• Tidak ada hasil yang ditemukan

Sentiment Analysis Pada Teks Bahasa Indonesia Menggunakan Support Vector Machine (SVM) Dan K-Nearest Neighbor (K-NN)

N/A
N/A
Protected

Academic year: 2017

Membagikan "Sentiment Analysis Pada Teks Bahasa Indonesia Menggunakan Support Vector Machine (SVM) Dan K-Nearest Neighbor (K-NN)"

Copied!
3
0
0

Teks penuh

(1)

DAFTAR PUSTAKA

Abbasi, Ahmed. Zhang, Zhu & Chun, Hsinchun. 2008. A Statistical Learning Based System for Fake Website Detection. The Workshop on Secure Knowledge Management. Dallas: Texas.

Auria, Laura. A, Moro, Rouslan. 2008. Support Vector Machines (SVM) as a Technique for Solvency Analysis. Berlin: Deutsches Institut für Wirtschaftsforschung

Barber, I. 2009. Simple Search : The Vector Space Model. (Online). http:// phpir.com/simple- search-the-vector-space-model (10 Nov 2014)

Bo, Pang & Lilian, Lee. 2008. Opinion Mining and Sentiment Analysis, Foundations and Trends in Information Retrieval, Volume 2, no. Issue 1-2, pp. 1-135.

Bridge, C. 2011. Unstructured Data and the 80 Percent Rule. (Online)

http://www.clarabridge.com/default.aspx?tabid=137&ModuleID=635&ArticleID

=551 (5 Nov 2013).

Cawley, G, C. 2006. Leave-one-out cross-validation based model selection criteria for

weighted LS-SVMs. Proceedings of the IEEE/INNS International Joint Conference on Neural Networks (IJCNN-06),Vancouver, BC, Canada, pp. 1661–1668

Colas, F & Brazdil, P. 2006. Comparison of SVM and Some Older Classification Algorithms in Text Classification Tasks. Artificial Intelligence In Theory and Practice, IFIP In International Federation for Information Processing, (Boston: Springer), Volume 217, pp. 169-178.

Cortes, C. & Vapnik, V. 1995. Support-Vector Networks Machine Learning, 20. (Online).

http://www.springerlink.com/content/k238jx04hm87j80g/. (8 Nov 2013).

Darujati, Cahyo. 2010. Perbandingan Klasifikasi Dokumen Teks Menggunakan Metode Naïve

Bayes Dengan K-Nearest Neighbor. Jurnal Link (Information Retrieval). Volume 13. No.1, pp. 2-9

Manning, D, Christopher. Raghavan, Prabhakar & Schütze, Hinrich. 2009. An Introduction to Information Retrieval. Cambridge: Cambridge University Press.

Feldman. J.A. 2004. Computational cognitive linguistics. Proc. 20th Intl. Conf. on

Computational Linguistics, Morristown, NJ: Association for Computational Linguistics, pp. 1114-1118.

Ganjisaffar, Yasser. 2013. crawler4j : open source web crawler for java.(Online).

https://code.google.com/p/crawler4j/ (1 Maret 2014)

(2)

Gorunescu, Florin. 2011. Data Mining: Concepts, Models and Techniques. Computational Intelligence and Complexity. (Verlag Berlin Heidelberg-Springer), Volume 12. pp. 1-43.

Guo, Gongde. Wang, Hui. Bell, David. Bi, Yaxin. & Greer, Kieran. 2001. Using K-NN Model-based Approach for Automatic Text Categorization. Northem Ireland : School of Computing and Mathematics

Han, qi. Guo, junfei & Schuetze, hinrich. 2013. Combining an SVM Classifier and Character N-gram Language Models for Sentiment Analysis on Twitter Text. Association for Computational Linguistics: Human Language Technologies.

Hedley, Jonathan. 2013. jsoup 1.7.4-Snapshot API :Open Source Java HTML parser that makes sense of real-world HTML soup. (Online). http://jsoup.org/apidocs/ (13 Mei 2014)

Ian, H,Witten. Frank, Eibe & Mark A, Hall. 2011. Data mining: Practical Machine Learning Tools and Techniques 3rd Edition. Elsevier.

Jason D. M. Rennie & Ryan Rifkin. Improving Multiclass Text Classification with the Support Vector Machine. (Online). http://www.ai.mit.edu. (1 Maret 2014)

Jurgens, David. 2009. S-Space : free software. (Online). http://github.com. (13 Mei 2014)

Karatzoglou, Alexandros. Smola, Alexandros. Hornik, Kurtand & Zeileis, Achim. 2004. kernlab - An S4 Package for Kernel Methods in R. Journal of Statistical Software. Volume 11. pp 1-20.

Khushboo, N, Trivedi. Swati, K. Vekariya. & Prof. Shailendra, Mishra. 2012. Mining of Sentences Level Opinion Using Supervised Term Weighted Approach of Naïve Bayesian Algorithm. int. J. Computer Technology & Applications, Volume 3, pp. 987-991.

Kumar, M. A. & Gopal, M. 2009. Least Squares Twin Support Vector Machines for Pattern Classification. Expert Systems with Applications, Volume 36, pp. 7535–7543.

Li, Rong. Wang, Hua-Ning. He, Han. Cui, Yan-Mei & Du, Zhan-Le. 2006. Support Vector Machine combined with K-Nearest Neighbors for Solar Flare Forecasting. Chinese Academy of Sciences. Volume 7, pp. 441-447.

Liu, Bing. 2010. Sentiment Analysis and Subjectivity, in Handbook of Natural Language Processing Second Edition, (editors: N. Indurkhya and F. J. Damerau). Department of Computer Science : University of Illinois at Chicago

(3)

Nazief, B. A. A. & Adriani, M. 1996. Confix Stripping: Approach to Stemming Algorithm for Bahasa Indonesia. Internal Publication, Faculty of Computer Science, Jakarta: University of Indonesia.

Nurfalah, Adiyasa. 2011. Analisis Sentimen Pada Opini Berbahasa Indonesia Menggunakan Pendekatan Lexicon-Based. Matakuliah Data Mining Lanjut. Bandung: Fakultas Pascasarjana Institut Teknologi Telkom.

Sumartini, Ni Wayan. 2011. Text Mining Classifier dengan Metode Naïve Bayes dan Support Vector Machines untuk Sentiment Analysis. Tesis. Universitas Udayana.

Tan, P. N., Steinbach, M. & Kumar, V. 2006. Introduction to Data Mining. Boston : Pearson Addison Wesley

Vinodhini, G. Chandrasekaran, RM. 2012. Sentiment Analysis and Opinion Mining: A Survey. International Journal of Advanced Research in Computer Science and Software Engineering: pp. 283-293.

Wulandini, F. & Nugroho, A. N. 2009. Text Classification Using Support Vector Machine for Webmining Based Spation Temporal Analysis of the Spread of Tropical Diseases. International Conference on Rural Information and Communication Technology 2009.

(Online) 189-192. http://asnugroho.net/papers/rict2009_textclassification.pdf (5 Nov 2013).

Zee-Jing, Chung & Hsien-Wu, Chung. 2004. Multi modal Emotion Recognition from Speech and Text. The Association for Computational Linguistics and Chinese Language Processing: pp. 45-62.

Referensi

Dokumen terkait

Berdasarkan metodologi penelitian, maka akan dilakukan implementasi sistem klasifikasi sentiment analysis pada twitter dengan metode text mining yang menggunakan

Metode Naïve Bayes Classifier digunakan untuk melakukan klasifikasi pada twitter untuk mengetahui sentiment atau opinion pada tweet dan dikelompokkan menjadi positif,

3.3 Perbandingan Kedua Algoritma Hasil prediksi dari kedua algoritma Naïve Bayes dan Support Vector Machine dengan metode latih percentage split dan k-fold cross validation

In this study, we tried to test several factors that can identify patients with heart disease using 3 classification algorithms: Naive Bayes, K-Nearest Neighbors KNN, and Support Vector

Keywords: Decision Tree; K-Nearest Neighbor; Multinomial Naïve Bayes; Neo; Oversampling; Random Forest; Sentiment Analysis; Support Vector Machine; INTRODUCTION PDDikti operators

24 Confusion matrix of K-NN method on Uluwatu Temple dataset Support Vector Machine SVM We also performed testing using the Support Vector Machine algorithm, employing steps identical

This study uses a Sentiment Analysis technique using the Nave Bayes NB, Support Vector Machine SVM, and Long Short-Term Memory LSTM algorithms to conduct a sentiment analysis of public

Analisis Sentimen Twitter: Penanganan Pandemi Covid-19 Menggunakan Metode Hybrid Naïve Bayes , Decision Tree , dan Support Vector Machine.. [3] Lintang Siltya