• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:OTHER:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:OTHER:"

Copied!
11
0
0

Teks penuh

(1)

23 11

Article 10.3.8

Journal of Integer Sequences, Vol. 13 (2010), 2

3 6 1 47

Mean Values of a Gcd-Sum Function

Over Regular Integers Modulo

n

Deyu Zhang and Wenguang Zhai

1

School of Mathematical Sciences

Shandong Normal University

Jinan 250014

Shandong

P. R. China

zdy 78@yahoo.com.cn

zhaiwg@hotmail.com

Abstract

In this paper we study the mean value of a gcd-sum function over regular integers modulon. In particular, we improve the previous result under the Riemann hypothesis (RH). We also study the short interval problem for it without assuming RH.

1

Introduction

In general, an elementk of a ringR is said to be (von Neumann) regular if there is anx∈R

such that k = kxk. Let n > 1 be an integer with prime factorization n = pν1

1 · · ·pνrr. An

integer k is called regular (mod n) if there exists an integer x such that k2x k (mod n),

i.e., the residue class of k is a regular element (in the sense of J. von Neumann) of the ring

Zn of residue classes (mod n).

Let Regn = {k : 1 ≤ k ≤ n and k is regular (modn)}. T´oth [11] first defined the gcd-sum function over regular integers modulo n by the relation

˜

P(n) = X

k∈Regn

gcd(k, n), (1)

1This work is supported by National Natural Science Foundation of China(Grant Nos. 10771127,

(2)

where gcd(a, b) denotes the greatest common divisor of a and b. It is sequence A176345 in Sloane’s Encyclopedia. This is analogous to the gcd-function, called also Pillai’s arithmetical function,

P(n) =

n

X

k=1

gcd(k, n),

which has been studied recently by several authors, see [2, 3, 4, 5, 6, 9, 12]; it is Sloane’s sequence A018804. T´oth [11] proved that ˜P(n) is multiplicative and for every n≥1,

˜

P(n) = nY

p|n

(2−1

p). (2)

He also obtained the following asymptotic formula

X

n≤x

˜

P(n) = x

2

2ζ(2)(K1logx+K2) +O(x

3/2δ(x)), (3)

where the function δ(x) and constantsK1 and K2 are given by

δ(x) = exp(−A(logx)3/5(log logx)−1/5),

K1 =

X

n=1

µ(n)

nψ(n) =

Y

p

1− 1

p(p+ 1)

!

, (4)

K2 =K1

2γ− 1

2 − 2ζ′(2)

ζ(2)

!

− ∞

X

n=1

µ(n)(logn−α(n) + 2β(n))

nψ(n) , (5)

where ψ(n) =nQ

p|n(1 +

1

p) denotes the Dedekind function, and

α(n) =X

p|n

logp

p−1, β(n) =

X

p|n

logp p21.

It is very difficult to improve the exponent 32 in the error term of (3) unless we have substantial progress in the study of the zero free region ofζ(s).Therefore it is reasonable to get better improvements by assuming the truth of the Riemann hypothesis (RH). Let d(n) denote the Dirichlet divisor function and

∆(x) := X

n≤x

d(n)−x(logx+ 2γ −1). (6)

Dirichlet first proved that ∆(x) = O(x1/2). The exponent 1/2 was improved by many

authors. The latest result reads

(3)

due to Huxley [7]. T´oth [11] proved that if RH is true, then the error term of (3) can be replaced byO(x(7−5θ)/(5−4θ)exp(Blogx(log logx)−1)).Forθ= 131/416 one has (75θ)/(5

4θ)≈1.4505.

In this paper, we will use the Dirichlet convolution method to study the mean value of ˜P(n), and we find that the estimate of P

n≤xP˜(n) is closely related to the square-free

divisor problem. Let d(2)(n) denote the number of square-free divisors of n. Note that

d(2)(n) = 2ω(n), where ω(n) is the number of distinct prime factors of n. Let

D(2)(x) =X

n≤x

d(2)(n).

It was shown by Mertens [8] that

D(2)(x) = 1

ζ(2)xlogx+

2γ−1

ζ(2) − 2ζ′(2)

ζ2(2)

!

x+ ∆(2)(x), (8)

where ∆(2)(x) = O(x1/2logx). The exponent 1

2 is also difficult to be improved, because

it is related to the zero distribution of ζ(s). One way of making progress is to assume the Riemann hypothesis (RH). Many authors investigated this problem, and the best result under the Riemann hypothesis is

∆(2)(x)≪xλ+ǫ, (9)

where λ= 4/11, due to Baker [1].

In this paper, we shall prove the following results.

Theorem 1. For any real numbers x≥1 and ǫ >0, if

∆(2)(x)≪xλ+ǫ,

then we have

X

n≤x

˜

P(n) = x

2

2ζ(2)(K1logx+K2) +O(x

1+λ+ǫ), (10)

where K1, K2 are defined by (4) and (5).

Corollary 2. If RH is true, then

X

n≤x

˜

P(n) = x

2

2ζ(2)(K1logx+K2) +O(x

15/11+ǫ). (11)

Remark. Note that 15/11≈1.3636, which improves the previous result.

(4)

Theorem 3. For

Corollary 4. For

x131/416+3ǫ ≤y≤x,

Notation. Throughout the paperǫalways denotes a fixed but sufficiently small positive constant. We write f(x)≪g(x), or f(x) =O(g(x)), to mean that|f(x)| ≤Cg(x). For any fixed integers 1≤a≤b ,we consider the divisor function

d(a, b;n) = X

n=makb

1.

2

Proof of Theorem

1

Let s be complex numbers with ℜs > 1. We consider the mean value of the arithmetic function ˜P∗(n) = P˜(n)

By Euler product representation we have

(5)

where

From the above formula, it is easy to see that G(s) can be expanded to a Dirichlet series, which is absolutely convergent for ℜs >0. Write

G(s) =

then we can easily get

g(n)≪nǫ, X

By the Dirichlet convolution, we have

X

and formula (8) applied to the inner sum gives

X

if we notice by (17) that both of the infinite series

ℓ are absolutely

(6)

=K1

2γ− 1

2− 2ζ′(2)

ζ(2)

−K2.

Then

X

n≤x

˜

P∗(n) = x

ζ(2)

(logx− 1

2)K1+K2

+O(xλ+ǫ). (21)

From the definitions of ˜P∗(n)and Abel’s summation formula, we can easily get

X

n≤x

˜

P(n) =X

n≤x

˜

P∗(n)n =

Z x

1

td X

n≤t

˜

P∗(n)

!

= x

2

2ζ(2)(K1logx+K2) +O(x

1+λ+ǫ).

Corollary 2follows by taking λ= 4/11.

3

Proof of Theorem

3

From the proof of Theorem1, we have

F(s) =

X

n=1

˜

P∗(n)

ns =

ζ2(s)

ζ(2s)G(s). (22)

Let

ζ2(s)G(s) =

X

n=1

h(n)

ns , ℜs >1. (23)

Then we have

Lemma 5. For any real numbers x≥1 and ǫ >0, we have

X

n≤x

h(n) = x

logx−1

2 + 2ζ′(2)

ζ(2)

K1+K2

+O(xθ+ǫ), (24)

where θ is defined in (7).

Proof. Recall that

X

n=1

g(n)

ns =G(s), g(n)≪n ǫ.

Then we have

h(n) = X

n=mℓ

(7)
(8)

= X

It is well known that

1

which gives by differentiation

(9)

where

X

3

= X

x<ℓm2u m>x2ǫ

1 = X

x<ℓm2

≤u

1− X

x<ℓm2u m≤x2ǫ

1 (31)

= X

x<n≤u

d(1,2;n)− X

x<ℓm2u m≤x2ǫ

1 = X

31

−X

32

,

say. From Richert [10] we have

X

n≤x

d(1,2;n) =ζ(2)x+ζ(1/2)x1/2+O(x2/9logx).

Then

X

31

=ζ(2)(u−x) +O (u−x)x−1/2 +x2/9logx

. (32)

ForP

32 we have

X

32

= X

m≤x2ǫ X

x m2<ℓ≤

u m2

1 = X

m≤x2ǫ

u−x

m2 +O(1)

(33)

=ζ(2)(u−x) +O (u−x)x−2ǫ+x2ǫ .

Then from (31)–(33) we have

X

3

≪(u−x)x−2ǫ+x2/9logx, (34)

and hence

X

2

≪(u−x)x−ǫ+x2/9+ǫ. (35)

Lemma6 follows from (27), (29) and (35).

Now we prove Theorem3. From the definitions of ˜P∗(n) and Abel’s summation formula,

we have

X

x<n≤x+y

˜

P(n) = X

x<n≤x+y

˜

P∗(n)n =

Z x+y

x

ud X

x<n≤u

˜

P∗(n)

! ,

and Lemma 6applied to the sum in the right side gives

X

x<n≤x+y

˜

P(n) =

Z

1

+

Z

2

(10)

where

Z

1

=

Z x+y

x

ud(M(u)−M(x)),

Z

2

=

Z x+y

x

ud(E(u, x)).

In view of the definition of M(x) in Lemma 6, we obtain

Z

1

=

Z x+y

x

uM′(u)du= 1 2ζ(2)

Z x+y

x

u(2K1logu+K1 + 2K2)du. (37)

ForR

2, we integrate it by parts, to get

Z

2

=

Z x+y

x

ud(E(u, x))

= (x+y)E(x+y;x)−

Z x+y

x

E(u, x)du.

By Lemma 6 we get

E(u, x)≪(u−x)x−ǫ+xθ+2ǫ.

Therefore

Z

2

≪x(yx−ǫ+xθ+2ǫ) +

Z x+y

x

(u−x)x−ǫ+xθ+2ǫ

du (38)

≪yx1−ǫ+x1+θ+2ǫ+y2x−ǫ+yxθ+2ǫ

≪yx1−ǫ+x1+θ+2ǫ,

if we notice thaty ≤x.

Now Theorem3follows from (36)–(38). If we takeθ = 131/416, then we can get Corollary

4.

4

Acknowledgments

The authors express their gratitude to the referee for a careful reading of the manuscript and many valuable suggestions, which highly improve the quality of this paper.

References

[1] R. C. Baker, The square-free divisor problem II, Quart. J. Math. Oxford Ser.(2) 47

(11)

[2] O. Bordell`es, A note on the average order of the gcd-sum function,J. Integer Sequences

10 (2007),Article 07.3.3.

[3] O. Bordell`es, Mean values of generalized gcd-sum and lcm-sum functions, J. Integer Sequences 10 (2007),Article 07.9.2.

[4] K. Broughan, The gcd-sum function,J. Integer Sequences 4 (2001),Article 01.2.2.

[5] K. Broughan, The average order of the Dirichlet series of the gcd-sum function, J. Integer Sequences 10 (2007), Article 07.4.2.

[6] J. Chidambaraswamy, R. Sitaramachandrarao, Asymptotic results for a class of arith-metical functions, Monatsh. Math. 99 (1985), 19–27.

[7] M. N. Huxley, Exponential sums and Lattice points III, Proc. London Math. Soc. 87

(2003), 591–609.

[8] F. Mertens, ¨Uber einige asymptotische Gesetze der Zahlentheorie, J. Reine Angew. Math. 77 (1874), 289–338.

[9] S. S. Pillai, On an arithmetic function,J. Annamalai Univ. 2 (1933), 243–248.

[10] H. E. Richert, ¨Uber die Anzahl Abelscher Gruppen gegebener Ordnung I,Math. Z. 56

(1952), 21–32; II. ibid. 58 (1953), 71–84.

[11] L. T´oth, A gcd-sum function over regular integers modulo n, J. Integer Sequences 12

(2009),Article 09.2.5.

[12] Y. Tanigawa, W. Zhai, On the gcd-sum function, J. Integer Sequences 11 (2008),

Article 08.2.3.

2010 Mathematics Subject Classification: Primary 11N37.

Keywords: gcd-sum function, regular integers modulon, Riemann hypothesis, short interval result.

(Concerned with sequences A018804 and A176345.)

Received January 7 2010; revised version received April 15 2010. Published in Journal of Integer Sequences, April 15 2010.

Referensi

Dokumen terkait

Dengan ini diberitahukan bahwa, setelah diadakan penelitian dan perhitungan oleh Pokja Jasa Konsultansi Pekerjaan Revisi Rencana Tata Ruang Wilayah Kabupaten Tanah Bumbu,

Sehubungan dengan proses Pemilihan Langsung paket pekerjaan Belanja Barang untuk diserahkan kepada M asyarakat Pembangunan Rumah Layak Huni Dinas Sosial dan Tenaga Kerja

Apabila pada saat pembuktian kualifikasi ditemukan pemalsuan data, maka perusahaan tersebut akan diberi sanksi dengan ketentuan hukum yang berlaku dan jika tidak

7.974.839.000,- (Tujuh Milyar Sembilan Ratus Tujuh Puluh Empat Juta Delapan Ratus Tiga Puluh Sembilan Ribu Rupiah), Kelompok Kerja Jasa Konstruksi Penataan

Pada hari ini Senin tanggal tiga puluh satu bulan Juli tahun dua ribu tujuh belas dimulai pukul sepuluh Waktu Indonesia Bagian Barat sampai dengan pukul tiga belas Waktu

Untuk mempengaruhi dan mengubah perilaku remaja yang memiliki kecenderungan menjadi anggota geng motor agar terhindar dari aksi negatif geng tersebut dibutuhkan

Dalam tenggang waktu Masa Sanggah yang diberikan yaitu tanggal 10 Agustus 2017 sampai dengan 14 Agustus 2017, tidak terdapat adanya sanggahan dari Penyedia dan pihak

Setelah dingin, haluskan dengan blender, tambahkan air matang atau ASI/susu formula sampai kekentalan yang diinginkan..