasi frekuensi gelombang suara yang melewati resonator.

Gambar 5 Skematik pengujian pendingin termoakustik

3. Hasil Dan Pembahasan

Gambar 6 menunjukkan distribusi suhu pada kedua ujung stack dengan konfigurasi Ls = 11cm f=275 Hz, = 0,5 mm, Xs = 5,5 cm. Pengujian dilakukan pada suhu lingkungan 26,50C yang menjadi

titik awal suhu kedua ujung stack. Input suara dinyalakan dengan volume amplifier maksimal. Pengaturan suara monotone pada frekuensi sample rate sebesar 275 Hz pada program Adobe audition 3.0 . Pada menit ke 10, suhu pada ujung stack sebelah kanan naik hingga mendekati 280C dan pada ujung kiri hanya

(10)

ISSN 1693-3168

Seminar Nasional - IX

Rekayasa dan Aplikasi Teknik Mesin di Industri

Kampus ITENAS - Bandung, 17-18 Januari 2012

TKE‐27   

Teknik

MESIN

suhu ujung kiri ikut naik 0.10C pada menit ke 10. Setelah 30 menit, suhu ujung stack kanan terus naik

hingga 28.260C dan suhu ujung kiri hampir sama dengan suhu awal 26.110C, sehingga perbedaan suhu

kedua ujung stack 1,790C. Dari grafik dapat dianalisa bahwa bahwa pada perangkat termoakustik ini

terjadi kompresi udara yang berada di dalam kanal-kanal stack dan panas dibuang ke ujung kanan sehingga suhu di lokasi tersebut terus naik namun pada pengujian ini tidak terjadi ekspansi walaupun tekanan dan suhu stack lebih rendah di bandingkan ujung kanan stack, sehingga udara tidak menyerap kalor untuk dibuang.

Pada panjang stack 8,5 cm terlihat suhu ujung kanan stack naik hingga mendekati 30.710C dan

pada ujung kiri suhu turun mencapai 26.97 0C. Pada menit ke 20, suhu ujung kanan naik melebihi

31.320C dengan suhu ujung kiri turun lagi pada suhu 26.560C. Setelah 30 menit, sisi panas terus naik

hingga pada suhu 31.370C dan suhu sisi dingin turun terus hingga 26.270C, sehingga perbedaan suhu

kedua ujung stack sebesar 5.110C seperti terlihat pada gambar 7.

Gambar 6 Distribusi suhu resonator dengan stack Ls 11cm, f 275 hz, 0,5 mm xs 5,5 cm.

Gambar 7. Distribusi suhu resonator dengan stack Ls 11cm, f 275 hz, 0,5 mm xs 8,5 cm

Gambar 8 menunjukkan distribusi suhu resonator dengan stack Ls 11cm, f 275 hz, 0,5 mm, Xs

dan panjang stack 10 cm terlihat bahwa sisi panas naik hingga pada suhu 32.04 0C dan suhu sisi dingin

turun terus hingga 26.43 0C, sehingga perbedaan suhu sisi panas dan sisi dingin sebesar 5.880C. Dari hasil

grafik ini dapat kita analisa bahwa suhu yang lebih besar berada di sisi panas dan suhu di sisi dingin suhu menjadi lebih rendah dari titik permulaan walaupun suhu pada sisi panas berfluktuasi naik turun begitu juga dengan suhu pada sisi dingin, dan pada menit ke 30 terlihat suhu di sisi panas naik tetapi pada sisi dingin sudah mencapai kestabilan.

Gambar 8 Distribusi suhu resonator dengan stack Ls 11cm, f 275 hz, 0,5 mm xs 10,5 cm.

Gambar 9 Distribusi suhu resonator dengan stack Ls 10cm, f 106 hz, 1 mm xs

(11)

Rekayasa dan Aplikasi Teknik Mesin di Industri

Kampus ITENAS - Bandung, 17-18 Januari 2012

TKE‐28  Teknik

MESIN

Gambar 9, 10, 11 menunjukkan distribusi suhu pada resonator dengan frekuensi 106Hz dengan panjang stack 10, 12, dan 14 cm. Pada panjang stack 10 cm, terlihat pada menit ke 10 suhu sisi panas mendekati 33.970C dan pada suhu dingin turun mencapai 28.470C. Memasuki menit ke 20, suhu sisi

panas naik menjadi 34.81 0C dengan suhu sisi dingin naik pada suhu 29.060C. Setelah 30 menit, sisi

panas terus naik hingga pada suhu 35.160C dan suhu sisi dingin turun terus hingga 29.280C, sehingga

perbedaan suhu sisi panas dan sisi dingin sebesar 5.930C. Pada panjang stack 12 cm, suhu sisi panas

menurun hingga 33.730C dan suhu sisi dingin turun hingga 27.430C, sehingga perbedaan suhu kedua ujung sebesar 6.320C. Sedangkan untuk panjang stack 14 cm perbedaan suhu sisi panas dan sisi dingin

mencapai 9.09oC

Gambar 10 Distribusi suhu resonator dengan stack Ls 10cm, f 106 hz, 1 mm xs

12 cm

Gambar 11 Distribusi suhu resonator dengan stack Ls 10cm, f 106 hz, 1 mm xs

14 cm.

Gambar 12 dan 13 memperlihatkan jarak stack optimum berada pada Xs= 10,5 dengan

mendapatkan hasil ∆T1(Thot-Tcold) yang paling besar yaitu pada frekuensi 275 hz adalah 4.360C dan pada

frekuensi 106 hz sebesar 5.880C, dan juga pada ∆T2= T

ambient – Tcold minimum mendapatkan hasil 1.070C

pada frekuensi 275 hz serta pada frekuensi 106 hz sebesar 2.90C. Hal ini diakibatkan pengaruh lokasi

stack, pada gelombang tegak dan untuk resonator berupa tabung berdiameter homogen harus berada di

titik perut atau titik tekanan yang biasanya adalah λ/20 [7]. Karena posisi dan panjang stack berhubungan dengan tekanan amplitudo dari udara dan kecepatan partikel udara yang dekat dengan kedua ujung stack. Gradien suhu sepanjang stack akan menjadi proporsional dengan perbedaan dari tekanan amplitudo udara. Perbedaan tekanan ini akan menjadi besar ketika stack lebih panjang selama stack diletakan diantara node dan antinode dari tekanan. Namun, stack yang terlalu panjang akan menyebabkan kehilangan viscous. Oleh karena itu maka kita harus mendapatkan panjang yang optimum dari stack. Di lain sisi, stack harus diletakan dekat dengan pressure antinode mengecilkan nilai viscous dissipation dari energi suara. Tetapi gelombang tegak menghasilkan energi suara yang belum sempurna di dalam velocity amplitude. Artinya bahwa stack harus diletakan dekat titik tekan dari gelombang tegak. Oleh karena itu posisi stack yang optimum di dalam system termoakustik dapat diketahui. Hal ini juga diakibatkan perbedaan frekuensi yang menyebabkan perbedaan δK , karena dengan frekuensi 275Hz mendapatkan δK 0,5  dan

frekuensi 106Hz mendapatkan δK 1  walaupun kedua frekuensi itu didapatkan dari mencari

frekuensi resonansi tetapi dari pengaruh panjang tabung yaitu 80 cm maka dai perhitungan frekuensi resonansi maksimum adalah 106 hz.

Selain lokasi stack, panjang stak juga berpengaruh terhadap kinerja dari termoakustik dimana gambar 14 dan 15 menunjukkan perbandingan antara panjang stack 10 cm dan 11 cm. Panjang stack optimum berada pada Ls=10cm dengan hasil ∆T1(Thot-Tcold) yang terbesar yaitu pada Xs = 11cm sebesar

6.160C dan pada pada ∆T2= T

ambient – Tcold minimum mendapatkan hasil yaitu sebesar 2.370C. Panjang

(12)

ISSN 1693-3168

Seminar Nasional - IX

Rekayasa dan Aplikasi Teknik Mesin di Industri

Kampus ITENAS - Bandung, 17-18 Januari 2012

TKE‐29   

Teknik

MESIN

pressure amplitudes yang lebih besar dekat dengan kedua ujung stack dimana memberikan gradien suhu

yang lebih besar dan oleh karena itu menghasilkan perbedaan suhu kedua ujung yang lebih besar. Pada stack yang lebih panjang dapat menyebabkan viscous loss yang besar karena kontak yang lebih besar dari permukaan partikel gas dan kanal stack. Efek ini membuat perpindahan panas dari udara ke stack dan sebaliknya tidak efektif dan perubahan suhu menjadi kecil.

Dari gambar 16 dan 17 terlihat perbandingan performa dengan variasi tipe stack. Perbedaan suhu yang dihasilkan lebih besar dengan stack roll, karena kanal-kanal yang berada di stack roll lebih luas dibanding dengan stack plat, sehingga membuat banyak gas yang dapat berkontak dengan permukaan kanal-kanal yang dapat menyebabkan kenaikan perbedaan suhu.

Gambar 12 perbandingan Thot-Tcold

(maksimum)variasi jarak stack Gambar 13 perbandingan T variasi jarak stack ambient – Tcold minimum

Gambar 14 perbandingan Thot-Tcold

(maksimum) variasi panjang stack

 

Gambar 15 perbandingan Tambient-Tcold (maksimum) variasi panjang stack

   

(13)

Rekayasa dan Aplikasi Teknik Mesin di Industri

Kampus ITENAS - Bandung, 17-18 Januari 2012

TKE‐30  Teknik

MESIN

Gambar 16 perbandingan Thot-Tcold (maksimum) variasi tipe stack

Gambar 17 perbandingan Tambient-Tcold (maksimum) variasi tipe stack

4. Kesimpulan

Dari penelitian yang telah dilakukan dapat disimpulkan bahwa panjang stack dapat mengakibatkan penurunan performa perangkat pendingin termoakustik, dimana pada stack dengan δk= 1mm pada106 Hz

dan Ls=10cm, mempunyai Xs maksimum 14 cm dengan hasil ∆T1 (Tpanas-Tdingin )Maksimum sebesar 9.090C

dan ∆T2 = T ambient – Tdingin minimum sebesar 6.160C. Penggunaan stack roll lebih efektif dibandingkan

dengan stack plate karena kanal-kanal yang berada di stack roll cukup banyak dibanding dengan stack plate. Penggunaan frekuensi sangat berpengaruh terhadap panjang stack, posisi stack dan panjang tabung sehingga untuk kondisi tabung resonator 80cm frekuensi resonansi maksimum adalah 106 hz.

Ucapan Terima Kasih

Penulis mengucapkan terima kasih kepada Applied Heat Transfer Research Group atas dukungan fasilitas riset dan laboratorium.

Daftar Pustaka

[1] Ikhsan Setiawan, The influence of the length and position of the stack on the performances of a thermoaccoustic refrigerator, Universitas Gadjah Mada, 2009

[2] Mostafa A. Nouh, Nadim M. Arafa and Ehab Abdel Rahman,2009 Stack Parameters Effect On The Performance Of An Anharmonic Resonator Thermoacoustic Heat Engine

[3] Daniel George Chinn,2010 Piezoelectrically-Driven Thermoacoustic Refrigerator [4] Andreiadkk., Exprimental and Numerical Simulation Study on a Thermoacoustik [5] William C.Moss. San Mateo. Califf 1997, Thermoacoustik Refrigrator

[6] Scout Backhaus , Thermoacoustik Refrigrator and Engines Comprising Cascading StrilingThermodinamic Units, 2009

[7] Swift, G.W., 1995, Termoakustik engines and refrigerators, Phys. Today 48. [8] Backhauss, S., 2002, 7ew Varietes of Termoakustik Engines, Thermal Physics group

[9] Wheatley, J., Hofler, T., Swift, G.W., and Migliori, A. (1985), Understanding some simple phenomena in termoakustiks with applications to acoustical heat engines, Am. J. Phys 53, 147_162 [10] Swift, G., 2002, Termoakustiks: A Unifying Perspective for Some Engines and Refrigerators, Los

Alamos National Laboratory, Acoustical Society of America Publications.

[11] Tijani, M.E.H., Zeegers, J.C.H., and de Waele, A.T.A.M., 2002b, Construction and Performance of a Termoakustik Refrigerator, Cryogenics 42, (Dept. of applied physics, Eindhoven University of Technology)

[12] Tijani, M.E.H., 2001, Loudspeaker. driven termoakustik refrigeration, PhD Thesis, Unpublished, Eindhoven University of Technology.

Gambar

Gambar 1. Perangkat uji pendingin termoakustik
Gambar 5 Skematik pengujian  pendingin termoakustik
Gambar 7. Distribusi suhu resonator dengan  stack  Ls 11cm,  f 275 hz,   0,5 mm x s  8,5 cm
Gambar 10   Distribusi suhu resonator dengan  stack Ls  10cm,  f 106 hz,   1 mm x s
+3

Referensi

Dokumen terkait

▪ Namun hasil pembelajaran siswa dengan orang tua yang berpendidikan lebih rendah tetap di bawah siswa dengan orang tua berpendidikan tinggi. ▪ Peningkatan paling signifikan untuk

Hasil analisis data memberikan nilai Indeks Kepuasan Masyarakat sebesar 3,53; Hal ini menunjukkan bahwa mutu pelayanan publik yang diberikan oleh Balitbu Tropika pada

ak  ada  data matian jika te nyataan  ini  miliki kemirip hirup, tertela ntak  akut  da tuk,  perma elahan. Geja ncul  tertund mam  tinggi  da, batuk dan hadap 

disingkat BPJS Kesehatan, adalah badan hukum publik yang dibentuk untuk menyelenggarakan program jaminan kesehatan sebagaimana dimaksud dalam Undang-Undang Nomor 24

Sistem pendidikan kita terlalu rapuh paling tidak untuk saat ini menjadi push factor untuk membangun kesadaran masyarakat yang mampu mendefinisikan dirinya dan lingkungan sekitamya

(2014) menjelaskan bahwa hasil pemodelan dengan skenario perubahan iklim HadCM3 dan skenario emisi B2 menunjukkan hanya 2 stasiun yang mengalami penurunan curah

Di lain pihak, hukum adat yang mengatur mengenai perkawinan dari dulu hingga sekarang tidak berubah, yaitu hukum adat yang telah ada sejak zaman nenek moyang hingga sekarang

Sehingga dapat diambil suatu kesimpulan dari pengertian diatas, bahwa kualitas adalah suatu keadaan yang bebas dari suatu kesalahan baik dalam hal produk, tugas, dan sikap