• Tidak ada hasil yang ditemukan

DISINI solutions2005

N/A
N/A
Protected

Academic year: 2017

Membagikan " DISINI solutions2005"

Copied!
5
0
0

Teks penuh

(1)

Notation. The notation ajb willmean that a and b are positive integers and a divides

b. Forexample, 31j2 10

1,sine 2 10

1=1023=(31)(33).

1. (b) Theprot perapple is$ 2=5 1=3 =$ 1/15. So, to makea protof $10 Tim

must buy(and sell)150 apples.

2. (d)The maximalvalue ofthe funtionsinxis1 anditsminimalvalue is-1. Sine

f(x)is ontinuous, itsrange is [ p

9; p

25℄=[3;5℄.

3. () The exponentof x is

3

2 2

3

3

5 =

1

2 .

4. () We get x=y6=0,thus 7x y

x+y =3.

5. (d)Wehave(1) CD+DA=14andfromthePythagoreantheoremCD 2

+BD 2

=

169andDA 2

+BD 2

=225. So,DA 2

CD 2

=56. Using(1)wegetDA CD=4,

and DA=9, CD =5. ThereforeBD=12.

6. (b)The last three digits of 2005 2005

are the same as the lastthree digits of 5 2005

.

Also, the lastthree digitsof the powersof 5 are 5;25;125;625;125;625;125:::,so

theystart repeating. Thus,the lastthreedigits of5 2005

are 125. (More rigorously,

1000 divides 5 k+2

5 k

=245 k

=310005 k 3

when k3.)

7. () From the seond equation we get that either x =0, or y =1. Substituting

x=0intherstequationwegetthesolutions(0;1)and(0; 1). Next,wheny =1

we get the solutions (0;1) and (2;1). Finally, when y = 1 we get the solutions

(0; 1),( 2; 1). So, the system has fourdistint solutions-(0;1);(0; 1);(2;1),

and ( 2; 1).

8. (e) Sine a+2b divides 10 and a+2b 3 we get that a+2b is either 5 or 10.

There are two ases. Case I: a+2b = 5 and a b = 2. Then a =3, b = 1, and

2a b = 5. Case II: a+2b = 10 and a b = 1. Then a = 4, b = 3, and again

2a b =5. So, inall ases 2a b=5.

9. () Note that 40000 = 410 4

= 2 6

5 4

. Sine mn = 2 6

5 4

and neither m nor n is

divisible by 10we get that one of the numbers m and n equals2 6

and the other

(2)

10. (d) Sine (log

x y)(log

y

x) = log

x

x = 1, we have (log

x

y) +(log

y

x) = (log

x y+ log y x) 2

2=47.

11. (a) Sine

3

2

2

>2and 3 2 3 >3, p 2and 3 p

3 are smallerthan 3

2

. Also,3 2 >2 3 , so log 2 3> 3 2

, and 5 2

<3 3

,implying log

3 5<

3

2 .

12. (a) Denoteby k thedistanewhihthe slowerpartiletravelsin50seonds. Then

50r=kand50R=k+300. Subtratingtheaboveequationsweget50(R r)=300

or R r=6 ft./se.

13. (e)Ifm=1thelinesareparallel. Ifm 6=1theyintersetatthepoint 5 1 m ; 2m+3 1 m .

Sinebothoordinatesofthepointofintersetionmustbepositive,weget 5

1 m >0,

so m<1. Also, 2m+3

1 m

>0,so m> 3=2.

14. (a)Substitutingx=

2

andthenx=

2

intheequationwegetf 2 +2f 2 =

1 and f 2 +2f 2

= 1. Solving the last two equations for f 2 we get f 2 = 1.

15. (b) First,weshowthat one an tthreenon-intersetingirles ofradius 1inside

the irle of radius 2.4(we allit the \big irle"). Denote by O the enter of the

\big" irle and let A, B, C be three points suh that 4ABC is an equilateral

triangle with O - the enter of its irumsribed irle, and with OA = OB =

OC = 1:3. Clearly,

6

AOB =

6

BOC =

6

COA = 120 Æ

. By the Law of Cosines,

AB 2 = OA 2 +OB 2

2OAOBos(120 Æ

) = 1:3 2

+1:3 2

+1:3 2

= 5:07 > 4. So,

AB = AC = BC > 2. Consider the three irles of radius 1 (we all them

\little irles") whose enters are the points A, B, and C. The little irles do

not intersetsine thedistanesbetweenany twoentersof distintlittleirlesis

> 2. Also, the three little irles are inside the big irle sine the distane from

O toany of the enters of the little irles is <1:4.

Next, weshow thatone annott fournon-interseting little irlesinside the big

irle. Indeed, let A, B, C, and D be the enters of four little irles inside the

big irle. Then OA, OB, OC, and OD are all < 1:4. If the points are labeled

in a suitable way, we have

6 AOB + 6 BOC+ 6 COD+ 6

DOA =360 Æ

(if not, we

relabelthepoints). Then, atleast oneof theangles

6 AOB; 6 BOC; 6 COD; 6 DOA

is 90 Æ

. Suppose

6

AOB 90 Æ

. Again, by the Law of Cosines we get AB 2 = OA 2 +OB 2

2OAOBos(

6

AOB)OA 2 +OB 2 <1:4 2 +1:4 2

=3:92 <4. Thus,

AB <2and theirleswhoseenters are AandB interset. Weproeedsimilarly

if 6 BOC; 6 COD,or 6

DOA is90 Æ

(3)

AB. ThenCDisthe heightof4ABC. Sinethe baseof4ABC is p

3 1andits

areais p

3 1

2

,wegetCD=1. Now,onsideringtherighttriangle4ADCweobtain

AD = p

3 and

6

CAD = 30 Æ

. Also, sine AD = p

3 and AB = p

3 1, we get

BD = 1. Finally, onsidering the right triangle 4BDC we obtain

6

BCD =45 Æ

.

So,

6

ACB =15 Æ

.

17. (b) LetN =1234424344. Then N is divisibleby9 sine1+2+3++41+

42+43+44=990 is divisible by 9. Also, the remainder when N isdivided by 5

is 4. The onlyinteger between 0and 44whihis divisibleby9 and has remainder

4 when divided by 5 is9.

18. ()Sinesin(90 Æ

x)=osxandos(90 Æ

x)=sinxwegettan(90 Æ

x)tanx=1.

Applying the above formula for x=5 Æ

;15 Æ

;25 Æ

; and 35 Æ

, and taking into aount

tan45 Æ

=1,weget that the value of the produt is 1.

19. (b) IfP is apointon the x-axis,

PA+PB =PA+PB 0

AB

0

=13;

where B 0

=(6:5; 3)(the reetion of B with respet tothe x-axis),and equality

holds when P isthe pointof intersetion of the straight line AB 0

and the x-axis.

Similarly,if P is apoint onthe y-axis,

PA+PB =PA+PB 00

AB

00

=10;

whereB 00

=( 6:5;3)(the reetion ofB with respettothe y-axis),and equality

holds when P isthe pointof intersetion of the straight line AB 00

and the y-axis.

20. ()Oneanpaintvearsusing3olorsin3 5

=243ways. Also,oneanpaintve

ars using only2out of3 olorsin32 5

=96ways (thereare 3 ways topik2 out

of3olors). Finally,oneanpaintvearsusingonly1outof3olorsin31 5

=3

ways. Bythe inlusion-exlusion priniple, the answer is243 96+3=150.

21. (b) Let d be the greatest ommondivisor of a and b. Then 6d 2

j36ma 2

6nb 2

=

1008, sod 2

j168. Sine168=2 3

37, theonlysquares ofintegerswhihdivide 168

are 1 and 4. Thus,d2, and when a=b =2, m=7, n=0we have d=2.

22. (d) The median an not be 1 (there are at least three numbers in the set larger

than 1). For similar reasons, the median is not 9. The medianould be 6. Then

6=(x+6+4+1+9)=5,sox=10. Sine6isthemedianofthesetf1;4;6;9;10gand

the mean ofthe set isalso6,the number6has the desribedproperty. Further, if

themedianis4,then4=(x+6+4+1+9)=5,sox=0. Again,oneheksthatx=0

(4)

23. (d) Sine x 1jx 1 when x and n are positive integers, then 2 1j2 1

whenever a and b are positive integers and ajb (set x = 2 a

and n = b=a). Thus,

3= 2 2

1 divides 2 1650

1 sine 2j1650. Similarly, 7= 2 3

1 divides 2 1650

1 (

3j1650). In the sameway, 31=2 5

1divides2 1650

1,and 2047=2 11

1divides

2 1650

1. On the other hand, 127 = 2 7

1 does not divide 2 1650

1. (Indeed,

7j1652so127j2 1652

1. Thus127j2 1650

1wouldimply127j(2 1652

1) 4(2 1650

1)

or 127j3.)

24. (b) Thepolynomial Q(x)must bea quadratipolynomialwith leadingoeÆient

1 or 1. We an assume that the leading oeÆient of Q(x) is 1 (if not, we an

work with Q(x)sine (Q(x)) 2

=( Q(x)) 2

). So, Q(x)=x 2

+x+d and

(Q(x)) 2

=x 4

+(2)x 3

+( 2

+2d)x 2

+(2d)x+d 2

=x 4

+2x 3

x 2

+ax+b:

So, 2 = 2, 2

+2d = 1, 2d = a, and d 2

= b. We get =1, d = 1, a = 2,

b =1, and a+b= 1.

25. () Suppose B has oordinates (p;q) and C -(r;s). Then

(1) p>0;r >0; p 2

q 2

=1; r 2

s 2

=1;

and

(2) AB 2

=(p+1) 2

+q 2

=AC 2

=(r+1) 2

+s 2

=BC 2

=(p r) 2

+(q s) 2

:

From (1) q 2

= p 2

1 and s 2

= r 2

1. Substituting in (2) we get (p+1) 2

+

p 2

1 = (r+ 1) 2

+r 2

1, or 2(p r)(p +r + 1) = 0 whih implies p = r.

Now, substituting in (1) we obtain p 2

q 2

= p 2

s 2

= 1, so q = s. Therefore

C is a reetion of B with respet to the x-axis. Referring to (2) again we get

(p+1) 2

+p 2

1=(p p) 2

+(q ( q)) 2

=4q 2

=4(p 2

1). Simplifyingweobtain

p(p+1)=2(p+1)(p 1),sop=2,q= p

3. LetD=( p

3;0)(themidpointofBC).

Then AD isperpendiular toBC and the area of 4ABC is (BC)(AD)=2=3 p

3.

26. (d) Clearly,x6=0and y6=0. Solving for y we get

y = 4x

x 4

=4+ 16

x 4 :

So, x 4 divides 16and sine x6=0, y6=0,x 4 must be in the set

f 16; 8; 2; 1;1;2;4;8;16g. So,therearenineintegersolutions( 12;3),( 4;2),

(2; 4),(3; 12), (5;20), (6;12), (8;8),(12;6),and (20;5).

27. (a) There (5)(4) = 20 ways to pik distint kinds of owers for the north and

southplots. Also,if distintkindsof owersare planted onplotsnorth andsouth,

(5)

whihshare a ommonedge are dierent.

Next, there are 5 ways to pik the same kind of ower for the north and south

plots. In this ase,there are 4kinds ofowerslefttoplant inplots westand east.

So, intheasewhenthe samekindofowersareplantedonplotsnorthandsouth,

thereareatotalof(5)(4)(4)=80waystoplantowersinthe plots,sothatowers

inplots whih sharea ommonedge are dierent. So, the total number of hoies

is 260.

28. (e) Denote Amy's answers by (A), Bob's by (B), Cathy's by (C), Dave's by (D),

andEva'sby(E).Assumev =2. Usingthateahontestanthadfoundtheorret

value of exatlyoneunknown and (B),(D) weget y6=3,x6=4. Next,(E)implies

y=1, soz 6=1whih ontradits (A).

Therefore, v 6=2.

Again, using (B) and (D) we get y = 3, x = 4. Next (C) implies z = 5. Sine

v 6=2,weobtain v =1,u=2.

29. (a) Sinethetwotrianglesaresimilarweget, DC

DA =

AC

AB =

AD

DB

. SineAC =15,

and AB =20,weget DC = 3

4

DA and DB = 4

3

DA. The lasttwoequations imply

DB DC =

7

12

DA. Now,DB DC =CB =7, so DA=12 and DC =9.

30. (e)Wehavethatf(x)=2x 1forx=1;2;3. Thus,f(x) (2x 1)isapolynomial

of degree 4, with leading oeÆient 1, and three of its rootsare the numbers 1,2,

and 3. Therefore

() f(x) (2x 1)=(x 1)(x 2)(x 3)(x k);

where k is some real number. Substituting x = 0, and x = 4 in (*) we get

f(0) ( 1)=6k and f(4) 7=6(4 k). Adding the lasttwo equations we get

Referensi

Dokumen terkait

Penelitian ini bertujuan untuk mengetahui seberapa kuat budaya organisasi, seberapa tinggi kinerja pegawai, dan seberapa besar pengaruh budaya organisasi terhadap

Sehubungan dengan hasil evaluasi dokumen kualifikasi saudar a, per ihal Penawar an Peker jaan Pembangunan Rumah sakit.. Pr atama Tipe D Kr ayan , maka dengan ini

Kesesuaian lokasi program pemanfaatan ruang perwujudan struktur ruang atau pola ruang merupakan jumlah lokasi program pemanfaatan ruang untuk membentuk struktur ruang

20 Otonomi Daerah, Pemerintahan Umum, Administrasi Keuangan Daerah, Perangkat Daerah, Kepegawaian dan Persandian Unit Organisasi : 1. Si

 Membentuk dari material dasar hingga menjadi sebuah armature.. tubuh manusia berdasarkan dari pola

Model Problem Based Learning dan permainan Lucky Wheel ini mampu melibatkan siswa secara aktif melalui kegiatan pembelajaran yang tidak membosankan, membuat siswa lebih

[r]

kelayakan proyek adalah menentukan rencana investasi melalui perhitungan biaya dan manfaat yang dibutuhkan, dengan membandingkan pengeluaran dan pendapatan, seperti