• Tidak ada hasil yang ditemukan

FORDA - Jurnal

N/A
N/A
Protected

Academic year: 2017

Membagikan "FORDA - Jurnal"

Copied!
10
0
0

Teks penuh

(1)

Krisdianto1

ABSTRACT

6GCM YQQF Tectona grandis .H KU C YGNN MPQYP CPF TGNCVKXGN[ UNQY ITQYKPI hardwood species and popularly used as furniture and construction timber. Recently fast growing teak has been introduced which is named as super teak, as opposed to the existing common teak. The quality of super teak however, is being questioned and UWURGEVGFVQDGPQVCUIQQFCUEQOOQPVGCM/KETQſDTKNCPINGKUQPGRCTCOGVGTQHVKODGT SWCNKV[+VTGRTGUGPVUVJGCPINGDGVYGGPOKETQſDTKNUCPFYQQFſDGTCZKUYJGPVJG[CTG KPEQTRQTCVGFKPCJGNKECNHCUJKQPVQHQTOſDGTUVTWEVWTG6JGCPINGYCUOGCUWTGFHTQO VJGQTKGPVCVKQPQHNQPICZKUQHGNQPICVGFRKVUſDGT6JGOGCPCPINGQHEQOOQPVGCM was 22.05°, which is narrower than that of super teak of the same age, which was about u)GPGVKEHCEVQTKUUWURGEVGFVQDGVJGUQWTEGHQTCPINGFKHHGTGPEGU+PTGNCVKQPVQ wood stability during drying, it was predicted that common teak timber was more stable than that of super teak timber in the same age. In radial direction, the mean angle of both super and common teak declined from inner to intermediate and outer wood. The VGPFGPE[HQTOKETQſDTKNCPINGUVQDGJKIJGTKPVJGEGPVGTQHVJGNQIJCUUQOGKORQTVCPV implications for wood processing and tree improvement.

-G[YQTFU 9QQFSWCNKV[YQQFUVCDKNKV[ſDGTVTGGKORTQXGOGPV

I. INTRODUCTION

6GCMTectona grandis.HKUCRQRWNCTVTQRKECNJCTFYQQFURGEKGUDGNQPIKPI to the family of Verbenaceae. Teak timber is easy to process and suitable for EQPUVTWEVKQPUFWGVQKVUUGEQPFENCUUUVTGPIVJCPFſTUVVQUGEQPFENCUUPCVWTCN FWTCDKNKV[5GPI+VKUWUGFHQTQWVFQQTCPFKPFQQTHWTPKVWTGDQCVFGEMU and other purposes where weather resistance is desired. In addition, it is also very resistant to the attack of termites. In the past, when teak was plenty, teak was used extensively in Asian countries such as Indonesia, Thailand, The Philippine and India for doors and window frames, furniture and columns as YGNNCUDGCOU0QYCFC[UWRRGTSWCNKV[VGCMVKODGTRTQFWEGFHTQOOCVWTG VTGGUHGVEJGUCXGT[IQQFRTKEGNKOKVKPIKVUWUGUQPN[HQTVJGJKIJGPFRTQFWEVU

Teak trees that are grown conventionally from seedling grows slowly with a rotation up to 45 to 60 years. Recently, a faster growing teak which is popularly

(2)

labelled as ’super teak’ was introduced. The plant material of this ’fast-growing’ teak is produced using tissue culture technology. Super teak is claimed to grow ŌVKOGUOQTGTCRKFVJCPEQOOQPVGCM$CEJTKJGPEGUJQTVGPKPIVJG rotation to merely 15-20 years. However, many suspect that teak timber from fast-growing or shorter-rotation trees is not as strong, durable and stable as that from old common long-rotation trees. It might be more prone to splitting and water damage.

#UUEKGPVKſECNN[DCUGFKPHQTOCVKQPCDQWVVKODGTSWCNKV[QHUWRGTVGCMJCU PQV [GVCXCKNCDNGCTGUGCTEJVQ QDVCKP VJGKPHQTOCVKQPKUPGEGUUCT[1PGQH RCTCOGVGTUHQTOGCUWTKPIYQQFSWCNKV[KUVJGOKETQſDTKNCPING/KETQſDTKNKU the smallest component of cell wall structure about 3 – 4 nm in diameter and EQPUKUVKPIQHCITQWRQHEGNNWNQUGOQNGEWNGURTQVQſDTKNUWTTQWPFGFD[CUJGCVJ QHJGOKEGNNWNQUG-GTTCPF)QTKPIin.KOCet al., 6JGOKETQſDTKN CPINGKUFGſPGFCUVJGCPINGVJCVOKETQſDTKNUOCMGYKVJVJGYQQFſDGTCZKU YJGPVJG[CTGKPEQTRQTCVGFVQHQTOſDGTUVTWEVWTG5VWCTVCPF'XCPU )GPGTCNN[VJGQTKGPVCVKQPQHVJGOKETQſDTKNKP52 layer in angiosperms ranges about 5° to 20°, whereas the comparable range for gymnosperms is from about uVQu$Q[F

The microfibril angle of the S2 layer represents an important ultra-OKETQUEQRKECN HGCVWTG KPƀWGPEKPI VJG RGTHQTOCPEG QH YQQF RTQFWEVU (QT example, the angle has a major effect on the stability of wood on drying and HQNNQYKPI UWDUGSWGPV OCPWHCEVWTKPI RTQEGUUGU <QDGN CPF $WKLVGPGP Both the longitudinal tensile strength and stiffness of wood have been shown VQDGOCTMGFN[CHHGEVGFD[OKETQſDTKNCPINGCUVJGCPINGKPETGCUGUUQVGPUKNG UVTGPIVJCPFUVKHHPGUUSWKEMN[FGETGCUG.QPIEGNNUYKVJNQYOKETQſDTKNCPINGU TGUWNVKPOQTGUVCDNGCPFUVTQPIGTDQCTFU6JGKPEKFGPEGQHJKIJOKETQſDTKNCPING is one reason explaining juvenile wood of loblolly pine is weak and somewhat WPUVCDNG2GCTUQPCPF)KNOQTG#NVJQWIJQVJGTOGEJCPKECNRTQRGTVKGU CRRGCTVQDGQPN[UNKIJVN[CHHGEVGFD[OKETQſDTKNCPING&GUEJCPF&KPYQQFKG VJGTGFQGUCRRGCTVQDGUWHſEKGPVXCTKCVKQPKPOKETQſDTKNCPINGDGVYGGP VTGGUVQLWUVKH[UGNGEVKQPQHVTGGKORTQXGOGPV%CXGCPF9CNMGT

$Q[FTGRQTVGFVJCVNQPIKVWFKPCNUJTKPMCIGKPETGCUGURTQITGUUKXGN[CU VJGſDGTOQTRJQNQI[EJCPIGUHTQOVJGOGCPTGRTGUGPVCVKXGQHPQTOCNYQQF CPFCRRTQCEJGUVJCVQHTGCEVKQPYQQFYKVJVJGCDUGPEGQHCVJKEMNKIPKſGF5 NC[GTCPFNCTIGOKETQſDTKNCPINGKPVJG5

(3)

diffractions. There was a good linear correlations exists between pit angle and x-ray diffraction parameter for E. nitens.

6JGOCKPQDLGEVKXGQHVJKUYQTMYCUVQUVWF[VJGXCTKCVKQPQHOKETQſDTKN CPINGKPVJG5NC[GTQHVJGNKDTKHQTOſDGTUQHŎUWRGTCPFEQOOQPVGCMŏQHVJG same age obtained from in Penajam, East Kalimantan. The angles were measured HTQOſDGTRKVCRGTVWTGCUKVKUFGOQPUVTCVGFD[5VWCTVCPF'XCPU

II. MATERIALS AND METHODS

A. Sampling Site

The wood samples used in this study were collected from seven-years-old UWRGTCPFEQOOQPVGCMRNCPVCVKQPUKP2GPCLCO26+6%+-CTVKMC7VCOC'CUV Kalimantan. Discs were taken from each three trees of both super and common teaks. The discs were taken about 1.3 meter above the ground. In one tree, disc of about 5 cm thick was taken from the bottom, middle and top of the tree. In GXGT[FKUEUCORNGUYGTGVCMGPHTQOVJTGGNQECVKQPUPCOGN[KPPGTPGCTRKVJ KPVGTOGFKCVGCPFQWVGTPGCTDCTMRCTVQHVJGFKUE

Both kind of teak trees were planted in the same site in August 1998. In IGPGTCNVJGVQRQITCRJ[QHVJGUKVGKUOQUVN[JKNN[YKVJNGUUƀCVNCPFCTGC6JG altitude of the side is about 80 m above sea level and the soil contains yellow-reddish podsolic soil.

[image:3.595.184.433.458.661.2]

Super teak Common teak

(4)

B. /KETQſDTKN/GCUWTGOGPV

/KETQſDTKNCPINGUYGTGOGCUWTGFHTQOOCEGTCVGFUCORNGUCRTQEGFWTGQH OCEGTCVKQPYCUGZRNCKPGFD[6GUQTQ6GCMYQQFRKEMUKPUK\GQHO ZOOZOOYGTGJGCVGFUNQYN[CVŌu%KPVJGOKZQHEQPEGPVTCVGF nitric acid and hydrogen peroxide in ratio of 1:1. The heating took about 12 hours to produce adequately macerated material on a satisfactorily separation QHYQQFſDGTU

2JQVQUQHUGNGEVGFRKVYGTGVCMGPHTQOUKPINGſDGTWUKPIZQDLGEVKXGNGPU QHVJGEQPXGPVKQPCNOKETQUEQRG2KVUXGT[ENQUGVQVJGQWVGTGFIGQHVJGſDGT were omitted as their measured angle may be affected by the collapsed edge. 6JGFKTGEVKQPQHVJGſDGTCZKUCVVJGRQUKVKQPQHVJGRKVCNQPIVJGſDGTYCU GUVKOCVGFD[CNKIPKPIVJGſDGTCZKUYKVJVJGQEWNCTETQUUJCKTUCPFTGEQTFKPIC reading on the vernier. This was used as the reference direction. The stage was rotated until the long axis of the pit was aligned with the ocular cross-hairs and another vernier reading recorded. The difference between the two angles was ECNEWNCVGFCUVJGRKVCPING(KIWTG

b c

d

[image:4.595.201.374.371.602.2]

a

Figure 2. 5KPINGOCEGTCVGFVGCMſDGT

(5)

C. 2CTCOGVGTUCPF8CTKCDNGU+PXGUVKICVGF

6JTGGRCTCOGVGTUQHVGCMOKETQſDTKNCPINGYGTGKPXGUVKICVGFVGCMURGEKGU tree variation and radial depth. Teak species variables studied include super and EQOOQPVGCMYJKNGVTGGXCTKCVKQPUVWFKGFKPENWFGſTUVUGEQPFCPFVJKTFVTGG Variable of radial depth includes inner, intermediate and outer sides. Thirty TGRNKECVGUYGTGOGCUWTGFHTQOOCEGTCVGFUCORNGUWUKPICVQVCNQHſDGTU measured.

III. RESULTS AND DISCUSSION

6JGOKETQſDTKNCPINGOGCUWTGFKPVJKUUVWF[KUVJGCXGTCIGCPINGYKVJKPVJG complete cell wall, comprising primary and secondary wall with its S1, S2 and 5NC[GTUGCEJJCXKPIFKHHGTGPVRTGFQOKPCPVCTTCPIGOGPVUQHOKETQſDTKNU#U the S2 layer comprises the largest proportion of the wall, the measured angle is ENQUGVQVJCVKPVJKUNC[GT+PVJKUYQTMVJGCPINGUYGTGOGCUWTGFCVVJGſDGT OKFRQKPVCNVJQWIJVJGCPINGEJCPIGUCNQPIVJGNGPIVJQHVJGſDGT.KOCet al., +PEQPKHGTUCNCTIGTOKETQHTKDTKNCPINGKUQDUGTXGFKPTCFKCNYCNNUYJGTG OKETQſDTKNUHQTOYJQTNUCTQWPFVJGDQTFGTGFRKVUYJKEJCTGRTGFQOKPCPVN[ HQWPF JGTG TCVJGT QP VCPIGPVKCN YCNNU /G[NCP *QYGXGT 5VWCTV CPF 'XCPURQKPVGFQWVVJCVHQTEucalyptus, which is broad leaved, it is unlikely VJCVRKVCRGTVWTGUKPſDGTVTCEJGKFUYQWNFJCXGCPQVKEGCDNGKPƀWGPEGQPVJG OCIPKVWFGQHVJGOKETQſDTKNCPINGUKPEGſDGTVTCEJGKFUKPVJGYQQFQHVJKU genus have smaller and far fewer pits and are only marginally more numerous on radial walls than on tangential walls. Even so, it should be noted that the OGVJQFWUGFJGTGHCXQWTGFOGCUWTGOGPVQPVJGVCPIGPVKCNHCEGQHVJGſDGT

(6)
[image:6.595.111.461.189.380.2]

Table 1. 4CFKCN XCTKCVKQP QH OKETQſDTKN CPING FGITGGU QH [GCTU UWRGT CPF common teak wood

Species Radial position

Inner Intermediate 1WVGT Mean

Super teak – 1 25.2 22.3 21.1 22.9±2.57

Super teak – 2 26.1 22.7 21.5 23.5±2.64

Super teak – 3 25.5 23.0 22.1 23.5±2.57

Mean 25.6 22.7 21.6

Total mean 23.29±2.61

%QOOQPVGCMŌ 24.0 21.2 20.5 21.9±2.39 %QOOQPVGCMŌ 25.2 21.0 19.5 21.9± 2.89 %QOOQPVGCMŌ 25.5 22.0 19.5 22.3±3.01

Mean 24.9 21.4 19.8

Total mean 22.05±2.78

)GPGTCNN[VJGOGCPOKETQſDTKNCPINGQHEQOOQPVGCMKUNQYGTVJCPVJCV of super teak. The angle mean of common teak is 22.05°, while that of super teak is 23.29°. The paired sample t-test between common and super teak showed VJCVVJGCPINGQHOKETQſDTKNOGCUWTGFKUUKIPKſECPVN[FKHHGTGPV6JGTGCTGVYQ HCEVQTU VJCV OC[ KPFWEG OKETQſDTKN CPING PCOGN[ IGPGVKE CPF GPXKTQPOGPV 0CMCFCet al., )GPGVKEHCEVQTUQHUWRGTCPFEQOOQPVGCMOC[UVTQPIN[ affect the angle differences, while environmental factors may be eliminated as teak tree samples were taken from the same site. Super teak plantation is mostly FGXGNQRGFHTQORNWUVGCMVTGGKPEGTVKſGFUGGFQTEJCTFKP,CXCYJKNGEQOOQP teak plantation is commonly developed from seeds that may not be necessarily produced by a plus-teak tree.

(7)
[image:7.595.136.485.260.442.2]

in outer part of the disc. The mean angle of the inner disc is 24.9°. The angles FGETGCUGD[CDQWVVQYCTFKPVGTOGFKCVGCPFQWVGTFKUEUuCPFu TGURGEVKXGN[6JGTGUWNVUQHVJGCPCN[UKUQHXCTKCPEGQHVJGOKETQſDTKNCPINGCTG shown in Table 2.

Table 2. #PCN[UKU QH XCTKCPEG QH OKETQſDTKN CPING QH [GCTU QNF UWRGT CPF common teak

Source df Sum of Squares Mean Square F P

Intercept 1 277,489.869 277,489.869 80,653.787

Teak 1 205.967 205.967 59.865

Tree 2 28.084 14.042 4.081

Radial 2 1,962.718 981.359 285.237

VGCMVTGG 2 8.727 4.364 1.268 ns

VGCMTCFKCN 2 24.983 12.492 3.631

VTGGTCFKCN 4 32.505 8.126 2.362 ns

VGCMVTGGTCFKCN 4 39.271 9.818 2.854

Error 522 1,795.944 3.441

Total 540 281,588.07

Remarks 2<2<PUPQVUKIPKſECPV2

#UUJQYPKP6CDNGVJGTGCTGUKIPKſECPVFKHHGTGPEGUKPOKETQſDTKNCPING DGVYGGPUWRGTCPFEQOOQPVGCMCUYGNNCUDGVYGGPVTGGUCORNGU2<+P TCFKCNRQUKVKQPVJGTGKUCNUQUKIPKſECPVFKHHGTGPEGUDGVYGGPKPPGTKPVGTOGFKCVG CPFQWVGTRQUKVKQP2 9JKNGVJGKPVGTCEVKQPUDGVYGGPVGCMCPFUCORNG VTGGUCUYGNNCUTCFKCNRQUKVKQPCPFVTGGKUPQVUVTQPIN[UKIPKſECPV

(8)

6JGVGPFGPE[HQTOKETQſDTKNCPINGUVQDGJKIJGTKPVJGEGPVGTQHVJGNQIJCU some important implications for processing and tree improvement. Normally VJG EGPVTCN TGIKQP QH VJG NQI KU C ETKVKECN \QPG UKPEG KV EQPUKUVU QH LWXGPKNG YQQFYJKEJJCUJKIJRGTEGPVCIGQHUJTKPMCIGCPFUYGNNKPI9KFGTOKETQſDTKN CPINGKPVJGTGIKQPQHVJGLWXGPKNGYQQFKPPGTYQQFUKIPKſECPVN[KPETGCUGF longitudinal shrinkage and distortion of kiln dried lumber cut from trees with CNCTIGLWXGPKNGEQTG/GITCY&WTKPIUCYKPIRTQEGUUVJGEGPVTCNTGIKQP should be avoided as it reduces the log quality. However, seven years old teak tree contains mostly juvenile wood as the stem is still in growing condition.

In term of tree improvement, the research efforts should be concentrated QPTGFWEKPIOKETQſDTKNCPINGKPVJGKPPGTTGIKQP5KPEGVJGKPPGTYQQFCVVJG DCUGQHVJGUVGOKUVJGſTUVHQTOGFKPVJGVTGGKVKURQUUKDNGVJCVUGNGEVKQPQH stock producing ’prime’ material could be made early in the life of the trees.

IV. CONCLUSION

1. 6JGOGCPOKETQſDTKNCPINGQHEQOOQPVGCMKUPCTTQYGTVJCPVJCVQHUWRGT teak of the same age. In relation to wood stability during drying, it is predicted that common teak timber is more stable than that of super teak timber of the same age. As common teak has narrower angle than super teak, both the longitudinal tensile strength and stiffness of common teak may be higher than that of super teak of the same age.

2. )GPGVKEHCEVQTUCTGEQPUKFGTGFVJGUVTQPIGUVUQWTEGUQHOKETQſDTKNCPING differences between super and common teak.

3. In radial direction, the mean angle of super and common teak decline from KPPGTVQYCTFKPVGTOGFKCVGCPFQWVGTYQQF6JGVGPFGPE[HQTOKETQſDTKN angles to be higher in the center of the log has some important implications for wood processing and tree improvement.

REFFERENCES

Bachri, S. 2001. Jati super andalan hari tua. 999 RCIG JVVRYYY OKVTCDKUPKUEQOCJVO&QYPNQCFGF0QXGODGT5. $Q[F ,& 4GNCVKQPUJKR DGVYGGP ſDGT OQTRJQNQI[ CPF UJTKPMCIG QH

YQQF9QQF5EKGPEG6GEJPQNQI[

$Q[F,&4GNCVKQPUJKRDGVYGGPſDGTOQTRJQNQI[ITQYVJUVTCKPUCPF physical properties of wood. Australian Forest Research 10: 337-360. %CXG+&CPF,%(9CNMGT5VKHHPGUUQHYQQFKPHCUVITQYPRNCPVCVKQP

(9)

Desch, H.E. and J.M. Dinwoodie. 1993. Timber, Its Nature and Behaviour. Van 0QUVTCPF4GKPJQNF%Q9QMKPIJCO7-RR

&QPCNFUQP.#9KVJKPCPFDGVYGGPVTGGXCTKCVKQPKPOKETQſDTKNCPING among three genetic groups of Pinus radiate trees. New Zealand Journal of Forestry Science 23: 90-100.

.KOC,6/%$TGGUGCPF%/%CJCNCP8CTKCVKQPKPOKETQſDTKNCPING in Eucalyptus ENQPG*QN\HQTUEJWPI

/GITCY4#9QQFSWCNKV[HCEVQTUKP.QDNQNN[2KPGVJGKPƀWGPEGQHVTGG CIGRQUKVKQPKPVTGGCPFEWNVWTCNRTCEVKEGQPYQQFURGEKſEITCXKV[ſDGT NGPIVJCPFſDTKNCPING6#22+2TGUU#VNCPVC

/G[NCP $# /GCUWTGOGPV QH OKETQſDTKN CPING D[ :TC[ FKHHTCEVKQP Forest Products Journal 17: 51-58.

Nakada, R., Y. Fujisawa, D. Nishimura, and Y. Hirakawa. 1998. Variation in S2OKETQſDTKNCPINGQHNCVGYQQFCOQPIRNWUVTGGENQPGUCPFVGUVUVCPFU in Cryptomeria japonica D.Don. In:$)$WVVGTſGNF'F9QTMUJQRQP VJGUKIPKſECPEGQH/KETQſDTKN#PINGVQ9QQF3WCNKV[+#9#+7(41 .GKFGP0GVJGTNCPFRR

2GCTUQP 4) CPF 4% )KNOQTG 'HHGEV QH HCUV ITQYVJ TCVG QP VJG mechanical properties of loblolly pine. Forest Products Journal 30: 47-54. 2TGUVQP4&6JGQTICPK\CVKQPQHVJGEGNNYCNNQHVJGEQPKHGTVTCEJGKF

Philosophical Transactions of the Royal Society. Series B 224: 131-174.

.QPFQP7-2TGUVQP4&6JG2J[UKECN$KQNQI[QH2NCPV%GNN9CNNU%JCROCPCPF *CNN.QPFQPRR

5GPI 1& $GTCV LGPKU FCTK LGPKULGPKU MC[W +PFQPGUKC FCP RGPIGTVKCP beratnya kayu untuk keperluan praktek. Pengumuman No.13. Puslitbang Hasil Hutan. Bogor.

5VWCTV5CPF4'XCPU:TC[FKHHTCEVKQPGUVKOCVKQPQHVJGOKETQſDTKN angle variation in eucalypt wood. Appita 48: 197-200.

5VWCTV5CPF4'XCPU:TC[FKHHTCEVKQPHTQO'WECN[RVKPETGOGPVEQTGU 2CTV++%CNKDTCVKQPQHOKETQſDTKNCPINGOGCUWTGFHTQOZTC[FKHHTCEVKQP WUKPIQRVKECNOKETQUEQR[CPFRTGFKEVKQPQHſDGTNGPIVJ4GUGCTEJTGRQTV 0Q6JG%4%HQT*CTFYQQF(KDGTCPF2CRGT5EKGPEG/GNDQWTPG 6GUQTQ (1 /GVJQFQNQI[ HQT 2TQLGEV QPCorypha and Livistonia.

(24&+%QNNGIG.CIWPC2JKNNKRKPGU

(10)

Gambar

Figure 1. Super and common teak in the experimental site
Figure 2. ��������������������������
Table 1. ��������������������������������������������������������������������common teak wood
Table 2. ������������������������������������������������������������������common teak

Referensi

Garis besar

Dokumen terkait

Penelitian ini bertujuan untuk mengetahui bagaimana Dampak kekerasan Seksual Terhadap Perkembangan Anak dalam Studi Kasus Anak korban Kekerasan Seksual di Yayasan Pusaka

Tugas Akhir merupakan salah satu persyaratan yang harus dipenuhi oleh setiap mahasiswa Jurusan Teknik Sipil Fakultas Teknik Universitas Diponegoro Semarang untuk

[r]

BADAN KESATUAN BANGSA DAN POLITIK PEJABAT PENGADAAN BARANG /

[r]

The synthesized TiO 2 –zeolite nanocomposite was characterised using field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) analysis,

In addition, other members of Sinarmas Group may from time to time perform investment banking or other services (including acting as advisor, manager or lender) for, or

a. Kecenderungan perilaku manusia mengarah ke hal-hal duniawiah atau materi. Ketidakjujuran yang terjadi dalam lingkup pendidikan formal. Lunturnya karakter atau jati diri”bangsa