• Tidak ada hasil yang ditemukan

BAB II TINJAUAN PUSTAKA

N/A
N/A
Protected

Academic year: 2021

Membagikan "BAB II TINJAUAN PUSTAKA"

Copied!
15
0
0

Teks penuh

(1)

BAB II

TINJAUAN PUSTAKA

2.1 Kapsul

2.1.1 Kapsul secara umum

Kapsul merupakan suatu bentuk sediaan padat, dimana satu macam bahan obat atau lebih dan/atau bahan inert lainnya yang dimasukkan ke dalam cangkang atau wadah kecil yang umumnya dibuat dari gelatin yang sesuai (Ansel, 1989).

Gelatin merupakan bahan yang sesuai untuk pembentukan cangkang kapsul karena edible dan larut, membentuk cangkang yang kuat, lapis tipis dan berubah dari bentuk larutan menjadi bentuk gel sedikit diatas temperatur lingkungan. Gelatin segera larut dalam air pada temperatur tubuh, dan tidak larut jika temperatur turun dibawah 30 ̊C (Agoes, 2008).

2.1.2 Pembagian Kapsul

Menurut Ansel (1989), ada 2 jenis kapsul: a. Kapsul Gelatin Keras

Kapsul gelatin yang keras merupakan jenis dimana Cangkang kapsul kosong dibuat dari campuran gelatin, gula dan air, jernih tidak berwarna dan pada dasarnya tidak mempunyai rasa. Gelatin dihasilkan dari hidrolisis sebagian dari kolagen yang diperoleh dari kulit, jaringan ikat putih dan tulang binatang-binatang. Dalam perdagangan didapat gelatin dalam

(2)

bentuk serbuk halus, serbuk kasar, parutan, serpihan-serpihan atau lembaran-lembaran.

b. Kapsul Gelatin Lunak

Kapsul gelatin lunak mempunyai cangkang yang dibuat dari gelatin dimana gliserin atau alkohol polivalen dan sorbitol ditambahkan supaya gelatin bersifat elastis seperti plastik. Kapsul-kapsul ini yang mungkin bentuknya membujur seperti elips atau seperti bola dapat digunakan untuk diisi cairan, suspensi, bahan berbentuk pasta atau serbuk kering. Biasanya pada pembuatan kapsul ini, mengisi dan menyegelnya dilakukan secara berkesinambungan dengan suatu mesin khusus.

2.1.3 Penyimpanan Kapsul

Penyimpanan kapsul ditempat yang lembab akan menyebabkan kapsul menjadi lunak dan lengket serta sukar dibuka, karena kapsul tersebut menyerap air dari udara yang lembab. Sebaliknya, bila kapsul disimpan ditempat yang terlalu kering, maka kapsul akan kehilangan air dan cangkangnya menjadi rapuh dan mudah pecah. Oleh sebab itu kapsul disimpan pada ruangan yang kelembabannya sedang dan tidak terlalu kering, dan disimpan dalam botol kaca atau botol plastik yang tertutup rapat dan diberi pengering (silika) (Dirjen POM, 1995).

2.1.4 Persyaratan Kapsul

Kapsul mempunyai beberapa syarat untuk menjamin mutunya, menurut Agoes (2008), persyaratan kapsul adalah sebagai berikut:

(3)

1. Keseragaman Sediaan

Kesreragaman sediaan dapat ditetapkan dengan salah satu dari dua metode, yaitu keseragaman bobot dan kesragaman kandungan. Jika bahan aktif dari sediaan tidak kurang dari 50% dari bobot sediaan atau kapsul dan lebih besar dari 50 mg persyaratannya dapat ditetapkan dengan keseragaman bobot. Jika kandungan bahan aktifnya lebih kecil dapat digunakan persyaratan keseragaman kandungan (Ditjen POM, 1995).

2. Waktu Hancur

Pengujian kehancuran adalah suatu pengujian untuk mengetahui seberapa cepat tablet hancur menjadi agregat atau partikel lebih halus. Pengujian dilakukan berdasarkan asumsi bahwa jika produk hancur dalam periode waktu singkat, misal dalam 5 menit, maka obat akan dilepas dan tidak ada antisipasi masalah dalam hal kualitas produk obat. Waktu hancur setiap tablet atau kapsul dicatat dan memenuhi persyaratan spesifikasi waktu (dalam 15 menit). 3. Disolusi

Disolusi adalah larutnya zat berkhasiat dalam suatu media disolusi. Uji ini dimaksudkan untuk mengetahui berapa persentasi zat aktif dalam obat yang dapat terlarut dan terabsorpsi dan masuk ke dalam peredaran darah untuk memberikan efek terapi pada tubuh.

4. Kadar Zat Berkhasiat

Pengujian ini merupakan versi kuantitatif dari pengujian identifikasi. 10-20 kapsul, isinya di gerus dan bahan aktif yang larut diekstraksi menggunakan pelarut yang sesuai menurut prosedur yang sudah ditetapkan. Umumnya

(4)

rentang kadar bahan aktif yang ditentukan berada diantara 90-110% dari pernyataan pada etiket.

Ada tiga kegunaan uji disolusi, yaitu dapat menjamin keseragaman satu batch, menjamin bahwa obat akan memberikan efek terapi yang diinginkan, dan juga uji disolusi diperlukan dalam rangka pengembangan suatu obat baru.

Obat yang telah memenuhi persyaratan keseragaman kandungan, waktu hancur dan penetapan kadar zat berkhasiat belum dapat menjamin bahwa suatu obat memenuhi efek terapi, karena itu uji disolusi harus dilakukan pada setiap produksi kapsul (Agoes, 2008).

2.2 Antibiotika

Antibiotika pertama kali dikemukakan oleh Alexander Fleming pada tahun 1928 yang secara kebetulan menemukan suatu antibakteri yang sangat efektif yaitu penisilina.

Defenisi antibiotika ialah suatu bahan kimia yang dikeluarkan oleh jasad renik yang dapat merintangi/memusnahkan pertumbuhan jasad renik lainnya.

Antibiotika merupakan obat yang sangat penting dan dipakai untuk memberantas berbagai penyakit infeksi, misalnya radang paru-paru, tifus, luka yang berat dan sebagainya. Pemakaian antibiotika harus di bawah pengawasan seorang dokter, karena obat ini dapat menimbulkan kerja ikutan yang tidak dikehendaki dan dapat mendatangkan kerugian yang cukup besar bila pemakaiannya tidak dikontrol dengan betul (Widjajanti,1998).

(5)

Umumnya efek suatu antibiotika terhadap mikroba tergantung pada dosis; dalam dosis rendah mungkin menunjukkan sifat bakteriostatik sedangkan pada dosis besar bersifat sebagai bakterisida. Antibiotika biasanya digolongkan menurut spektrum keaktifannya, yaitu menurut kelas mikrobia yang diganggunya. Oleh karena itu ada antibiotika yang disebut antiviral, antibakteria, antifungi, antiprotozoa.

Sensitivitas bakteria terhadap antibiotika tergantung pada struktur dinding selnya, karena ini menentukan kemampuan antibiotika untuk menembus sel tersebut. Oleh karena itu antibiotika dapat dibagi secara umum menurut aktivitasnya terhadap bakteri gram-positif atau bakteri gram negatif. Bakteria gram-positif lebih telus (permeable) adalah lebih sensitif terhadap beberapa antibiotika (Hadisahputra, S., 1994).

Berdasarkan luas kegiatan (efek terhadap mikrobia), Tjay (2007) membagi antibiotik atas 2 golongan:

a. Antibiotik dengan kegiatan sempit (Narrow spectrum) Antibiotik yang hanya aktif terhadap jenis bakteri tertentu. b. Antibiotik dengan kegiatan luas (Broad spectrum)

Antibiotik yang berkhasiat terhadap banyak jenis bakteri gram positif maupun gram negatif (Tjay,2007).

(6)

2.3 Kloramfenikol

Gambar 1. Struktur kloramfenikol

Menurut Dirjen POM (1995), kloramfenikol memiliki informasi yaitu: Rumus Molekul : C11H12Cl2N2O5

Nama Umum : Kloramfenikol

Pemerian : Hablur halus berbentuk jarum atau lempeng memanjang; putih hingga putih kelabu atau putih kekuningan; larutan praktis netral terhadap lakmus P; stabil dalam larutan netral atau larutan agak asam.

Kelarutan : Sukar larut dalam air; mudah larut dalam etanol, dalam propilen glikol, dalam aseton dan dalam etil asetat.

Persyaratan : Pada sediaan kapsul kloramfenikol mengandung kloramfenikol, C11H12Cl2N2O5, tidak kurang dari 90,0% dan tidak lebih dari 120,0% dari jumlah yang tertera pada etiket.

Penyimpanan : Dalam wadah tertutup rapat dan tahan cahaya. Indikasi : Sebagai antibiotik.

Kloramfenikol merupakan suatu antibiotik broad spectrum yang aktif terhadap bakteri gram positif dan gram negatif. Antibiotik ini dihasilkan oleh Streptomyces venezuela dan merupakan antibiotik yang digunakan sebagai obat

(7)

penyakit tifus dan penyakit infeksi lainnya. Berbagai turunan kloramfenikol berhasil disintesis akan tetapi tidak ada senyawa yang khasiatnya melampaui khasiat kloramfenikol (Widjajanti,1998).

Kloramfenikol akan terasa pahit apabila diberikan secara oral tanpa dimasukkan ke dalam kapsul atau disalut. Sebaliknya, ester palmitat dari antibiotik ini relatif tidak berasa, jadi dapat digunakan untuk anak-anak dan untuk pasien yang tidak dapat menelan kapsul (Hadisahputra, S., 1994).

Kloramfenikol diabsorpsi cepat dan hampir sempurna dari saluran cerna, karena obat ini mengalami penetrasi membran sel secara cepat. Setelah absorpsi, kloramfenikol didistribusikan secara luas ke seluruh jaringan dan cairan tubuh. Metabolit utama kloramfenikol adalah glukuronida–nya yang bekerja antibiotik, yang dibuat di hati dan diekskresikan melalui ginjal. (Katzung, B. G., 2004)

Kloramfenikol bekerja menghambat pertumbuhan bakteri, mekanisme kerja antibiotik ini ialah menghambat sintesis protein yang dibutuhkan untuk pembentukan sel-sel bakteri sehingga kloramfenikol menghambat fungsi RNA dari bakteri (Widjajanti,1998).

Efek samping kloramfenikol yang umum terjadi antara lain gangguan lambung-usus, radang lidah dan mukosa mulut. Tetapi yang sangat berbahaya yaitu dapat mengakibatkan kerusakan pada sumsum tulang belakang sehingga produksi sel-sel darah merah menjadi terganggu. Karenanya penggunaannya ditujukan hanya untuk penyakit tifus dan penyakit berat saja (Tjay, 2007).

(8)

2.4 Disolusi

Disolusi didefenisikan proses suatu zat padat masuk ke dalam pelarut menghasilkan suatu larutan (proses zat padat melarut).

Kecepatan disolusi obat merupakan tahap sebelum obat berada dalam darah. Apabila suatu sediaan padat berada dalam saluran cerna, bahan berkhasiat harus terlarut, sesudah itu barulah obat tersebut dapat melewati membran saluran cerna. Obat yang larut baik dalam air akan melarut cepat dan berdifusi secara pasif. Sebaliknya, obat yang kelarutannya kecil kecepatan disolusi tidak larut atau disintegrasi sediaan relatif karena pengaruhnya kecil terhadap disolusi zat aktif (Syukri, 2002).

2.4.1 Alat Uji Disolusi

Menurut Dirjen POM (1995), ada dua tipe alat uji disolusi sesuai dengan yang tertera dalam masing-masing monografi:

a. Alat 1 (Metode Basket)

Alat terdiri atas wadah tertutup yang terbuat dari kaca atau bahan transparan lain yang inert, dilengkapi dengan suatu motor atau alat penggerak. Wadah tercelup sebagian dalam penangas sehingga dapat mempertahankan suhu Tablet atau kapsul Granul atau agregat Partikel Halus Obat dalam larutan Obat dalam darah, cairan, dan dalam jaringan lain dalam wadah 37° ± 0,5° C selama pengujian berlangsung. Bagian dari alat termasuk lingkungan tempat alat diletakkan tidak dapat memberikan gerakan, goncangan, atau getaran signifikan yang melebihi gerakan akibat perputaran alat pengaduk. Wadah disolusi dianjurkan berbentuk silinder

(9)

dengan dasar setengah bola, tinggi 160-175 mm, diameter dalam 98-106 mm, dengan volume sampai 1000 ml. Batang logam berada pada posisi tertentu sehingga sumbunya tidak lebih dari 2 mm, berputar dengan halus dan tanpa goyangan yang berarti. Suatu alat pengatur mempertahankan kecepatan alat.

b. Alat 2 (Metode Dayung)

Sama seperti alat 1, tetapi pada alat ini digunakan dayung yang terdiri atas daun dan batang sebagai pengaduk. Batang dari dayung tersebut sumbunya tidak lebih dari 2 mm dan berputar dengan halus tanpa goyangan yang berarti. Jarak antara daun dan bagian dalam dasar wadah dipertahankan selama pengujian berlangsung. Daun dan batang logam yang merupakan satu kesatuan dapat disalut dengan suatu penyalut inert yang sesuai. Sediaan dibiarkan tenggelam ke dasar wadah sebelum dayung mulai berputar.

2.4.2 Media Disolusi

Menurut Agoes (2008), media disolusi yang biasa digunakan adalah: 1. Air Suling

Pelarut air digunakan untuk uji penetapan pelarutan beberapa tablet. Pengujian menggunakan cairan air memberikan hasil yang sangat berbeda dengan cairan fisiologik, terutama untuk senyawa ionik yang sangat dipengaruhi oleh pH. 2. Larutan Ionik

(10)

a. Larutan asam (pH 1,2) dibuat dari asam klorida encer baik ditambah atau tidak ditambah dengan larutan natrium atau kalium klorida, sehingga pH cairan mendekati komposisi cairan lambung.

b. Larutan dapar alkali (pH 7-8) paling sering digunakan untuk meniru pH usus dalam pengujian sediaan dengan aksi diperpanjang atau aksi terjaga setelah melewati cairan yang asam.

2.4.3 Prosedur Pengujian Disolusi

Pada tiap pengujian, dimasukkan sejumlah volume media disolusi (seperti yang tertera dalam masing-masing monografi) kedalam wadah, pasang alat dan dibiarkan media disolusi mencapai temperatur C. Satu kapsul dicelupkan dalam keranjang atau dibiarkan tenggelam ke bagian dasar wadah, kemudian pengaduk diputar dengan kecepatan seperti yang ditetapkan dalam monografi. Pada interval waktu yang ditetapkan dari media diambil cuplikan pada daerah pertengahan antara permukaan media disolusi dan bagian atas dari keranjang berputar atau daun dari alat dayung tidak kurang 1 cm dari dinding wadah untuk analisis penetapan kadar dari bagian obat yang terlarut. Kapsul harus memenuhi syarat seperti yang terdapat dalam monografi untuk kecepatan disolusi (Dirjen POM, 1995).

2.4.4 Kriteria Penerimaan Hasil Uji Disolusi

Persyaratan dipenuhi bila jumlah zat aktif yang terlarut dari sediaan yang diuji sesuai dengan tabel penerimaan. Pengujian dilakukan sampai tiga tahap.

(11)

Pada tahap 1 (S1), 6 kapsul diuji. Bila pada tahap ini tidak memenuhi syarat, maka akan dilanjutkan ke tahap berikutnya yaitu tahap 2 (S2). Pada tahap ini 6 kapsul tambahan diuji lagi. Bila tetap tidak memenuhi syarat, maka pengujian dilanjutkan lagi ke tahap 3 (S3). Pada tahap ini 12 kapsul tambahan diuji lagi. Kriteria penerimaan hasil uji disolusi dapat dilihat sesuai dengan tabel dibawah ini.

Tabel. 1. Penerimaan Hasil Uji Disolusi

Keterangan:

S1 : Tahap pertama S2 : Tahap kedua S3 : Tahap ketiga

Q : Jumlah zat aktif yang terlarut yang tertera dalam masing-masing monografi Harga Q adalah jumlah zat aktif yang terlarut dalam persen dari jumlah yang tertera pada etiket. Angka 5% dan 15% dalam tabel adalah persentase kadar

Tahap Jumlah Sediaan yang diuji Kriteria Penerimaan S1 6

Tiap unit sediaan tidak kurang dari Q + 5%

S2 6

Rata – rata dari 12 unit (S1+ S2) adalah sama dengan atau lebih besar dari Q dan tidak satu unit sediaan yang lebih kecil dari Q – 15%

S3 12

Rata – rata dari 24 unit (S1+ S2+ S3 ) adalah sama dengan atau lebih besar dari Q, tidak lebih dari 2 unit sediaan yang lebih kecil dari Q – 15% dan tidak satupun unit yang lebih kecil dari Q – 25%

(12)

dinyatakan lain dalam masing-masing monografi, persyaratan umum untuk penetapan satu titik tunggal ialah terdisolusi 75% dalam waktu 45 menit dengan menggunakan alat 1 pada 100 rpm atau alat 2 pada 50 rpm (Lachman, 1994).

2.4.5 Faktor yang Mempengaruhi Disolusi Zat Aktif

Menurut Syukri (2002), faktor yang mempengaruhi laju disolusi dari bentuk sediaan, antara lain:

a. Faktor yang berkaitan dengan sifat fisikokimia obat

Sifat-sifat fisikokimia obat yang mempengaruhi laju disolusi meliputi : kelarutan zat aktif, bentuk kristal, kompleksasi serta ukuran partikel. Sifat fisikokimia lain seperti kekentalan dapat menimbulkan masalah disolusi. b. Faktor yang berkaitan dengan formulasi sediaan

Formulasi sediaan berkaitan dengan bentuk sediaan, bahan tambahan dan cara pengolahan. Pengaruh bentuk sediaan terhadap laju disolusi tergantung kecepatan pelepasan bahan aktif yang terkandung didalamnya. Penggunaan bahan tambahan sebagai bahan pengisi, pengikat, penghancur dan pelicin dalam proses formulasi dapat menghambat atau mempercepat laju disolusi tergantung bahan tambahan yang digunakan. Cara pengolahan bahan baku, bahan tambahan dan prosedur yang dilakukan dalam formulasi sediaan padat peroral juga berpengaruh terhadap laju disolusi. Waktu pengadukan lama pada granulasi basah dapat menghasilkan granul-granul besar, keras dan padat sehingga pada proses pencetakan dihasilkan tablet dengan waktu hancur dan disolusi yang lama. Faktor formulasi yang

(13)

mempengaruhi laju disolusi diantaranya: kecepatan disintegrasi, interaksi obat dengan eksipien (bahan tambahan) dan kekerasan.

c. Faktor yang berkaitan dengan alat uji disolusi dan parameter uji

Faktor ini dipengaruhi oleh lingkungan selama percobaan meliputi: kecepatan pengadukan, suhu medium, pH medium dan metode uji yang digunakan. Pengadukan mempengaruhi penyebaran partikel-partikel dan tebal lapisan difusi sehingga memperluas permukaan partikel yang kontak dengan pelarut. Suhu medium berpengaruh terhadap kelarutan zat aktif. Zat yang kelarutannya tidak tergantung pH, perubahan pH medium disolusi tidak akan mempengaruhi laju disolusi. Pemilihan kondisi pH pada percobaan in vitro penting karena kondisi pH akan berbeda pada lokasi obat disaluran cerna. Metode penentuan laju disolusi yang berbeda dapat menghasilkan laju disolusi sama atau berbeda, tergantung pada metode uji yang digunakan.

2.5 Penetapan Kadar

Setelah pengambilan sampel uji disolusi, dilanjutkan dengan proses analisis penetapan kadar zat aktif dalam sampel (Siregar, 2008).

Penetapan kadar dipilih berdasarkan sifat senyawa. Untuk penetapan kadar dapat dilakukan dengan metode fisikokimia yaitu spektrofotometri UV-Visibel, fluorometri dan konduktometri (Devissaquest, 1993).

Metode yang dipilih dalam penetapan kadar uji disolusi kapsul Kloramfenikol yaitu Spektrofotometri Ultraviolet. Spektrofotometri Ultraviolet

(14)

biasanya digunakan untuk molekul dan ion anorganik atau kompleks di dalam larutan. Spektrum Ultraviolet mempunyai bentuk yang lebar dan hanya sedikit informasi tentang struktur yang didapatkan, tetapi spektrum ini sangat berguna untuk pengukuran secara kuantitatif (Dachriyanus, 2004).

Analisis spektrofotometri cukup teliti, cepat dan sangat cocok untuk digunakan pada kadar yang kecil. Senyawa yang dianalisis harus mempunyai gugus kromofor. Pengamatan spektrum bermanfaat, karena dapat membandingkan spektrum sebelum dan sesudah partisi (Sardjoko, 1993).

Menurut Dachriyanus (2004), umumnya spektrofotometri ultraviolet dalam analisis senyawa organik digunakan untuk:

1. Menetukan jenis kromofor, ikatan rangkap yang terkonyugasi dan auksokrom dari suatu senyawa organik.

2. Menjelaskan informasi dari struktur berdasarkan panjang gelombang serapan maksimum suatu senyawa.

3. Mampu menganalisis senyawa organik secara kuantitatif dengan menggunakan hukum Lambert-Beer.

Umumnya pelarut yang sering dipakai untuk analisis Spektrofotometri adalah air, etanol, sikloheksana dan isopropanol. Dalam pemilihan pelarut, yang perlu diperhatikan yaitu polaritas pelarut yang dipakai karena sangat berpengaruh terhadap pergeseran spektrum molekul yang dianalisis (Mulja, 1995).

Menurut Gandjar dan Rohman (2007), hal-hal yang harus diperhatikan dalam analisis spektofotometri ultraviolet adalah:

(15)

Panjang gelombang yang digunakan untuk analisis kuantitatif adalah panjang gelombang dimana terjadi serapan maksimum. Untuk memperoleh panjang gelombang serapan maksimum, dilakukan dengan membuat kurva hubungan antara absorbansi dengan panjang gelombang dari suatu larutan baku pada konsentrasi tertentu.

b. Pembuatan kurva kalibrasi

Dibuat seri larutan baku dari zat yang akan dianalisis dengan berbagai konsentrasi. Masing-masing absorbansi larutan dengan berbagai konsentrasi diukur, kemudian dibuat kurva yang merupakan hubungan antara absorbansi dengan konsentrasi. Bila hukum Lambert-Beer terpenuhi maka kurva kalibrasi berupa garis lurus.

c. Pembacaan absorbansi sampel atau cuplikan

Absorbansi yang terbaca pada spektrofotometer hendaknya antara 0,2-0,6. Anjuran ini berdasarkan anggapan bahwa pada kisaran nilai absorbansi tersebut kesalahan fotometrik yang terjadi adalah paling minimal.

Gambar

Gambar 1. Struktur kloramfenikol

Referensi

Dokumen terkait

Pada saat kebutuhan oksigen meningkat (denyut jantung naik atau saat kerja berat) aliran kororner tidak adekuat dengan menurunnya oksigen suplai yang menyebabkan iskemia

distilat yang dikembalikan ke kolom distilasi dengan cara mengatur potensiometer  pada alat. Praktikan mengambil data pada selang waktu 5 menit, 10 menit, dan 15 menit setiap rasio

(1) Apabila Wajib Retribusi tidak membayar atau kurang membayar retribusi yang terutang sebagaimana dimaksud dalam Pasal 13 ayat (2), Bupati atau Pejabat

Cakupan Kunjungan bayi berdasarkan data profil puskesmas tahun 2011 diketahui bahwa cakupan terbesar berada di wilayah Puskesmas Kolofbrasa, Bayun, Agats, Tomor

Demikian juga halnya dengan radiofarmaka 99"'Tc_ L,L-EC, harus mempunyai karakteristik yang ideal untuk diagnosis ginjal yaitu mempunyai kemumian radiokimia yang tinggi

Agar propaganda ideologi dan cara hidup liberalis dan pluralis itu diterima oleh orang Islam, maka diikuti pula dengan bantuan fasilitas, popularitas dan juga

Akibat kondisi demikian maka banyak kebijakan koperasi terhadap anggotanya merupakan hasil imbas dari kondisi ekonomi kapitalis yang menggambarkan ketidak berdayaan koperasi

Kesimpulan yang dapat diambil dari penelitian yang telah diujikan dengan menggunakan metode active contour adalah informasi evolusi kurva yang melingkupi sebuah