• Tidak ada hasil yang ditemukan

BAB 2 TINJAUAN PUSTAKA - Analisis Komponen Kimia Dan Uji Aktivitas Antibakteri Minyak Atsiri Daun Legundi (Vitex trifolia L)

N/A
N/A
Protected

Academic year: 2019

Membagikan "BAB 2 TINJAUAN PUSTAKA - Analisis Komponen Kimia Dan Uji Aktivitas Antibakteri Minyak Atsiri Daun Legundi (Vitex trifolia L)"

Copied!
20
0
0

Teks penuh

(1)

BAB 2

TINJAUAN PUSTAKA

2.1. Tumbuhan Legundi (Vitex trifolia L)

Berdasarkan taksonomi tanaman, daun legundi termasuk dalam : Kerajaan : Plantae

Divisi : Spermatophyta Kelas : Dicotyledonae Bangsa : Lamiales Suku : Verbenaceae Marga : Vitex

Jenis : Vitex trifolia L.

Nama Daerah : Gendarasi (palembang), Lagundi, Lilegundi (Minangkabau), Lagondi (sunda), Legundi (jawa), Galumi (sumbawa), Sangari (bima), Lenra (makasar), Lawarani (bugis), Ai tuban (ambon)

Nama Asing : Man Jing ( Cina), simpleleaf shrub chastetree (inggris) (Heyne, 1981).

Legundi tumbuh pada tempat-tempat yang tandus, panas dan berpasir. Ditemukan tumbuh liar dihutan jati, hutan sekunder, semak belukar, atau dipelihara sebagai tanaman pagar.

Gambar 2.1. Tanaman Legundi

(2)

pangkal runcing, tepi rata, pertulangan menyirip, permukaan atas berwarna hijau, permukaan bawah berambut rapat warna putih, panjang 4-9,5 cm, lebar 1,75-3,75 cm. Bunga majemuk berkumpul dalam tandan, berwarna ungu muda, keluar dari ujung tangkai. Buahnya berbentuk bulat. Daun berbau aromatik khas dan dapat digunakan untuk menghalau serangga atau kutu lemari (Dalimartha, 2000).

Beberapa senyawa kimia yang terkandung dalam legundi diantaranya

camphene, L-α-pinene, silexicarpin, casticin, terpenyl acetate,

luteolin-7-glucoside flavopurposid, vitrisin, dihidroksi asam benzoate dan vitamin A. Efek farmakologis legundi diantaranya sebagai obat influenza, demam, migren, sakit kepala, sakit gigi, sakit perut, mata merah, diare, rematik, beri-beri, batuk, luka terpukul, luka berdarah, muntah darah, eksim, haid tidak teratur, dan pembunuh serangga (Hariana, A. 2009).

Daun legundi berkhasiat sebagai analgesik, antipiretik, obat luka, peluruh kencing, peluruh kentut, pereda kejang, germicide (pembunuh kuman), batuk kering, batuk rejan, beri-beri, sakit tenggorokan, muntah darah, obat cacing, demam nifas, sakit kepala, TBC, turun peranakan, tipus dan peluruh keringat. Pada pemakaian luar digunakan untuk mengatasi eksim dan kurap (Sudarsono dkk, 2002).

Daun legundi dikonsumsi untuk meningkatkan daya ingat, mengurangi rasa sakit, menghilangkan rasa tidak enak dimulut dan menyembuhkan demam (Kirtikar and Basu, 1991).

Ekstrak daun legundi bermanfaat sebagai antikanker (Ghani, 1998). Bunga dari legundi dengan campuran madu dapat mengatasi demam yang disertai muntah (Batthacharjee and De 2005).

2.2. Minyak Atsiri

(3)

Ditinjau dari sumber alami minyak atsiri, substansi mudah menguap ini dapat dijadikan sebagai sidik jari atau ciri khas dari suatu jenis tumbuhan karena setiap tumbuhan menghasilkan minyak atsiri dengan aroma yang berbeda. Dengan kata lain, setiap jenis tumbuhan menghasilkan minyak atsiri dengan aroma yang spesifik. Memang ada beberapa jenis minyak atsiri yang memiliki aroma yang mirip, tetapi tidak persis sama, dan sangat bergantung pada komponen kimia penyusun minyak tersebut.

Minyak atsiri, minyak mudah menguap, atau minyak terbang, merupakan campuran dari senyawa yang berwujud cairan atau padatan yang memiliki komposisi maupun titik didih yang beragam. Minyak atsiri dibagi menjadi dua kelompok, yaitu :

1. Minyak atsiri yang dengan mudah dapat dipisahkan menjadi komponen-komponen atau penyusun murninya. Komponen-komponen-komponen ini dapat menjadi bahan dasar untuk diproses menjadi produk-produk lain, contoh : minyak sereh, minyak daun cengkeh, minyak permai, dan minyak terpentin.

2. Minyak atsiri yang sukar dipisahkan menjadi komponen murninya. Contohnya : minyak akar wangi, minyak nilam, dan minyak kenanga. Biasanya minyak atsiri tersebut langsung dapat digunakan tanpa diisolasi komponen-komponennya sebagai pewangi berbagai produk (Sastrohamidjojo, 2004).

(4)

2.2.1. Komposisi Kimia Minyak Atsiri

Pada umumnya perbedaan komposisi minyak atsiri disebabkan perbedaan jenis tanaman penghasil, kondisi iklim, tanah tempat tumbuh, umur panenan, metode ekstraksi yang digunakan dan cara penyimpanan minyak.

Minyak atsiri biasanya terdiri dari berbagai campuran persenyawaan kimia yang terbentuk dari unsur karbon (C), Hidrogen (H), dan Oksigen (O). Pada umumnya komponen kimia minyak atsiri dibagai menjadi dua golongan, yaitu: 1. Hidrokarbon yang terutama terdiri dari persenyawaan terpen

Persenyawaan yang termasuk golongan ini terbentuk dari unsur Karbon (C), dan Hidrogen (H). Jenis Hidrokarbon yang terdapat dalam minyak atsiri sebagian besar terdiri dari monoterpen (2 unit isopren), sesquiterpen (3 unit isopren), diterpen (4 unit isopren), dan politerpen.

2. Hidrokarbon teroksigenasi

Komponen kimia dari golongan ini terbentuk dari unsur Karbon (C), Hidrogen (H), dan Oksigen (O). Persenyawaan yang termasuk dalam golongan ini adalah persenyawaan alkohol, aldehid, ester, fenol. Ikatan Karbon yang terdapat dalam molekulnya dapat terdiri dari ikatan tunggal, ikatan rangkap dua dan ikatan rangkap tiga. Terpen mengandung ikatan tunggal dan ikatan rangkap dua. Senyawa terpen memiliki aroma kurang wangi, sukar larut dalam alkohol encer dan jika disimpan dalam waktu lama akan membentuk resin. Golongan hidrokarbon teroksigenasi merupakan senyawa yang penting dalam minyak atsiri karena umumnya aroma yang lebih wangi. Fraksi terpen perlu dipisahkan untuk tujuan tertentu, misalnya untuk pembuatan parfum, sehingga didapatkan minyak atsiri yang bebas terpen (Ketaren, 1985).

(5)

2.2.2. Biosintesa Pembentukan Minyak Atsiri

Minyak atsiri pada umumnya mengandung persenyawaan terpena dalam jumlah yang besar, dimana terpena merupakan persenyawaan hidrokarbon tidak jenuh dan unit terkecil dalam molekulnya disebut dengan isoprene (C5H8) (Agusta,2000).

Mekanisme dari tahap-tahap reaksi biosintesis terpenoid yaitu asam asetat yang telah diaktifkan oleh koenzim A melalui kondensasi jenis Claisen menghasilkan asam asetoasetat. Senyawa yang dihasilkan ini dengan koenzim A melakukan kondensasi sejenis aldol menghasilkan rantai karbon bercabang sebagaimana ditemukan pada asam mevalonat. Reaksi-reaksi berikutnya ialah fosforilasi, eliminasi asam fosfat dan dekarboksilasi menghasilkan IPP (Isopentenil Pirofosfat) yang selanjutnya berisomerisasi menjadi DMAPP (Dimetilalil Pirofosfat) oleh enzim isomerase, IPP sebagai unit isoprene aktif bergabung secara kepala ke ekor dengan DMAPP dan penggabungan ini merupakan langkah pertama dari polimerisasi isoprene untuk menghasilkan terpenoid. Penggabungan ini terjadi karena serangan electron dari ikatan rangkap IPP terhadap atom karbon dari DMAPP yang kekurangan electron diikuti oleh penyingkiran ion pirofosfat. Serangan ini menghasilkan geranil pirofosfat (GPP) yakni senyawa antara bagi semua senyawa monoterpen.

Penggabungan selanjutnya antara satu unit IPP dan GPP, dengan mekanisme yang sama seperti antara IPP dan DMAPP menghasilkan Farnesil Pirofosfat (FPP) yang merupakan senyawa antara bagi semua senyawa seskuiterpen. Senyawa-senyawa diterpen diturunkan dari geranil-geranil pirofosfat (GGPP) yang berasal dari kondensasi antara satu unit IPP dan FPP dengan mekanisme yang sama.

(6)

reduksi, dan reaksi-reaksi spontan yang dapat berlangsung dengan mudah dalam suasana netral dan pada suhu kamar, seperti isomerasi, dehidrasi, dekarboksilasi dan sebagainya. Berikut ini adalah gambar biosintesa terpenoid dapat dilihat pada gambar dibawah ini :

CH3-C-SCoA

Asetil koenzim A Asetoasetil koenzim A

CH3-C-CH2-C-SCoA

(7)

Untuk menjelaskan hal diatas dapat diambil beberapa contoh monoterpen. Dari segi biogenetik, perubahan geraniol, nerol, dan linalool dari satu menjadi yang lain berlangsung sebagai akibat reaksi isomerasi. Ketiga alkohol ini, yang berasal dari hidrolisa geranil pirofosfat (GPP) dapat menjalai reaksi-reaksi sekunder berikut, misalnya dehidrasi menghasilkan mirsena, oksidasi menjadi sitral dan oksidasi reduksi menghasilkan sitronelal. Berikut ini contoh perubahan senyawa monoterpen dapat dilihat pada gambar 2.3.

CH2OH

Geraniol (trans)

OH

Linalool

H2O

CHO

Mirsen H , O

CHO CH2OH

Sitronelal

Nerol (cis)

Sitral O

Gambar 2.3. Perubahan senyawa monoterpen (Achmad, 1986)

(8)

OH

Farnesol

OPP Trans-Farnesil pirofosfat

OPP

Cis-Farnesil pirofosfat

CH2

H+

Humulena

H2C

H+

Bisabolen

Gambar 2.4. Reaksi biogenetik beberapa seskuiterpen (Achmad, 1986) 2.2.3. Isolasi Minyak Atsiri dengan Destilasi

Destilasi dapat didefenisikan sebagai cara penguapan dari suatu zat dengan perantara uap air dan proses pengembunan berdasarkan perbedaan titik didihnya. Destilasi merupakan metode yang paling berfungsi untuk memisahkan dua zat yang berbeda, tetapi tergantung beberapa faktor, termasuk juga perbedaan tekanan uap air (berkaitan dengan perbedaan titik didihnya) dari komponen-komponen tersebut (Pasto, 1992).

(9)

dapat terbuka selebar mungkin. Tujuan lainnya yaitu agar rendemen minyak menjadi lebih tinggi dan waktu penyulingan lebih singkat (Lutony, 2000).

Minyak atsiri, minyak mudah menguap, atau minyak terbang merupakan campuran dari senyawa yang berwujud cairan atau padatan yang memiliki komposisi maupun titik didih yang beragam. Penyulingan dapat didefenisikan sebagai proses pemisahan komponen-komponen suatu campuran yang terdiri atas dua cairan atau lebih berdasarkan perbedaan titik didih komponen-komponen senyawa tersebut. Proses penyulingan sangat penting diketahui oleh para penghasil minyak atsiri. Penyulingan suatu campuran yang berwujud cairan yang tidak saling bercampur, hingga membentuk dua fase atau dua lapisan. Keadaan ini terjadi pada pemisahan minyak atsiri dengan uap air. Penyulingan dengan uap air sering disebut hidrodestilasi. Pengertian umum ini memberikan gambaran bahwa penyulingan dapat dilakukan dengan cara mendidihkan bahan tanaman atau minyak atsiri dengan air (Sastrohamidjojo, 2004).

2.3. Analisis Komponen Kimia Minyak Atsiri dengan GC-MS

Sedikit sekali jenis minyak atsiri yang memiliki komponen tunggal dengan porsi yang sangat besar, kebanyakan mengandung campuran senyawa dengan berbagai tipe. Karena itu analisis dan karakterisasi komponen minyak atsiri merupakan masalah yang cukup rumit , ditambah dengan sifatnya yang mudah menguap pada suhu kamar. Jadi, untuk menganalisis minyak atsiri perlu diseleksi metode yang akan diterapkan.

(10)

melengkapi, yaitu gabungan antara kromatografi gas dan spektrometri massa (GC-MS). Kromatografi gas berfungsi sebagai alat pemisah berbagai komponen campuran dalam sampel, sedangkan spektrometer massa berfungsi untuk mendeteksi masing-masing molekul komponen yang telah dipisahkan pada sistem kromatografi gas (Agusta,2000).

2.3.1. Kromatografi Gas

Kromatografi gas adalah proses pemisahan campuran menjadi komponen-komponennya dengan menggunakan gas sebagai fase bergerak yang melewati suatu lapisan serapan yang diam. Kromatografi gas digunakan untuk analisa kualitatif dan kuantitatif terhadap cuplikan yang komponennya dapat menguap. Keuntungan utama kromatografi gas adalah waktu analisis yang singkat dan ketajaman pemisahan yang tinggi. Waktu yang dibutuhkan oleh molekul komponen untuk melintasi suatu kolom yang panjangnya L disebut dengan waktu retensi (Yazid, 2005).

Dalam kromatografi gas, fase bergeraknya adalah gas dan zat terlarut terpisah sebagai uap. Pemisahan tercapai dengan partisi sampel antara fase gas bergerak dan fase diam berupa cairan dengan titik didih tinggi (tidak mudah menguap) yang terikat pada zat padat penunjangnya (Khopkar, 2003).

2.3.1.1. Gas Pembawa

Gas Pembawa : gas pembawa yang paling sering digunakan adalah helium (He), argon (Ar), nitrogen (N2), hidrogen (H2), dan karbon dioksida (CO2). Keuntungannya adalah karena semua gas ini tidak reaktif dan dapat dibeli dalam keadaan murni dan kering yang dikemas dalam tangki bertekanan tinggi. Gas pembawa harus memuhi syarat antara lain harus inert, murni dan mudah diperoleh (Agusta, 2000).

2.3.1.2. Sistem Injeksi

(11)

a. Injeksi langsung (direct injection), yang mana sampel yang diinjeksikan akan diuapkan dalam injector yang panas dan 100% masuk menju kolom.

b. Injeksi terpecah (split injection), yang mana sampel yang diinjeksikan diuapkan dalam injector yang panas dan selanjutnya dilakukan pemecahan. c. Injeksi tanpa pemecahan (splitness injection), yang mana hampir semua sampel diuapkan dalam injector yang panas dan dibawa ke dalam kolom karena katup pemecah ditutup; dan

d. Injeksi langsung ke kolom (on colum injection), yang mana ujung semprit dimasukkan langsung ke dalam kolom.

Teknik injeksi langsung ke dalam kolom digunakan untuk senyawa-senyawa yang mudah menguap, karena kalau penyuntikkannya melalui lubang suntik, dikawatirkan akan terjadi peruraian senyawa tersebut karena suhu yang tinggi (Rohman, 2009)

2.3.1.3. Kolom

Kolom merupakan tempat terjadinya proses pemisahan karena di dalamnya terdapat fase diam. Oleh karena itu, kolom merupakan komponen sentral pada kromatografi gas (Rohman, 2009). Keberhasilan suatu proses pemisahan terutama ditentukan oleh pemilihan kolom. Kolom dapat terbuat dari tembaga, baja tahan karet, aluminium, atau gelas. Kolom dapat berbentuk lurus, melengkung, atau gulungan spiral sehingga lebih menghemat ruang (Agusta, 2000).

2.3.1.4. Fase Diam

(12)

tersebut juga membentuk ekor. Begitu juga dengan garis dasarnya tidak rata dan terlihat bergelombang. Bahkan kemungkinan besar komponen yang bersifat nonpolar tidak akan terdeteksi sama sekali (Agusta, 2000).

2.3.1.5. Suhu

Suhu merupakan salah satu faktor utama yang menentukan hasil analisis kromatografi gas dan spektrometri massa. Umumnya yang sangat menentukan adalah pengaturan suhu injektor dan kolom. Kondisi analisis yang cocok sangat bergantung pada komponen minyak atsiri yang akan dianalisis (Agusta, 2000).

2.3.1.6. Detektor

Detektor merupakan perangkat yang diletakkan pada ujung kolom tempat keluar fase gerak (gas pembawa) yang membawa komponen hasil pemisahan. Detektor pada kromatografi adalah suatu sensor elektronik yang berfungsi mengubah sinyal gas pembawa dan komponen-komponen di dalamnya menjadi sinyal elektronik. Sinyal elektronik detektor akan sangat berguna untuk analisis kualitatif maupun kuantitatif terhadap komponen-komponen yang terpisah di antara fase diam dan fase gerak (Rohman, 2009).

2.3.2. Spektrometri masaa

Spektrometri massa adalah suatu metode analisis instrumental yang dipakai untuk identifikasi dan penentuan struktur dari komponen sampel dengan cara menunjukkan massa relatif dari molekul komponen dan massa relatif hasil pecahannya. Penggabungan spektrometri massa dengan kromatografi gas telah memperluas wawasan metode tersebut sehingga mampu untuk menganalisis matriks sampel yang sulit sekalipun. Asas spektrometri massa adalah penembakan molekul dengan electron yang berkekuatan tertentu dan molekul tersebut akan terpecah (Mulja, 1999).

Spektrometer massa pada umumnya digunakan untuk : 1.Menentukan massa suatu molekul

(13)

3.Mengetahui informasi dari struktur dengan melihat pola fragmentasinya (Dachriyanus,2004).

Sebuah spektroskopi massa akan siap memberikan berat molekuler dari suatu senyawa organik dalam hitungan menit. Analisis unsurnya cukup akurat sehingga akan memungkinkan perhitungan rumus molekulnya. Penghilangan satu elektron dari hasil seluruh molekul dalam suatu spesies M++, umumnya disebut ion molekuler . Sehingga nilai m/z dari ion molekul memberikan berat molekul sampel

M.. + e M + . + 2 e ( Brown, 1988).

Pemboman molekul oleh sebuah arus elektron pada energi mendekati 70 elektron volt dapat menghasilkan banyak perubahan pada struktur molekul. Salah satu proses yang terjadi yang disebabkan oleh pemboman dengan elektron adalah

keluarnya sebuah elektron dari molekul sehingga terbentuklah kation molekul [M.]+.

Ion berenergi tinggi ini serta hasil fragmentasinya merupakan dasar bagi cara analisis

spektrometri massa (Pine, 1988).

Pada sistem GC-MS ini, yang berfungsi sebagai detektor adalah spektrometer massa itu sendiri yang terdiri dari sistem analisis dan sistem ionisasi, dimana Electron Impact ionization (EI) adalah metode ionisasi yang umum digunakan (Agusta, 2000).

Ketika uap suatu senyawa dilewatkan dalam ruang ionisasi spektrometer

massa, maka zat ini dibombardir atau ditembak dengan elektron. Elektron ini

mempunyai energi yang cukup untuk melemparkan elektron dalam senyawa sehingga

akan memberikan ion positif, ion ini disebut dengan ion molekul (M+). Ion molekul

cendrung tidak stabil dan terpecah menjadi fragmen-fragmen yang lebih kecil.

Fragmen-fragmen ini yang akan menghasilkan diagram batang (Dachriyanus,2004).

Peningkatan penggunaan GC-MS banyak digunakan yang dihubungkan

(14)

akan berkembang pada pemisah yang lebih efesien. Karena komputer dapat

diprogram untuk mencari spektra library yang langka, membuat indentifikasi dan

menunjukkan analisis dari campuran gas tersebut (Willett, 1987).

2.3.2.1. Instrumentasi Spektrometer Massa

Bagian-bagian utama suatu spektrometer massa terdiri dari tempat menginjeksikan sampel, ruangan pengion, pengumpul ion, penguat sinyal dan pencatat. Sampel diuapkan dan didorong ke dalam ruang pengion. Fungsi dari penganalisis massa adalah menguraian partikel-partikel. Kemudian molekul-molekul sampel terionisasi baik secara langsung ataupun tidak langsung oleh arus elektron sehingga menghasilkan ion-ion positif, dan molekul-molekul dipisahkan dalam bentuk ion-ionnya. Ion-ion positif masuk kedalam daerah penganalisis massa. Kemudian partikel yang bergerak cepat diberi medan magnit yang kuat, sehingga lintasannya menjadi lengkung. Jari-jari lengkung lintasan tergantung dari kecepatan dan kekuatan medan magnit. Partikel-partikel dengan massa yang berbeda difokuskan ke suatu celah ke luar dengan cara memvariasikan potensial akselerasi atau kekuatan medan magnit. Ion-ion yang melewati celah akan diterima oleh elektroda pengumpul. Arus ion yang dihasilkan diperkuat dan dicatat sebagai fungsi kuat medan atau potensial akselerasi (Khopkar, 2003).

1. Sistem penanganan sampel

Bagian ini berfungsi mengubah sampel agar mempunyai bentuk gas pada tekanan rendah dan reprodusibel. Untuk sampel yang tidak mudah menguap, diperlukan pemanas asalkan senyawa tersebut stabil secara termal. Senyawa-senyawa tidak mudah menguap dan tidak stabil secara termal dimasukkan ke dalam kamar pengion dengan bantuan probe sampel yang dilengkapi pemanas yang dapat menguapkan sampel tekanan rendah.

2. Sumber ion

Di sini molekul-molekul diubah menjadi ion dalam bentuk gas. Cara yang umum untuk menghasilkan ion-ion meliputi penembakan sampel dengan berkas elektron berenergi tinggi yang berasal dari suatu ion gun. Pada cara elektron

(15)

chemical ionization memberikan fragmentasi lebih sederhana. Pada cara nyala, pembentukan ion dari sampel anorganik yang tidak mudah menguap dilakukan dengan cara nyala. Pada cara ionisasi medan dipakai anoda dan katoda untuk mendapat fragmentasinya.

3. Penganalisis massa

Ini adalah susunan alat-alat yang berguna untuk memisahkan ion-ion dengan perbandingan massa terhadap muatan yang berbeda-beda. Penganalisis massa harus dapat membedakan selisih massa yang kecil serta dapat menghasilkan arus ion yang tinggi (Khopkar, 2003).

4. Pengumpul ion

Terdiri dari satu celah atau lebih dan silinder Faraday. Berkas ion membentuk tegak lurus pada plat pengumpul dan isyarat yang timbul diperkuat dengan pelipat ganda elektron (Sudjadi, 1983).

5. Pencatat

Spektrum massa biasanya dibuat dari massa rendah ke massa tinggi. Pencatat yang banyak digunakan mempunyai 3-6 galvanometer yang mencatat secara bersama-sama pada kertas fotografi. Galvanometer menyimpang jika ada ion menabrak lempeng pengumpul, berkas sinar ultraviolet dapat menimbulkan berbagai puncak pada kertas pencatat yang peka terhadap sinar ultraviolet (Sudjadi, 1983).

(16)

2.4. Bakteri

Bakteri adalah sel prokariotik yang khas; uniseluler dan tidak mengandung struktur yang terbatasi membran didalam sitoplasmanya sel-selnya khas berbentuk bola, batang atau spiral (Waluyo, 2007). Bakteri terdiri atas sitoplasma yang dikelilingi oleh sebuah dinding sel yang kaku yang terbuat dari suatu zat khusus yang disebut peptidoglikan (Corwin, 2007). Bakteri menimbulkan berbagai perubahan kimiawi pada substansi yang ditumbuhinya. Mereka mampu menghancurkan banyak zat. Bakteri tidak memiliki inti sel. Organisme amat penting untuk memelihara lingkungan kita, yakni dengan menghancurkan bahan yang tertumpuk di atau dalam daratan dan lautan. Beberapa menimbulkan penyakit pada binatang, termasuk manusia, tumbuhan, dan protista lainnya. Mikroorganisme ini sangat luas penyebarannya dalam permukaan bumi dan dilingkungan kita sehari-hari (Waluyo, 2007).

Bakteri memiliki sifat transparan sehingga untuk mengamati morfologi bakteri diperlukan suatu pewarnaan. Ada dua cara yang dapat dilakukan untuk memeriksa bakteri secara mikroskopis yaitu diperiksa secara langsung dan diwarnai dahulu kemudian diperiksa. Salah satu jenis pewarnaan tersebut ialah pewarnaan Gram yang pertama kali dipublikasikan oleh seorang ahli bakteriologi Denmark Hans Christian Gram pada tahun 1884. Pewarnaan gram bertujuan untuk mengetahui bakteri –bakteri gram positif atau bakteri gram negatif yang memiliki struktur yang berbeda terutama pada dinding selnya Adanya perbedaan bakteri gram negatif dan bakteri gram positif adalah pada dinding selnya (Novel, 2010). 2.4.1. Bakteri Gram Positif

(17)

2.4.1.1. Streptococcus mutans

Organisme yang berperan pada penyebab karies gigi adalah jenis streptokokus dimana ada dua jenis streptokokus yang menyebabkan karies tersebut yaitu

Streptococcus mutans dan Streptococcus sobrinus. Streptococcus mutans

merupakan bakteri utama penyebab karies gigi. Streptococcus mutans biasanya terdapat pada permukaan karies (Saraf, 2006).

Spesies Streptococcus mutans berbentuk bulat yang dapat dijumpai secara berpasangan dan dalam rantai. Organisme ini berperan penting dalam mengawali terbentuknya luka-luka karies pada permukaan email (Pelczar, 1986).

Gambar 2.6. Bakteri Streptococcus mutans

2.4.2. Bakteri Gram Negatif

Bakteri gram negatif, yaitu bakteri yang kehilangan warna Kristal violet ketika dicuci dengan alkohol dan setelah diberi zat warna kedua (Safranin), bakteri akan memberikan warna merah muda (Lay, 1994). Dinding sel bakteri gram negatif lebih kompleks dibandingkan bakteri gram positif. Perbedaan utamanya adalah adanya lapisan membran luar yang meliputi peptidoglikan (Waluyo, 2007).

2.4.2.1. Eschericia coli

(18)

Walaupun Eschericia coli merupakan bagian dari mikrobiota normal saluran pencernaan, namun terbukti bahwa galur-galur tertentu mampu menyebabkan gastroenteritis taraf sedang sampai parah pada manusia dan hewan.

E.coli merupakan organisme indikator yang dipakai didalam analisis air untuk menguji adanya pencemaran oleh tinja, tetapi pemindahsebarannya tidak melalui air melainkan Eschericia coli dipindahsebarkan dengan kegiatan tangan ke mulut atau dengan pemindahan pasif lewat makanan atau minuman.

(19)

Tabel 2.1 Beberapa ciri bakteri gram positif dan gram negatif

NO Ciri Perbedaan Relatif

Gram positif Gram negatif 1 Struktur

Memiliki asam teikoat

Kandungan lipid

Lebih rentan Kurang rentan

4 Resistensi terhadap gangguan fisik

Lebih resisten Kurang resisten

(20)

2.5. Antibakteri

Antimikroba merupakan suatu senyawa yang mampu membunuh bakteri secara langsung (Bactericidal) atau pun mampu menghambat pertumbuhan dari mikroba (Bacteriostatic). Bakteriostatic memiliki pertahan sendiri termasuk dalam menghasilkan antibodi dan phagositosis yang biasanya berguna untuk membunuh mikroorganisme (Tortora, dkk, 2001). Beberapa uji dapat digunakan untuk menguji aktivitas antimikroba, antara lain:

2.5.1. Metode Difusi

Merupakan metode yang paling sering digunakan, lazim dikenal dengan cara Kirby-Bauer seperti berikut, sebuah cawan petri yang berisi media agar yang telah dimasukkan bakteri yang sudah sesuai standar di atas permukaannya. Kemudian kertas cakram dibasahi atau dibubuhi dengan zat antimikroba yang telah diketahui konsentrasinya diletakkan di atas permukaan agar yang sudah memadat. Selama inkubasi, zat antimikroba akan berdifusi dari cakram ke media agar. Apabila zat antimikroba efektif maka zona hambat akan terbentuk di sekitar cakram setelah inkubasi (Tortora dkk, 2001).

2.5.2. Metode Dilusi

Gambar

Gambar 2.1.  Tanaman Legundi
gambar dibawah ini :
Gambar 2.3. Perubahan senyawa monoterpen (Achmad, 1986)
Gambar 2.4. Reaksi biogenetik beberapa seskuiterpen (Achmad, 1986)
+5

Referensi

Dokumen terkait

Penelitian terhadap minyak atsiri daun zodia telah dilakukan oleh (Maryuni, 2008), mengenai isolasi minyak atsiri daun zodia dengan menggunakan metode destilasi uap, dimana

Dari uaraian yang telah dikemukakan diatas dalam penelitian ini dilakukan analisis komponen kimia, uji aktivitas antibakteri dan uji antioksidan minyak atsiri daun bunga tahi

Penyulingan adalah proses pemisahan komponen yang berupa cairan atau padatan dari dua macam campuran atau lebih berdasarkan perbedaan titik uapnya dan proses ini dilakukan

Penelitian terhadap minyak atsiri daun zodia telah dilakukan oleh (Maryuni, 2008), mengenai isolasi minyak atsiri daun zodia dengan menggunakan metode destilasi uap, dimana

dan dapat dimanfaatkan oleh banyak orang.Tujuan Penelitian ini untuk memperoleh sediaan lotion antinyamuk dari minyak atsiri daun legundi ( Vitex trifolia L .)

Penelitian terhadap minyak atsiri daun zodia telah dilakukan oleh (Maryuni, 2008), mengenai isolasi minyak atsiri daun zodia dengan menggunakan metode destilasi uap, dimana

Minyak atsiri yang dikenal dengan nama minyak terbang (volatile oil) atau minyak eteris (essensial oil) adalah minyak yang dihasilkan dari tanaman dan mempunyai sifat

ISOLASI DAN ANALISIS KOMPONEN KIMIA MINYAK ATSIRI DAUN BARU CINA (Artemisia vulgaris L.) SERTA UJI.. AKTIVITAS ANTIBAKTERI DAN