• Tidak ada hasil yang ditemukan

FEM FOR 2D SOLIDS

N/A
N/A
Protected

Academic year: 2018

Membagikan "FEM FOR 2D SOLIDS"

Copied!
56
0
0

Teks penuh

(1)

Finite Element Method

(2)

CONTENTS

 INTRODUCTION

LINEAR TRIANGULAR ELEMENTS

– Field variable interpolation

– Shape functions construction

– Using area coordinates

– Strain matrix

– Element matrices

LINEAR RECTANGULAR ELEMENTS

– Shape functions construction

– Strain matrix

– Element matrices

– Gauss integration

(3)

CONTENTS

 LINEAR QUADRILATERAL ELEMENTS

– Coordinate mapping

– Strain matrix

– Element matrices

– Remarks

HIGHER ORDER ELEMENTS

(4)

INTRODUCTION

2D solid elements are applicable for the analysis

of plane strain and plane stress problems.

A 2D solid element can have a

triangular

,

rectangular

or

quadrilateral

shape with

straight

or

curved

edges.

A 2D solid element can deform only in the plane

of the 2D solid.

At any point, there are

two components

in the

x

and

y

directions for the displacement as well as

(5)

INTRODUCTION

For plane strain problems, the thickness of the

element is

unit

, but for plane stress problems, the

actual thickness

must be used.

In this course, it is assumed that the element has a

uniform

thickness

h

.

Formulating 2D elements with a given variation of

(6)

2D solids

plane stress and plane strain

(7)

LINEAR TRIANGULAR

ELEMENTS

Less accurate than quadrilateral elements

Used by most mesh generators for complex

geometry

A linear triangular element:

y, v

2 (x2, y2) (u2, v2) 3 (x3, y3)

(u3, v3)

A

fsx

(8)

Field variable interpolation

( , )

( , )

h

e

x y

x y

U

N

d

3 node at nts displaceme 2 node at nts displaceme 1 node at nts displaceme 3 3 2 2 1 1                              v u v u v u e d 3 1 2 3 1 2 Node 2

Node 1 Node 3

0 0 0 0 0 0 N N N N N N      N where x, u y, v

1 (x1, y1) (u1, v1)

2 (x2, y2) (u2, v2) 3 (x3, y3)

(u3, v3)

A

fsx

fsy

(9)

Shape functions construction

1 1 1 1

N

 

a

b x c y

2 2 2 2

Nab x c y

3 3 3 3

N

 

a

b x c y

i i i i

N  a b x c y

Assume,

i= 1, 2, 3

1

T

T

i

i i

i a

N x y b

c

   

 

   

p

p

(10)

Shape functions construction

Delta function property:

1 for

( , )

0 for

i j j

i j N x y

i j  

 

1 1 1

1 2 2

1 3 3

( , ) 1

( , ) 0

( , ) 0

N x y N x y N x y

  

Therefore, 1 1 1 1 1 1 1 1

1 2 2 1 1 2 1 2 1 3 3 1 1 3 1 3

( , ) 1

( , ) 0

( , ) 0

N x y a b x c y

N x y a b x c y

N x y a b x c y

   

   

   

Solving, 2 3 3 2 2 3 3 2

1 , 1 , 1

2 e 2 e 2 e

x y x y y y x x

a b c

A A A

  

(11)

Shape functions construction

1 1

2 2 2 3 3 2 2 3 1 3 2 1

3 3

1

1 1 1

1 [( ) ( ) ( ) ]

2 2 2

1

e

x y

A x y x y x y y y x x x y

x y

P       

Area of triangle Moment matrix

Substitute a1, b1 and c1 back into N1 = a1 + b1x + c1y:

1 2 3 2 3 2 2

1

[( )( ) ( )( )]

2 e

N y y x x x x y y

A

(12)

Shape functions construction

Similarly,

2 1 1

2 2 2

2 3 3

( , ) 0 ( , ) 1 ( , ) 0

N x y N x y N x y

  

2 3 1 1 3 3 1 1 3

3 1 3 1 3 3

1

[( ) ( ) ( ) ]

2 1

[( )( ) ( )( )]

2

e

e

N x y x y y y x x x y

A

y y x x x x y y

A

     

     

3 1 1

3 2 2

3 3 3

( , ) 0 ( , ) 0 ( , ) 1

N x y

N x y

N x y

  

3 1 2 1 1 1 2 2 1

1 2 1 2 1 1

1

[( ) ( ) ( ) ]

2 1

[( )( ) ( )( )]

2

e

e

N x y x y y y x x x y

A

y y x x x x y y

A

     

(13)

Shape functions construction

i i i i

N

 

a

b x c y

1

( )

2 1

( )

2 1

( )

2

i j k k j

e

i j k

e

i k j

e

a x y x y

A

b y y

A

c x x

A

 

 

 

where

i

j k

i= 1, 2, 3

J, k determined from cyclic

permutation

i = 1, 2

(14)

Using area coordinates

Alternative method of constructing shape

functions

i,1

j, 2

k, 3

x y

P

A1

1 2 2 2 3 3 2 2 3 3 2

3 3

1

1 1

1 [( ) ( ) ( ) ]

2 2

1

x y

A x y x y x y y y x x x y

x y

      

1 1

e

A L

A

  2-3-P:

Similarly,  3-1-P A2

 1-2-P A3

2 2

e

A L

A

3 3

e

A L

A

(15)

Using area coordinates

1 2 3

1

L

L

L

Partitions of unity:

3 2 2 3

2 2

1 2 3

1

e e e e

A

A

A

A

A

A

L

L

L

A

A

A

A

Delta function property: e.g. L1 = 0 at if P at nodes 2 or 3

Therefore,

1 1

,

2 2

,

3 3

N

L

N

L

N

L

( , )

( , )

h

x y

x y

(16)

16

Strain matrix

xx yy xy u x v y u v y x               

LU

where 0 0 x y y x                       L e e

Bd

LNd

LU

0 0 x y y x                         

B LN N

1 2 3

1 2 3

1 1 2 2 3 3

0 0 0

0 0 0

a a a

b b b

b a b a b a

           B

(17)

Element matrices

0

d ( d ) d d

e e e

h

T T T

e

V A A

V z A h A

 

k B cB B cB B cB

Constant matrix

T

e

hA

e

k

B cB

0

d d d d

e e e

h

T T T

e

V A A

V x A h A

 

(18)

Element matrices

1 1 1 2 1 3

1 1 1 2 1 3

2 1 2 2 2 3

2 1 2 2 2 3

3 1 3 2 3 3

3 1 3 2 3 3

0 0 0

0 0 0

0 0 0

d

0 0 0

0 0 0

0 0 0

e

e

A

N N N N N N

N N N N N N

N N N N N N

h A

N N N N N N

N N N N N N

N N N N N N

                   

m

For elements with uniform density and thickness,

A p n m p n m A L L L n p

A m 2 )! 2 ( ! ! ! d 3 2

1 

(19)

Element matrices

                     2 0 2 . 1 0 2 0 1 0 2 1 0 1 0 2 0 1 0 1 0 2 12 sy hA em x, u y, v

1 (x1, y1)

(u1, v1)

2 (x2, y2)

(u2, v2)

3 (x3, y3)

(u3, v3)

A fsx fsy l f f l sy sx

e [ ] 2 3 d

T

      N f                y x e f f f l 0 0 2 1 3 2 f
(20)

LINEAR RECTANGULAR

ELEMENTS

Non-constant strain matrix

More accurate representation of stress and strain

(21)

Shape functions construction

x, u y, v

1 (x1, y1) (u1, v1)

2 (x2, y2) (u2, v2)

3 (x3, y3) (u3, v3)

2a

fsy

fsx

4 (x4, y4) (u4, v4)

2b



Consider a rectangular element

1 1 2 2 3 3 4 4

displacements at node 1

displacements at node 2

displacements at node 3

displacements at node 4

e

u v u u u u u u

         

        

         

    

(22)

Shape functions construction

x, u y, v

1 (x1, y1)

(u1, v1)

2 (x2, y2)

(u2, v2)

3 (x3, y3)

(u3, v3)

2a

fsy

fsx

4 (x4, y4)

(u4, v4)

2b



1 (1, 1) (u1, v1)

2 (1, 1) (u2, v2)

3 (1, +1) (u3, v3)

2a

4 (1, +1) (u4, v4)

2b



, y b

a

x

 

( , ) ( , )

h

e

x yx y

U N d 1 2 3 4

3

1 2 4

Node 2 Node 3

Node 1 Node 4

0

0 0 0

0

0 0 0

N

N N N

N

N N N

 

  

 

N

where

(23)

Shape functions construction

) 1 )( 1 ( ) 1 )( 1 ( ) 1 )( 1 ( ) 1 )( 1 ( 4 1 4 4 1 3 4 1 2 4 1 1                     N N N N 1 1

3 at node 1 4 1

1

1 3 at node 2 4

1 1

1 3 at node 3 4

1 1

1 3 at node 4 4

1

(1 )(1 ) 0

(1 )(1 ) 0

(1 )(1 ) 1

(1 )(1 ) 0

N N N N                                         Delta function property 4

1 2 3 4

1

1[(1 )(1 ) (1 )(1 ) (1 )(1 ) (1 )(1 )]

i i

N N N N N

                        

Partition of

)

1

)(

1

(

4

1

j j

j

N

1 (1, 1) (u1, v1)

2 (1, 1) (u2, v2)

3 (1, +1) (u3, v3)

2a

4 (1, +1) (u4, v4)

2b

(24)

Strain matrix

                                    a b a b a b a b b b b b a a a a                 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 LN B
(25)

Element matrices

, y b

a

x

 

  dxdy = ab dd

Therefore,

 d d

d 1 T

1 1 1 T

cB B

cB B

k h A abh

A

e

 

 

 

 

  

 

 d d d d 1 d d

1 1 1

0 N N N N N N

N N

m T T

A T

A h T

V

e

V



x A

h A

 

abh

 

 

(26)

Element matrices

l f f l sy sx

e [ ] 2 3 d

T

      N f x, u y, v

1 (x1, y1)

(u1, v1)

2 (x2, y2)

(u2, v2) 3 (x3, y3)

(u3, v3)

2a

fsy

fsx

4 (x4, y4) (u4, v4)

2b

 For uniformly distributed load,

(27)

Gauss integration

 For evaluation of integrals in ke and me (in practice)

In 1 direction: ( )d ( )

1 1

1 j j

m

j

f w f

I

 

 

m gauss points gives exact solution of

polynomial integrand of n = 2m - 1

1 1 1 1

1 1

( , )d d ( , )

y

x n

n

i j i j

i j

I   f     w w f  

 

 

 

 

(28)

Gauss integration

m j wj Accuracy n

1 0 2 1

2 -1/3, 1/3 1, 1 3

3 -0.6, 0, 0.6 5/9, 8/9, 5/9 5 4 -0.861136, -0.339981,

0.339981, 0.861136

0.347855, 0.652145, 0.652145, 0.347855

7 5 -0.906180, -0.538469, 0,

0.538469, 0.906180

0.236927, 0.478629, 0.568889, 0.478629, 0.236927

9

6 -0.932470, -0.661209, -0.238619, 0.238619, 0.661209, 0.932470

0.171324, 0.360762, 0.467914, 0.467914, 0.360762, 0.171324

(29)
(30)

Evaluation of

m

e E.g. ) 1 )( 1 ( 4 ) 1 )( 1 ( ) 1 )( 1 ( 16 3 1 3 1 1 1 1 1 1 1 1 1 j i j i j i j i j i ij hab d d hab d d N N hab m

        

 

        9 4 ) 1 1 1 )( 1 1 1 ( 4 3 1 3 1 33 hab hab

m

       

(31)

LINEAR QUADRILATERAL

ELEMENTS

Rectangular elements have limited application

Quadrilateral elements with unparallel edges are

more useful

Irregular shape requires coordinate mapping

(32)

Coordinate mapping

2 (x2, y2)

y

x 1 (1, 1) 2 (1, 1)

3 (1, +1) 4 (1, +1)

 

3 (x3, y3) 4 (x4, y4)

1 (x1, y1)

Physical coordinates Natural coordinates

( , ) ( , )

h

e

 

 

U N d (Interpolation of displacements)

( , )

 

( , )

 

e
(33)

Coordinate mapping

( , )

 

 ( , )

 

e

X N x

where x

y        X , 1 1 2 2 3 3 4 4

coordinate at node 1

coordinate at node 2

coordinate at node 3

coordinate at node 4

e x y x y x y x y                                   x ) 1 )( 1 ( ) 1 )( 1 ( ) 1 )( 1 ( ) 1 )( 1 ( 4 1 4 4 1 3 4 1 2 4 1 1                     N N N N i i i x N

x ( , )

4 1  

  y N

y ( , )

4

 

(34)

Coordinate mapping

Substitute 1 into i i

i

x N

x ( , )

4 1  

 

2 (x2, y2)

y

x 1 (1, 1) 2 (1, 1)

3 (1, +1) 4 (1, +1)



3 (x3, y3)

4 (x4, y4)

1 (x1, y1)

3 2 1 2 2 1 3 2 1 2 2 1 ) 1 ( ) 1 ( ) 1 ( ) 1 ( y y y x x x             or ) ( ) ( ) ( ) ( 2 3 2 1 3 2 2 1 2 3 2 1 3 2 2 1 y y y y y x x x x x          

Eliminating , { ( )} ( )

) ( ) ( 3 2 2 1 3 2 2 1 2 3 2 3 y y x x x y y x x

y    

(35)

Strain matrix

                              y y N x x N N y y N x x N N i i i i i

i i i

i i N N x N N y              J or x y x y                      J

where (Jacobian matrix)

1 1

3

1 2 4

2 2

x y N

N N N

x y                              J

(36)

Strain matrix

1

i i

i i

N N

x

N N

y

 

 

 

 

  

 

 

 

J

Therefore,

N LN

B

  

 

  

 

  

  

  

x y

y x

0

0

Replace differentials of Ni w.r.t. x and y

with differentials of Ni w.r.t.  and 

(37)

Element matrices

Murnaghan (1951) : dA=det |J | dd

1 1

T

1 1

det

d d

e

h

 

 

 

 

k

B cB

J

(38)

Remarks

 Shape functions used for interpolating the coordinates are

the same as the shape functions used for interpolation of the displacement field. Therefore, the element is called an

isoparametric element.

Note that the shape functions for coordinate interpolation

and displacement interpolation do not have to be the same.

Using the different shape functions for coordinate

interpolation and displacement interpolation, respectively,

will lead to the development of so-called subparametric or

(39)

HIGHER ORDER ELEMENTS

 Higher order triangular elements

i (I,J,K) (0,0,p)

L1

L3 L2

(0,p1,1) (0,1,p1)

(1,0,p1) (2,0,p2)

nd = (p+1)(p+2)/2

I

  

J

K

p

Node i,

Argyris, 1968 :

1 2 3

( ) ( ) ( )

I J K

i I J K

N

l L l

L l

L

0 1 ( 1)

( )( ) ( )

( )

( )( ) ( )

L L L L L L

lL           

(40)

HIGHER ORDER ELEMENTS

 Higher order triangular elements (Cont’d)

x, u y, v

1

2 3

4 5 6

1 2 2 (2 1 1) 1

NNNLL

4 5 6 4 1 2

NNNL L

x, u y, v

1

2 3

4 5

6 7 8

9 10

1 2 3 1 1 1

1

(3 1)(3 2) 2

NNNLLL

4 9 1 2 1

9

(3 1) 2

N NL L L

10 27 1 2 3

NL L L

Cubic element

(41)

HIGHER ORDER ELEMENTS

 Higher order rectangular elements

0



(0,m) (n,m)

i(n,m)

Lagrange type:

1 1

( ) ( )

D D n m

i I J I J

N

N N

l

l

0 1 1 1

0 1 1 1

( )( ) ( )( ) ( )

( )

( )( ) ( )( ) ( )

n k k n

k

k k k k k k k n

l                     

    

    

(42)

42

HIGHER ORDER ELEMENTS

 Higher order rectangular elements (Cont’d)

1 2 3 4   5 6 7 8 9 1 1

1 1 1

1 1

2 2 1

1 1

3 2 2

1 1

4 1 2

1

( ) ( ) (1 ) (1 )

4 1

( ) ( ) (1 ) (1 )

4 1

( ) ( ) (1 )(1 )

4 1

( ) ( ) (1 )(1 )

4

D D

D D

D D

D D

N N N

N N N

N N N

N N N

                                          1 1 5 3 1

1 1 6 2 3 1 1 7 3 2 1 1 8 1 1

1 1 2 2

9 3 3

1

( ) ( ) (1 )(1 )(1 ) 2

1

( ) ( ) (1 )(1 )(1 ) 2

1

( ) ( ) (1 )(1 )(1 ) 2

1

( ) ( ) (1 )(1 ) 2

( ) ( ) (1 )(1 )

D D

D D

D D

D D

D D

N N N

N N N

N N N

N N N N N N

                                                    

(43)

HIGHER ORDER ELEMENTS

 Higher order rectangular elements (Cont’d)

Serendipity type:

1 2

3

4 



5

6 7

8 0





=1

=1

1 4

2 1

2

2 1

2

(1 )(1 )( 1) 1, 2, 3, 4 (1 )(1 ) 5, 7

(1 )(1 ) 6, 8

j j j j j

j j

j j

N j

N j

N j

          

  

     

   

(44)

HIGHER ORDER ELEMENTS

 Higher order rectangular elements (Cont’d)

1 2

3 4



5 6

7 8 9

10

11

12

2 2

1 32

2 9

32

1 3 2

9 32

(1 )(1 )(9 9 10)

for corner nodes 1, 2, 3, 4

(1 )(1 )(1 9 )

for side nodes 7, 8, 11, 12 where 1 and

(1 )(1 )(1

j j j

j j j

j j

j j

N

j

N

j

N

          

 

  

    

   

    

   

1 3

9 )

for side nodes 5, 6, 9, 10 where and 1

j

j j

j

 

 

    

(45)

ELEMENT WITH CURVED

EDGES

4 3

8

7

6 1

4 2 5

3 6

1

2 3

4 5 6

3 4

6 7

(46)

COMMENTS (GAUSS

INTEGRATION)

 When the Gauss integration scheme is used, one has to

decide how many Gauss points should be used.

Theoretically, for a one-dimensional integral, using m

points can give the exact solution for the integral of a polynomial integrand of up to an order of (2m1).

As a general rule of thumb, more points should be used for

(47)

COMMENTS (GAUSS

INTEGRATION)

Using a smaller number of Gauss points tends to

counteract the over-stiff behaviour associated with the

displacement-based method.

Displacement in an element is assumed using shape

(48)

COMMENTS ON GAUSS

INTEGRATION

 Two Gauss points for linear elements, and two or three

points for quadratic elements in each direction should be sufficient for most cases.

Most of the explicit FEM codes based on explicit

(49)

CASE STUDY

(50)

CASE STUDY

Elastic Properties of Polysilicon Young’s Modulus, E 169GPa

Poisson’s ratio,  0.262 Density,  2300kgm-3

10N/m

(51)

CASE STUDY

(52)

CASE STUDY

(53)

CASE STUDY

(54)

CASE STUDY

Analysis no. 4: Von Mises stress distribution using 24 eight-nodal,

(55)

CASE STUDY

(56)

CASE STUDY

Analysis no.

Number / type of elements

Total number of nodes in

model

Maximum Von Mises Stress (GPa) 1 24 bilinear,

quadrilateral 41 0.0139

2 96 bilinear,

quadrilateral 129 0.0180

3 144 bilinear,

quadrilateral 185 0.0197

4 24 quadratic,

quadrilateral 105 0.0191 5 192 linear,

Referensi

Garis besar

Dokumen terkait

dilaksanakan, Apoteker Pemohon dapat membuat surat pernyataan siap melakukan kegiatan kepada Kepala Dinas Kesehatan Kabupaten/Kota setempat dengan tembusan kepada

Phonegap adalah sebuah kerangka kerja/ framework open source yang dipakai untuk membuat aplikasi cross-platform mobile dengan HTML, CSS, dan JavaScript. PhoneGap

Pemanfaatan lahan pekarangan rumah pangan lestari merupakan salah satu konsep dasar bercocok tanam dalam mengoptimalkan lahan rumah yang terbatas baik di daerah pedesaan

Penelitian ini bertujuan untuk menguji apakah pelatihan keterampilan psikologis model BK Proaktif mampu meningkatkan persepsi diri, harga diri, dan motivasi kerja menjadi lebih

mencari faktor-faktor lain yang berhubungan dengan kepatuhan perawat dalam melakukan penerapan standar mencuci tangan, serta perlu digunakan sampel dengan jumlah lebih

Oleh karena itu, Puskom membentuk sebuah tim yang khusus menangani permasalahan web, baik dari sisi keamanan web maupun konten daripada web, terkadang ada saja

Gambar 5. Hasil pohon keputusan BB/U.. peta sebaran wilayah gizi bermasalah ataupun gizi normal. Selain itu semua referensi pustaka juga sama-sama menggunakan

Ditempat yang sangat terang dimana intensitas cahayanya cukup tinggi atau besar maka pupil akan mengecil, agar cahaya lebih sedikit masuk kemata untuk menghindari mata