• Tidak ada hasil yang ditemukan

Optimal Scheduling of Quality Controlled Product Storage

N/A
N/A
Protected

Academic year: 2022

Membagikan "Optimal Scheduling of Quality Controlled Product Storage"

Copied!
8
0
0

Teks penuh

(1)HWAHAK KONGHAK Vol. 39, No. 2, April, 2001, pp. 176-183 (Journal of the Korean Institute of Chemical Engineers).   

(2)  .  *** ***

(3) *** **** †.   .  

(4)  **     ***   ****   (2000 2 9 , 2000 11 10 ) *. Optimal Scheduling of Quality Controlled Product Storage Gyeongbeom Yi†, Dongil Sin*, Ho-Kyung Lee**, Bom Sock Lee***, Jin-Kuk Ha**** and Euy Soo Lee**** Dept. of Chem. Eng., Pukyong National Univ., Pusan 608-739, Korea *School of Chem. Eng., Seoul National Univ., Seoul 151-742, Korea **Automation Research Center, Dept. of Chem. Eng., POSTECH, Pohang 790-784, Korea ***Dept. of Chem. Eng., Kyunghee Univ., Yongin 449-701, Korea ****Dept. of Chem. Eng., Dongguk Univ., Seoul 100-715, Korea (Received 9 February 2000; accepted 10 November 2000).      

(5)    .      !" #$ % & '! ()* #  +, -.  

(6)   #.  /

(7) 0123 12/

(8) 45 6#73 8 9:

(9) ;# #< = 6# > ?@A B. C 9/

(10) 45 012 D@ 45 6#7 EDFG HI  ;#D@ > 6#DFG JK LMDNO 45 6#7 isocontainerP QR ST LMU. 012 block mode VWDX, Y Z 45. 6#7 [U. 8 /

(11) \]  45. ^_ /

(12) 6#7P `aMX, ! 6#7G a D@ BO, 2 bc 6#7 bc 45

(13) R de f B.  

(14) gh. @i 45 0 12 6#7 [U j 3-15' kl 5m noP pqMX,  2r kl Rs 6#7 tm

(15) Lu vaU  w. 

(16) , x. yI qrz #< {\| } ~$ €< 5mno fP ‚M ƒ .   # R „( f † ‡$ \M^  b†$ /ˆM‰. C Š ‹fG 1,500-2,000 / ŒM‰X, f)$ Ž2 M^ 

(17) f‘ z $ ’M^ a‹f

(18) “ ”P M‰. Abstract − The mixed integer linear programming model has been developed for the production scheduling of liquid state polymer process such as a Polybutene(PB). The example process is composed of one reactor, twelve storage tanks and two package types. The reactor produces 9 liquid state products. The products are reserved in tanks and then, packaged into drum or isocontainer. The drum products are stored in a warehouse before they are shipped out to customers but the isocontainer products are shipped directly out to customers. Two major products use multiple tanks. Most tanks are dedicated to a certain product but basically any tank can be shared by any product. The reactor is operated on block mode. The unique characteristic of this scheduling problem exists on the fact that the product in a tank should be locked for 3-15 days in order to check the quality specifications after run-down from the reactor. The primary objective of scheduling is reducing the number of quality checking processes because it causes great loss in production time and tank utilization. The model is composed of about 1,500-2000 integer variables. The branching priorities are adjusted according to the importance of variables based on current manual scheduling practice and it greatly enhanced the convergence of the mixed integer model. Key words: Optimal Scheduling Quality Storage Block. † E-mail: gbyi@pknu.ac.kr. 176.

(19) 1..  .   

(20).    

(21)     .        !"# !" ! $% &  ' () *+ ,- ./ .0 123 4 5 67 89: ;<. = >? @A 5B< <'C "D E3 FGH, Polybutene(PB) 5B I 9J KD L  F.  !" M- N!O PQ RSD M+E T; 3U !" 5BGDVW  X< Y@E Z[ 4@\  ]@ Y@( ^_` ab  cB RC b d L3 (H <   ef 3g

(22) 15g Bh i. . <  Z[ !" X <Z< j. bd< ^_ @  << ]G`  4@\  F. .0< k   ' l !"m -+GD no p+@ .0< qO 9  L C l !" 

(23) ' < 5oC. Xr s t L $% &D

(24) !" C () u vo\  F@ w  vP R

(25) x  y@m z{ C. ! " +0| l CE3 F. ( }.C ~B 5B

(26)   3€ !"D \=\ J(  n<. < \=< ‚ ƒ„ † x !" <‡ L< ˆ)@ F3

(27) ‰y 5B

(28)   vP\ !"( ]3) M-p@( Š \  F . 5B| bd i.E b)< ‹ T; @Œ  9J .: V   ( Ž) . @Œ .m 12) ƒ Š  ‘o’ “ R

(29) *  y @m ”  • < y@ z+ –(m —˜@  y@D J C  !m —˜H B™:š   5 † g 9GD y@ 5< CE3 F. <'C 67; C 89 :s› lŠ < <  œI<. ‰

(30) ‘† ‰’9J ;ž h Ÿ@ <'C p[  C  ¡9J š¢9J m :š5š;£

(31) Š¤ ¥D Ž ) .

(32) D w 5BL  X¦§ Ÿ¨› ©, S ! " 9J ª C š¢9J  «@;£[1-11]

(33) _ ¬­ ®# ¯< 8° ±² 5B PC  Š-| ³Ÿ3 ´ŠO -lE@ F. )µ¶) E3· !" M-o› ¸ v` ¹L p< ,C +0 !"m º UIS(Unlimited Intermediate Storage) »[, -¼ } !"m ½¹)  NIS(No Intermediate Storage) »[, oCC +0 !"m ½¹ FIS(Finite Intermediate Storage) »[, ' () } !" »[ p+ MIS(Mixed Intermediate Storage) »[, _ } !"m ' l ¹L< 5jGD p+ CIS(Common Intermediate Storage) »[, ¾Q@ ! " vP  \ † !m oŠ :š RC ZW(Zero Wait) »[ ¿< F.  

(34) ’ :š 6 x y)u R 3U o› h À)   !" MÁ»[GD

(35) QCPS(Quality Controlled Product Storage) »[ b@/ C. a QCPS !"( y@ vP| 4 ª Âu ÃÄf PQ  ª Å †<. 2.. .   I9J $ @/ 5BJ ÆQVÇ 5B GD lŠEÈ. ÆQVÇ <iVÉÊ 0%D  !Ë Ì‘ }> C ÍC !/0 $ @/<. C4 Îpom ÏÐD  H, ¡Ñ, ÒÓ Ô ’Õ Ö>yÐ, ק Ø(, - Ù, , @A Ø(, ÃÚÛÜ l, ÝÞ ßào, ² Ø( ¿ p+ . " 5B Fig. 1 hb ®# ¯< C l  # 12l !. 177. Fig. 1. Polybutene plant block diagram.. "D ?E3 F. á 9l 8â  H, ã 8â  i0J † äå æç

(36) è@ !EÈ( 4Eé_ +0 @ Œ<_ 4 

(37) isocontainer ’ê ®D 4.  5B  SÏÐ V 5B

(38) E3 ÏÐ !" !EÈ( 5 ëEH 67 ;m  )  .  À9GD M -E)u < ®ì íîM- H, 8/8i Àh  ï< F. Àh( –(\î   M-z )9GD –( C. 

(39)  ®ð T ëC X? :( ñ+E)  T;  ò

(40) 

(41) D <ó\  ] L< F. .

(42)   !"D <ôE3 õpm öà C. Ï÷ 9GD 3U !" 3U  äb ! \ <o ]. ¾ '_ vj ‘0< k < ø !"m ˆ)ù E@ ‘0< ÃS k SâL  !"m noù . V ! " C l   -+E3 F. ¾'_ C !" 

(43) º l <  Zb !\  ])u gV !" 67  ú º l < ûüà !E h C. 3U ! " < Y@E` ý®D õp L3( • <  < v j 3g

(44) 4 † 15g< þÿ. < Z[ ‹   4@_ Y@( <3   ]. ef

(45) ã !"  Y @, , 4@( ûüà E< .  m *ß ã !"   X <ô þQ b Ab. äå  Ô 4 S} u <3 ·. uï S<_ 5g   ` 2( žµ < )ëE3 C. äå á 0 ï< F@, äå 6  ?  º () < w  \  ]. äåGD *   è@

(46) 8i 2 g vP  4 H, è@ ‹. CE3 F. 3..

(47) .   J ÆQVÇ 5 67  g9GD œ9ß m ?\  F ? < A‡@ 5B MÁ ï " < ‘† k   ()@ F. 67 œ9ß ‘< HWAHAK KONGHAK Vol. 39, No. 2, April, 2001.

(48)     . 178.

(49) z+ C ò<  8:é_ ÏÐ ‘z+, ‘o’ z+, M-z+, y@ o)z+ ¿ z+ > 8i: GD ½B < vj<. ¾'_  5 † <'C z+ B< ‰’9GD Ÿ(ªé_ A‡.

(50) ! ‘< | ÏÐ ‘z+  Kc .0 sº 5ëC@ (B C @B9<. ‘ o ’<_ g Ν PQ)à  6 @êE)  . y@ o )z+ -%9J !b½ +0< CE3 F@ 9GD ! D Abh . M-z+ œ }

(51)  67 @ê< E    (Z< –„î z+< )9GD –( D (Z gBù o) |  k b| z+< isED (ªC  m < <. <}  ( Z ew z+Š  B0:( (ª_  z+ B0: \  ]. <å 9GD ‹@ E)u B0:( Ÿ(ªC z +œ< xy\ † ò< 8:  á z+ 8i:f g9 J 67 œ9ß 9+ ( Ÿ(ª. œ9ß( æ=  \ <'C ªL sº ï²GD -(.   (Z é gBhî ï²< V(EH, !" M- PC ï   m < • —n< ¼ F. ‘o’h Š \  ] 

(52) |C M-ï  st ï² u  xy ( Ÿ(ªù . ef

(53)  89: s› œ9ß <'C  Ÿ(ª? 8i: <. Ÿ(ª?| P ï² 9 z } p+/  B C.  gB67  C RD <3 )H, 8i ggR X0<Z C 6~|( _# C. ’   67 ³ ™C b C @ê( .E_ gg R  M-6 7< ~BE` C M-67 2 ˆ9GD 6„  F. 6 7< C RD 6E@ E <o ±p PQ % C RD ±6Qm @ F@, A vh 67  S.C Y! /ÐJ .Kc /Ð( C RD E T;<. g9 GD @/ 5B  gB67 s› block mode M-  . M- ? I‰ R À b(continuous-time) " m p+C(Karimi and McDonald[6]). ¾'_  

(54) . v !" M-< ³ }.H À b s› !" M 9+\ † 60< |ù –D ï² -%9GD < b(mluti-period) "m p+@ F. ï²L ã ¹  C X 4Y| ¹ +0 _¬ú ²| ¹ "B,  ò

(55) , M- XQ9J ï æ@ F. ã ï² C ½# Ï ÐVW ¶) X ¦§ ef ½#\ <. ;? RC 9 Ïi $ 4()D ¸. i:   œî p: * © œî k: !" œî t: g/ œî  i( 

(56) !" kD oYE t g/ X0 FQ f º @ <· YFQ m FQ ( Í<` 1, 0<` 0<f@ BC. ¾Q @ 

(57)  i( g/ t E` <· Y ( 1, ¾%) G ` 0GD BC. ¾'` <· FQ # Y p< $ P6²< ?C. ikt. ikt. ikt.  gg 8/8i 0 ï< F. ¾'_ V'<C † <'C "  ©:„  F. RXMAX + α ≥ ∑ ∑ FQ ikt ≥ RXMIN – β i. (3). k. 

(58) Í α, β ï² Ÿ(?(infeasibility) _¬úH, œ9 ß

(59) 8i: . g/ t 24:00 bn  i( !" k ! X0 FI f º @ <· YFI m FI ( Í<` 1, 0<` 0<f@ BC. ¾Q@  i( !" k

(60) * R 4@E t g/ X0 FH f º@ <· YFH m FH ( Í<` 1, 0<` 0<f@ BC. 3 U !" k µg y@0 -( y@0

(61) µg Y@0 ³@ µg 4@0 ) | ¯. <m ²GD I‰`; ikt. ikt. ikt. ikt. ikt. ikt. FI ikt = FIikt – 1 + FQ ikt – FH ikt. (4). FQikt ≤ TKMX ik *YFQikt. (5). FIikt ≤ TKMX ik *YFIikt. (6). FHikt ≤ TKMX ik *YFHikt. (7). <·m B ²L $| ¯.. 

(62) TKMX  i( !" k !„ T 8 !0<. *C !" M- I‰ R ´Z }+(production spillover) _¬ú ,DM <· YS m hYC. YS uï  i ( !" k

(63) g/ t# g/ t+1 À Y@„ † 1<@ ¾%) G` 0< . < ²GD I‰`; ik. ikt. ikt. YS ikt ≤ YFQikt. (8). YS ikt ≤ YFQikt + 1. (9). YS ikt ≥ YFQikt + YFQ ikt + 1 – 1. (10).  DVW  Y@( ^_/ -/ !" y@0     ’bH <  Z[ ,DM  Y@_ 4@( µ ). <'C XQ9 ï $| ¯< I‰. YFQ ikt′ + YFQ ikt ≤ 1 + YSikt. t < t' < t + LAG ( i ). (11). YFH ikt′ + YFQ ikt ≤ 1. t ≤ t' < t + LAG ( i ). (12). 

(64) LAG(i)  i(  i.E <.  m < R

(65) (ªC 3U !"( (' .{  T¶)  6ÀH   ’bC !" é  z/ T¶) ,D Y@ g< ]3 C. b `  Y@( ^ _ ò ¾ !" y@0 !" 8 ‹  80%m ± @,  Y@( bE ò ¾ !" y@0 !" ®0 ÎX0v à C. <'C d9J M- ÷ 1C po( ] C 2E3 C. <L ²GD I‰` $| ¯. FI ikt + δ ≥ 0.8 * TKMX ik *( YFQ ikt – YS ikt ). (13). FIikt – γ ≤ TKMN ik + TKMX ik * ( 1 – Y FQ ikt + 1 + YSikt ). (14). it. ikt. Yit =. ∑ YFQ ikt. it. (1). k. ¾Q@ 

(66)  i - <3 \  ] L & > NTC(i, i')f@ \ T Yit + Y i't ≤ 1. ( i, i' ) ∈ NTC ( i, i' ).  39 2 2001 4. (2). 

(67) δ, γ ï² Ÿ(? _¬úH œ9ßm j 8i : . C l !" º () < < Zb !„  ]. <'C XQ9 ï $²GD I‰. ∑ YFIikt ≤ 1 i. (15).

(68)   

(69). !"DVW  4@ º () ›&D <3 ·. _ ä åGD *E3 è@ vPE <@, w _ !"DVW isocontainerD *E3 ôˆ0 j @Œ ù ®D 4E < . g/ t 

(70) è@ *  p( Y@E X0 PQ f º @ *  C @Œ . Kc0 D f@ \ T äå  † = < æç F !"

(71) 4@ X0 è@ Y@ X0| g¹\ <H, isocontainer † = < æç F ! "

(72) 4@ X0 @Œ . Kc0| g¹ C. @Œ S ;‡ Ï÷9GD ñ+E) )u  67 °9GD Ÿ(ª C †( F. <m Á R S;‡0 BL  hYC. S ;‡ ( 8i:E3 \ D

(73) œ9ß 2(„ <. pt. pt. pt. ∑ FHikt = PQ pt + LAG(p ). ( i, p ) ∈ PACK ( i, p ). k. i ∈ DRUM( i ). BL pt = BLpt – 1 + D pt − ∑ FH ikt. (16). ( i, p) ∈ PACK ( i, p ). k. i ∈ ISOCON ( i ). (17). 

(74) PACK(i, p)   | * | ~ _¬ ú@, DRUM(i) äå *   œî _¬úH, ISOCON (i) isocontainerD *  œî _¬3. ¾Q@ LAG(p) * C 4  [B:m R 4m µ g/ =C. äå * / 5Z! xD g/1D +0ï< F . a g < <3 ))  . ∑ ∑ FH ikt ≤ CAPt + λ. (18). i ∈ DRUM ( i ) k. 

(75) λ ï² Ÿ(? _¬ú GD œ9ßm j

(76) 8i: . ¾Q@ CAP g/1 8 * +0 _¬3. äå * < ®ì` ,DM  2z b< isED  º () < u *\  F. <'C ï 3U  < !"DVW 4@ oAm _¬ú ,DM <· YHF m hY  $ ²GD I‰. t. it. YHF it ≤ ∑ YFHikt. (19). YHFit ≥ 0.1 * ∑ YFHikt. (20). k. k. ∑. YFHit ≤ 2. (21). i ∈ DRUM ( i ). è@

(77) 4E X0 SH f@ \ T è@ ! äå   y@0 $ ²GD 6. pt. PI pt = PI pt – 1 + PQpt – SHpt. p∈ DRUM( p). BL pt = BLpt – 1 + D pt – SH pt. p∈ DRUM( p). (22). äå  

(78) h S; ‡ ñ+E) )u ’D Š  D $ ²< 2(. ∑ SH pt′ ≤ ∑ Dpt′. t′ ≤ t. (23) (24). t′ ≤ t. è@ !E äå  á0 è@ á ! +0 MXWHS ï ö . ∑. PI pt ≤ MXWHS. p ∈ DRUM ( p ). (25).  89: s› œ9ß B ï² Ÿ(? > 8i:. 179.  <. MIN wα α + wβ β + wδ δ + wγ γ + wλ λ + w BL ∑ BL pt p, t. 

(79) w ,..., w 㠟(? C (}¹D

(80) p+/  ~ B. α. BL. 4..   .   89: s› GAMS/OSL# Pentium III(500 MHz) p + lŠEÈ. Y!/Ð ’ ÆQVÇ 5

(81) "/Ðm ® 6GD 4 ˆ7 &EÈGH, ãã † lŠ s› j69 /Ð Table 1 .ïE3 F. Table 1 _¬­ å s› ­<hm I <· l( 1,500-2,000GD

(82) 6 bh 30 

(83) 1 b  › 8> B 679 s›<. :; 6 ~|   l <= k)u 6 b ‘† > K¥9J †J• <  (Z})(shut-down)m *ß@ F T;<.  s›

(84) ( Z})  w   _D 1O ?ë. @; bd6  st !" C l u \=EÈ@, A; bd6 ºl !"( 2l   5oEÈGH, B; bd6 C l !"( º l   5oEÈ. <m <· l# ~ V zC D T ; ‹ m ~B ( ø .J º l <  < 5o !"(swing tank) lJ  E  F. a 5o !"( _ ”3(î <·( ï 10%F ”3­. 5o !"( 3l <g † ‰’9GD 89: s›  3G. H Oh 67 @ê J 1  <ú º l < !"m 5o    ‘† <79<@ V † ã !" 67. J 1  Z[ C l u ‡Q )BE3 F@ (B h AQ( ]. ã !" ‡Q  )Bß h Ÿ@  8 9: ; <· ( 1,500 l <J › 8>B679GD

(85) vj »9GD  < Ÿ(ªI. ) C69(branch and bound)

(86) ) †"òR(branching priority)m "Ù` Žù  \ h F p’ ‚ Eê F)u ’D 9ÙC ) †"òRm Š ¤ g Ž) . †Q 9ÙC †" òRm  R 67  و# opC ò

(87) D ã و P <·  ò

(88) m VI. <'C   C <·  ) †" ò R $| ¯. (1) Sâ | P <·  z Sâ | P <·   z J †" òRm 2. 

(89) Sâ <K  X0< 9GD ké_ *+ ( isocontainerJ å 67   ~B9J ÁL ‡¹  ‡C. (2) V5B a @Œ . (¶M  C †" òR( V 5B  ÏБ (¶M  C †"òRv J. (3) b | ef  †" òR( M÷. R (½ C <·  †" òRm 9+C ~| [B  Table 1. Model statistics of test runs Test run no.. Number of equations. Number of variables. 1 2 3 4. 17880 13280 12416 12130. 7856 5009 5848 5451. Number of binary CPU time variables (sec) 2202 1526 1999 1725. 1432 2932 5465 4322. HWAHAK KONGHAK Vol. 39, No. 2, April, 2001.

(90) 180.     . Fig. 2. Reactor schedule.. Fig. 3. Reactor run-down schedule.. ? N  FÈ. <¥ h GAMS/OSL< 5 O () "P pÍ ‚ "ÙßGDQ 6b g  FÈ. ¾'_ s›  ? R† }.C .J  l_ E@QS :v 89: s› š9J "f < !/L d9 ~r<. 4û; bd 6 ~|J   gB, ‹ Y@ Ô 4@,  ‹ y@ Z, ! è@ Y@ Ô 4@, ! è@ y@ Z C Gantt Chart Ô y@ ¾TI( Fig. 2-7 _¬_ F.  39 2 2001 4. 5..  . $ @/ 5B  gB 67 89: s›< lŠEÈ. $ @/ 5B   Y/ & w @/ 5B| Q  !" MÁ< ‘† * 67 ø ÁL ‡U. <'C ? $% &D EH,   b< i.E :š   5j9GD _¬­. Km L3 Bo 5 (Vÿ, ¿o, o.

(91)   

(92). 181. Fig. 4. Inventory profile of storage tanks.. Fig. 5. Packaging schedule. HWAHAK KONGHAK Vol. 39, No. 2, April, 2001.

(93) 182.     . Fig. 6. Warehouse inventory profile.. Fig. 7. Product demand.. ¿ Ðo Ö> <_ W´o  Ö> 

(94) h  ! " y@ X0 vP X\| Ö>  Ô   RC 5 B X\ Å@ F.   Y/ &D E @/ 5  39 2 2001 4. B 

(95)   YZ9J M-< ‘† }. T; À b s›< 9+E)u $ @/ 5B 

(96) !" M Y|9GD I‰\  F < b s›< 9+EÈ. g9.

(97)   

(98). GD 67 œ9ß ?.im < M-z+, y@ o)z +, ‘ o’z+ ¿  z+ œ Y! /Ð Ÿ[’?GD J  B[C B< Ÿ(ªé_ 5 MÁ »²  ¡9GD @ê\ ×.( ]È. ¾ 5 MÁ ø z+ Š  .JGD )œE  (Z Z|   m < RC \C ï²  ½BC $ <'C ï² ub]) ƒ Ÿ(? Bh m œ9ßD ½B 8i:hî ^. a <} ( }.C p   m <@/  œ9GD

(99) œ9ß <m ¡ 9GD I‰@ F. ï²L   8/8i (Z, .  ò

(100) , !" "P, !" MÁ XQ9J ï, Ö> , !" +0 ï, *b½ ï| !" Ô è@ y@ ¨›² ¿ *ß@ F. ’ ÆQVÇ 5 "m ®6GD 89: s› ?C ~| <·( 1,500-2,000l  › 8>B 679 s›<  EÈ. s›  ? l" R ) †" òRm ~B  1C »9 9+I. ’ " /ÐDVW Y!/Ðm 2z 4 ˆ7 bd 6 ~| 67 ’A/# opC ?ª vI.  5  ? 67 œ9ß( Ÿ(? 8i: < T ; (b9J Y| ]È)u 67 6b< GD 2 gBh þQ_  2 b <úD g  FÈ..     C`|šy B —(|ûa 1999-1-307-002-3) z )Ï  <3bGH )ÏS C`|šy cp ä Ä..  i p k t BLpt CAPt Dpt DRUM(i) FIikt FHikt FQikt. : index for reactor products : index for packaged products : index for tanks : index for time periods : the backlogging quantity of packaged product p at the end of period t : is the drumming capacity of period t : the customer demand of packaged product p at period t : the subset of reactor products with drum package : the inventory hold-up of product i in tank k at the end of period t : the discharge quantity of product i from tank k at period t : the quantity of product i moved from reactor into the tank k at t period. 183. ISOCON(i) : the subset of reactor products with isocontainer LAG(i) : is the quality checking period for product i LAG(p) : the time delay for drumming NTC(i, i') : the set of pairs of reactor products that can not be produced in sequence PACK(i, p) : the connection between reactor product and package product PQpt : the drumming quantity of packaged product p at period t RXMAX : maximum daily production rate of reactor RXMIN : minimum daily production rate of reactor SHpt : the shipping quantity of packaged product p at period t TKMXik : the maximum storage size of tank k for product i wδ,..., wBL : the weighting factors for infeasibility of relevant constraints Yit : is set to 1 if product i is produced in reactor at t period, otherwise 0 YFIikt YFHikt YFQikt YSikt YHFit δ, γ. : is set to 1 if FIikt is positive, otherwise 0 : YFHikt is set to 1 if FHikt is positive, otherwise 0 : is set to 1 if FQikt is positive, otherwise 0 : is set to 1 if product i is continuously fed from reactor to tank k at period t and period t+1, otherwise it is set to 0 : is set to 1 if product i is packaged into drum at period t, otherwise 0 : the infeasibility of the relevant constraints.  1. Cho, I., Lee, B., Lee, I. and Lee, E. S.: HWAHAK KONGHAK, 36, 601 (1998). 2. Ha, J. K., Lee, B. S., Lee, I. and Lee, E. S.: HWAHAK KONGHAK, 36, 813(1998). 3. Bok, J. and Park, S.: HWAHAK KONGHAK, 37, 531(1999). 4. Jung, J. H. and Lee, H.: Computers Chem. Engng, 20, 845(1996). 5. Jung, J. H., Lee, H., Yang, D. R. and Lee, I.: Computers Chem. Engng, 18, 537(1994). 6. Karimi, I. A. and McDonald, C. M.: I&EC Res., 36, 2701(1997). 7. Ku, H. M. and Karimi, I. A.: Computers Chem. Engng, 14, 49(1990). 8. Park, S. and Jung, J. H.: HWAHAK KONGHAK, 37, 411(1999). 9. Wiede, W. Jr., Kuriyan, K. and Rekalitis, G. V.: Computers Chem. Engng, 11, 337(1987). 10. Wiede, W. Jr., Kuriyan, K. and Rekalitis, G. V.: Computers and Chem. Engng, 11, 345(1987). 11. Wiede, W. Jr., Kuriyan, K. and Rekalitis, G. V.: Computers and Chem. Engng, 11, 357(1987).. HWAHAK KONGHAK Vol. 39, No. 2, April, 2001.

(101)

Referensi

Dokumen terkait

Agustina, L., 2013, ‘Formulasi Losio Pencerah Kulit dari Sarang Burung Walet Putih (Aerodramus fuciphagus) dengan Karaginan sebagai Bahan Pengental’, Skripsi,

Rencana pengembangan keorganisasian dilakukan dengan mengacu pada analisis dan evaluasi tugas dan fungsi satuan organisasi termasuk perumusan dan pengembangan

Berdasarkan analisis data dan pengujian hipotesis yang telah dilakukan, maka dapat disimpulkan bahwa terdapat pengaruh yang berbeda pada kemampuan komunikasi matematis

1) Waktu implementasi kebijakan ini kurang tepat, khususnya dalam hal tren fundamental perekonomian di negara masing-masing. Kebetulan, perekonomian mereka saat itu serta

6 Dalam Kitab Undang-Undang Hukum Perdata (KUH Perdata), buku III tentang Perikatan, disebutkan bahwa perikatan dapat lahir karena undang-undang atau

1) Klik tombol New… di kotak dialog Text Style, akan tampil sub-kotak dialog New Text Style (Gambar 3-24). Di sub-kotak dialog ini tampil secara otomatis nama Style1 di kotak

Pengungkapan tujuan/kebijakan perusahaan secara umum berkaitan dengan tanggung jawab sosial perusahaan kepada masyarakat.. Informasi berhubungan dengan tanggung jawab sosial

Negara dipandang sebagai satu organisme hidup yang berevolusi secara spasial dalam kerangka memenuhi kebutuhan masyarakat bangsanya atau tuntutan kebutuhan akan