TEKNI K DI GI TAL (A)
TEKNI K DI GI TAL (A)
(TI 2104)
(TI 2104)
Mat er i
Mat er i
Kuliah
Kuliah
ke
ke
-
-
10
10
Count ers
Count ers
4- Feb - 09 Chapt er 5 - ii: Regist er s (5.4- 5.7) 2
Overview
Overview
n
n Ripple Count erRipple Count er
n
n Synchr onous Binar y Count er sSynchr onous Binar y Count er s
n
n Design wit h D FlipDesign wit h D Flip--FlopsFlops n
n Design wit h JDesign wit h J--K FlipK Flip--FlopsFlops
n
n Ser ial Vs. Par allel Count er sSer ial Vs. Par allel Count er s
n
n UpUp--down Binar y Count erdown Binar y Count er
n
n Binar y Count er wit h Par allel LoadBinar y Count er wit h Par allel Load
n
n BCD Count er , Ar bit r ar y sequence Count er sBCD Count er , Ar bit r ar y sequence Count er s
n
4- Feb - 09 Chapt er 5 - ii: Regist er s (5.4- 5.7) 3
Count ers
Count ers
n
n A A count ercount er is a r egist er t hat goes t hr ough a is a r egist er t hat goes t hr ough a pr edet er mined sequence of st at es upon t he
pr edet er mined sequence of st at es upon t he
applicat ion of clock pulses.
applicat ion of clock pulses.
n
n Count er s ar e cat egor ized as: Count er s ar e cat egor ized as:
n
n Ripple Count er s: Ripple Count er s:
The FF out put t r ansit ion ser ves as a sour ce f or
The FF out put t r ansit ion ser ves as a sour ce f or
t r igger ing ot her FFs. No common clock.
t r igger ing ot her FFs. No common clock.
n
n Synchr onous Count er :Synchr onous Count er :
All FFs r eceive t he common clock pulse, and t he
All FFs r eceive t he common clock pulse, and t he
change of st at e is det er mined f r om t he pr esent
change of st at e is det er mined f r om t he pr esent
st at e.
st at e.
Example: A 4
Example: A 4
-
-
bit Upward
bit Upward
Count ing Ripple Count er
Count ing Ripple Count er
Recall... Less Signif icant Bit out put is Clock
4- Feb - 09 Chapt er 5 - ii: Regist er s (5.4- 5.7) 5 r eceives t he incoming clock pulses.
r eceives t he incoming clock pulses.
n
complement ed wit h each
complement ed wit h each
4- Feb - 09 Chapt er 5 - ii: Regist er s (5.4- 5.7) 7
n
n
Use dir ect Set (S) signals inst ead of
Use dir ect Set (S) signals inst ead of
dir ect Reset (R), in or der t o st ar t at 1111.
dir ect Reset (R), in or der t o st ar t at 1111.
n
n
Alt er nat ive designs:
Alt er nat ive designs:
n
n Change edgeChange edge--t r igger ing t o posit ive (det ails in t r igger ing t o posit ive (det ails in class)
class)
n
n Connect t he complement out put of each FF Connect t he complement out put of each FF t o t he C out put of t he next FF in t he
t o t he C out put of t he next FF in t he
sequence… (homewor k!)
sequence… (homewor k!)
A 4
A 4
-
-
bit Downward
bit Downward
Count ing Ripple Count er
Count ing Ripple Count er
Using D Flip-Flops
4- Feb - 09 Chapt er 5 - ii: Regist er s (5.4- 5.7) 9
Synchr onous Binar y Count er s
Synchr onous Binar y Count er s
n
n The design pr ocedur e f or a binar y count er is The design pr ocedur e f or a binar y count er is t he same as any ot her synchr onous sequent ial
t he same as any ot her synchr onous sequent ial
cir cuit .
cir cuit .
n
n The pr imar y input s of t he cir cuit ar e t he CLK The pr imar y input s of t he cir cuit ar e t he CLK and any cont r ol signals (EN, Load, et c).
and any cont r ol signals (EN, Load, et c).
n
n The pr imar y out put s ar e t he FF out put s The pr imar y out put s ar e t he FF out put s (pr esent st at e).
(pr esent st at e).
n
n Most ef f icient implement at ions usually use TMost ef f icient implement at ions usually use T- -FFs or J K
FFs or J K--FFs. We will examine J K and D f lipFFs. We will examine J K and D f lip-
-f lop designs.
f lop designs.
4- Feb - 09 Chapt er 5 - ii: Regist er s (5.4- 5.7) 10
J -K Flip Flop Design of a 4-bit Binar y Up Count er
4- Feb - 09 Chapt er 5 - ii: Regist er s (5.4- 5.7) 11
J -K Flip Flop Design of a Binar y Up Count er (cont .)
Synchronous Binary Count ers:
J -K Flip Flop Design of a Binar y Up Count er (cont .)
4- Feb - 09 Chapt er 5 - ii: Regist er s (5.4- 5.7) 13
J -K Flip Flop Design of a Binar y Up Count er (cont .)
Synchronous Binary Count ers:
4- Feb - 09 Chapt er 5 - ii: Regist er s (5.4- 5.7) 14
J -K Flip Flop Design of a Binar y Up Count er (cont .)
Synchronous Binary Count ers:
JQ 0 = 1 KQ 0 = 1
JQ 1 = Q0 KQ 1 = Q0
JQ 2 = Q0 Q1 KQ 2 = Q0 Q1
JQ 3 = Q0 Q1 Q2 KQ 3 = Q0 Q1 Q2 J
K C
J
K C
J
K C
J
K C
CLK
logic 1 Q
0
Q1
Q2
4- Feb - 09 Chapt er 5 - ii: Regist er s (5.4- 5.7) 15
J -K Flip Flop Design of a Binar y Up Count er wit h EN and CO
Synchronous Binary Count ers:
EN = enable cont r ol signal, when 0 count er r emains in t he same st at e, when 1 it count s
CO = car r y out put signal, used t o ext end t he count er t o mor e st ages
JQ 0 = 1 · EN KQ 0 = 1 · EN JQ 1 = Q0 · EN
KQ 1 = Q0 · EN JQ 2 = Q0 Q1 · EN KQ 2 = Q0 Q1 · EN JQ 3 = Q0 Q1 Q2 · EN KQ 3 = Q0 Q1 Q2 · EN
C0 = Q0 Q1 Q2 Q3 · EN
• DQ0 = Q0 ⊗ EN
• DQ 1 = Q1 ⊗ ( Q0 · EN) • DQ2 = Q2 ⊗ ( Q0 Q1 · EN ) • DQ3 = Q3 ⊗ ( Q0 Q1 Q2 · EN ) • C0 = Q0 Q1 Q2 Q3 · EN
See Figur e 5- 11… compar e wit h Figur e 5- 11: J K- based design calls f or 4 AND gat es
D- based design calls f or 4 AND and 4 XOR gat es
Synchr onous binar y count er s
Synchr onous binar y count er s
using D f lip
using D f lip
-
-
f lops
f lops
4- Feb - 09 Chapt er 5 - ii: Regist er s (5.4- 5.7) 17
Serial Vs Parallel Count ers
Serial Vs Parallel Count ers
4- Feb - 09 Chapt er 5 - ii: Regist er s (5.4- 5.7) 19
1 0 0 0 1 1 1
1 0 0 1 0 0 0
1 0 1 0 0 0 1
1 0 1 1 0 1 0
1 1 0 0 0 1 1
1 1 0 1 1 0 0
1 1 1 0 1 0 1
1 1 1 1 1 1 0
UD Q2 Q1 Q0 Q2.D Q1.D Q0.D
0 0 0 0 0 0 1
0 0 0 1 0 1 0
0 0 1 0 0 1 1
0 0 1 1 1 0 0
0 1 0 0 1 0 1
0 1 0 1 1 1 0
0 1 1 0 1 1 1
0 1 1 1 0 0 0
UD Q2 Q1 Q0 Q2.D Q1.D Q0.D
Up-Counter Down-Counter Up-Down Binary Counter (cont.)
UD Q2 Q1 Q0
00 01 11 10
00
01
11
10
Fill- in t he Kar naugh maps f or Q2.D, Q1.D, and Q0.D, simplif y, and der ive t he logic diagr am using
(a) D-FFs and (b) T -FFs
Up
4- Feb - 09 Chapt er 5 - ii: Regist er s (5.4- 5.7) 23
4- Feb - 09 Chapt er 5 - ii: Regist er s (5.4- 5.7) 25
Ar bit r ar y Sequence Count er
Ar bit r ar y Sequence Count er
n
n Given an ar bit r ar y sequence, design a count er Given an ar bit r ar y sequence, design a count er t hat will gener at e t his sequence.
t hat will gener at e t his sequence.
n
n Pr ocedur e:Pr ocedur e:
n
n Der ive st at e t able/ diagr am based on give sequenceDer ive st at e t able/ diagr am based on give sequence n
n Simplif y (using KSimplif y (using K--maps, et c)maps, et c) n
n Dr aw logic diagr amDr aw logic diagr am
n
n Example: Use DExample: Use D--FFs t o dr aw t he logic FFs t o dr aw t he logic diagr am f or sequence gener at or (count er )
diagr am f or sequence gener at or (count er )
f or : 0
f or : 0 àà 7 7 àà 6 6 àà 1 1 àà 0 0 (000 (000 àà 111 111 àà 110 110 àà
001